Cosets

3. Identify some elements in the cosets 1 + H and $6 + \mathbb{Z}$ in \mathbb{Z} .

4. Note that the "1" and the "6" in the notation in problem 3 is often called the representative of a coset. Hypothesize why we call the $g \in G$ the *representative* of g + H.

5. Identify any other left cosets of H in \mathbb{Z} .

6. Find the left cosets of $\langle 3 \rangle$ in U(8).

- 7. Find $[U(8):\langle 3\rangle]$.
- 8. Prove the following: Let H be a subgroup of a group G and suppose that g_1 and g_2 are elements of G. Show $g_1H = g_2H$ if and only if $g_2 \in g_1H$.