Requested Proof

Ruth Vanderpool TMATH 402 Abstract Algebra I

October 29, 2022

Theorem. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_m \in S_n$ be the produce of disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_1, \sigma_2, \ldots$ and σ_m .

Proof. Let l_i be the length of the cycle σ_i which was defined in the construction of σ above. We will show the order of σ is a multiple of each of the l_i 's. Since the least common multiple of the l_i 's is the smallest multiplier, it must equal the order of σ . Let β denote the order of σ .

Since β is the order of σ , we know $\sigma^{\beta} = ()$. We will expand σ^{β} but first note that σ_i and σ_j are all disjoint from each other so we know the cycles can commute with each other, or more symbolically, that $\sigma_i \sigma_j = \sigma_j \sigma_i$. Then,

$$() = \sigma^{\beta}$$

= $(\sigma_1 \sigma_2 \cdots \sigma_m)^{\beta}$
= $(\sigma_1 \sigma_2 \cdots \sigma_m) \cdots (\sigma_1 \sigma_2 \cdots \sigma_m)$
= $\sigma_1^{\beta} \sigma_2^{\beta} \cdots \sigma_m^{\beta}$.

This implies that $\sigma_i^{\beta} = ()$ so β must be a multiple of l_i for all $i \in \{1, 2, 3...n\}$. Thus β must be a multiple of each of the l_i 's. Recall the order of σ is the smallest integer such that $\sigma^{\beta} = ()$, thus β is the smallest multiple of all the l_i 's. Thus β is the least common multiple of the l_i 's which is what we wanted to show.