Requested Proof

Ruth Vanderpool
TMATH 402 Abstract Algebra I

October 29, 2022

Theorem . Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{m} \in S_{n}$ be the produce of disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_{1}, \sigma_{2}, \ldots$ and σ_{m}.

Proof. Let l_{i} be the length of the cycle σ_{i} which was defined in the construction of σ above. We will show the order of σ is a multiple of each of the l_{i} 's. Since the least common multiple of the l_{i} 's is the smallest multiplier, it must equal the order of σ. Let β denote the order of σ.

Since β is the order of σ, we know $\sigma^{\beta}=()$. We will expand σ^{β} but first note that σ_{i} and σ_{j} are all disjoint from each other so we know the cycles can commute with each other, or more symbolically, that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$. Then,

$$
\begin{aligned}
() & =\sigma^{\beta} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right)^{\beta} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right) \cdots\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right) \\
& =\sigma_{1}^{\beta} \sigma_{2}^{\beta} \cdots \sigma_{m}^{\beta} .
\end{aligned}
$$

This implies that $\sigma_{i}^{\beta}=()$ so β must be a multiple of l_{i} for all $i \in\{1,2,3 \ldots n\}$. Thus β must be a multiple of each of the l_{i} 's. Recall the order of σ is the smallest integer such that $\sigma^{\beta}=()$, thus β is the smallest multiple of all the l_{i} 's. Thus β is the least common multiple of the l_{i} 's which is what we wanted to show.

