True/False: If the statement is false, give a counterexample.
If the statement is always true, give a brief explanation of why it is (not just an example!).

1. [3] (§2.2) Let a and b be integers and p be a prime number. If p divides $a b$, then either p divides a or p divides b.
(1) True
$\log _{6}(1)$
Whkot loss dgandity a soume p does mot divide a, then in suficos to meses p ditcos b.
Nok sme p es pare and p loos (a dude' $a^{\prime} g d^{\prime}(p a)=1$. Q 1 usth $31=<\rho+5 a+$
Dovinen $(b)=(r p+s a) b=r p b+s a b$. Since pdinces do pondas sab. Contant perwdes rpb. Apusp divides rotsab
2. [3] (§3.2) All groups are abelian/commutative. orb,

Fale C Consder $D_{4}=\left\{r, s \mid e r^{4}=s^{2}\right.$ and $\left.s r s=r^{-1}\right\}$
since $\quad S T S=C^{1} \Rightarrow S C=r^{-1} S$
s) S doos not commute with 6 .
(15) lathe for castrax
(4) Surd wanter en
(15) Clarityoxpluchon

Consiber S_{10} or the symmetnic gropeso 10 aramats.
Nonie $(123)(12)=(13)(2)$ bt
$(12)(123)=(1)(23)$, withat Motogd
3. [3] (§5.1) Let $\sigma \in S_{12}$. Then $\sigma^{12}=()$.

False Consider $(123)(45678) \in S_{12}$
(t) Noice the vidor of (123) is 3 are
(3) losky for candes ax

The ates $0(45678)=5$.
(4) Knaw order paspel.
(S) go's ore

Thm's from chss \Rightarrow the order $(123)(45678)=3.5$ or 15.
Since $12415, \mathrm{by}$ dehmhor 4 ote we Cuses

$$
[(123)(45678)]^{12} \neq()
$$

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
4. [9] For each of the sets and operations below, determine if they define a group.

If no, briefly explain why. If yes, briefly describe the process you used to reach that answer.

Sets S \& Operator *
Is a Group
a) \mathbb{Z}_{10}

* is multiplication under modulo 10
no - If 4 is milifipiction we reed 1 to be bes Notice OC\% bot $\#$ multiplechue in erse for 0

b) $\{a, b, c, d\} \star$ is defined by

\star	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	c	d	b	a
d	d	c	a	b

It lakes the be shat re the dent bile the
borrow (indicoty $b \alpha=\alpha$ for all α) (
BAt the aided sos indicates $c b \neq c$ and do td.
Sone $s r s=r^{-1}$ where e is the identity.

$$
\begin{aligned}
& \text { invert - } 0^{2}=\Rightarrow \text { sis on inverse } \\
& { }^{1+2}=\Rightarrow \text { me canbuld } 4 \text { "s }
\end{aligned}
$$

5. [2] Choose a set (any set you want!) and define a (nontrivial) equivalence relation on
it. (Non-trivial means that every element is not in its own equivalence class nor that
all elements are in the same equivalence class.)

6. Consider the integers \mathbb{Z} with the the binary operator of addition. Let α be an integer. Define $\alpha \mathbb{Z}=\{\alpha k \mid k \in \mathbb{Z}\}$.
(a) $[4](\S 3.3)$ Show $5 \mathbb{Z}$ is a subgroup of \mathbb{Z}.
wort with $\alpha / \not / 4+5)^{(a)}$ we use a property and shoa $5 \pi \neq \phi$ and if $g h \in 5 \pi$, then $g h ' t 5 \%$. usedel/popotstofy Nation $0+5 \pi$. So $5 \pi \neq \phi$.
1.5
nothorf/angsent. Let $h \in 5 \pi$. Thee $\exists k \in \% \geqslant h=5 k$. Notice $-5 k$ is the +5
Checkerchprep inverse to h because $h+(-5 k)=5 k-5 k=0$ (recycling the gape is adding). Thus $h \in 5 \pi$.
(b) [3] (ModuloActivity) Draw (a partial) Cayley Diagram for $5 \mathbb{Z}$.
element / velticos 51
grosatolarnens colet)
shape/ptr (I)

where the arrows correspond th addling 5
(c) [2] (4.1) Find a subgroup of $5 \mathbb{Z}$.

$$
10 z=\{\ldots-10,-10,0,10,20,\}
$$

(d) [3] Create a partial subgroup lattice for \mathbb{Z}. Include $5 \mathbb{Z}$ and your answer to part (c) in the lattice.

Contratmat
$7 /$

Hare ore saucy many sheytus are (ane) ovid M MER bites
(45)Stan a lathe
$60 \pi 3$
7. [8] Choose ONE of the following theorems to prove. Clearly identify which of the two you are proving and what work you want to be considered for credit. No, doing both questions will not earn you extra credit.

Theorem 1. Let G be a group. Prove that $b a=c a$ implies $b=a n d a b=a c$ implies $b=c$ for all elements a, b, and c in G.

$$
\left(C_{0,0}\right)
$$

Theorem 2. Let G be a finite cyclic group with order 20 generated by g. Prove g^{n} generates G if and only if $\operatorname{gcd}(n, 20)=1$.

Thu 1 Prows:
Let a,b,cela. We mit assume the two stetemety, one after each diver.

Assume barca, Since lo is a gp, There arises acc lo. Act $\mathrm{g}_{\mathrm{c}} \mathrm{a}^{\prime \prime}$ on the sight of the given equation. C_{2} :

$$
b a=c a
$$

$$
\Rightarrow \operatorname{coa}^{-1}=\cos ^{-1} \quad b \text { asocidany }
$$

$\Rightarrow b\left(a a^{-1}\right)=\left(a a^{\prime}\right) \quad b y d . d$ mere
$\Rightarrow b e=c e \quad b, c e f . d$ identity
Similarly, are some $a b=a c$, We now act bo a^{-4} on the b on $t a b=a c$ to Gro:

$$
\begin{gathered}
a b=a c \\
a^{-1}(a b)=a^{-1}(a c) \quad b y a s s o c \\
\left(a^{-1} a b=\left(a^{-1} a\right) c\right. \\
e b=a c \\
b=c
\end{gathered}
$$

we prove bon stamen
(1) ron swemonts bested
(1) ste asswhens eck hoes
(1) acrpog/ack

4
Welland

The 7 Prat.
we will chs two directors, First assume $g^{\prime} d(n, 20)=1$. We went to show $G=4 a^{n} 7$.

Since $\mathrm{ged}(n, 20)=1,11, s \in 7 L \Rightarrow$
$r n+5 \cdot 20=1$, Sine $\left(h=\left\langle g\right.\right.$, we know $g^{2}=e S$

Thus $g_{k} g_{k}\left\langle g^{n}\right\rangle$. Since Me givector
ot G is in mi stogie $2 g^{n}$ Id we
thew <gar most gerniofe al da. Thus $\alpha=\left\langle q^{n}\right.$.

For the on d direction, assume egg $=$ la. Recall from a Thu uncles the order of g^{n} is $\frac{20}{\operatorname{gcd}(n, D)}$. Since gigneates (9 , the order mast bo D so $\operatorname{ged}(\cap, 2)=1$ which is what we vented hosta
(1) both diechons sexed
(1) ere assumphen the the
(x) order pep/dof
(1) Canptrimes

2 gob ration bx at bose one cerous haws

Indent inbegyd bx see (y worker

