The GCD \& LCD

Definition 1. Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

Definition 2. The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\operatorname{lcm}(a, b)$.

1. For each a and b given below, find $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.
(a) $a=24$ and $b=36$
(b) $a=17$ and $b=22$
(c) $a=2^{3} \cdot 3 \cdot 5$ and $b=2^{2} \cdot 5$.
2. In general, if you have two positive integers n and m with prime decompositions

$$
n=p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdot \ldots p_{n}^{r_{n}} \quad m=p_{1}^{s_{1}} \cdot p_{2}^{s_{2}} \cdot \ldots p_{n}^{s_{n}}
$$

where each p_{i} is a distinct prime and the exponents are greater than or equal to zero. Write down the prime decomposition for
(a) the $\operatorname{gcd}(n, m)$
(b) the $\operatorname{lcm}(n, m)$

Check your answers to questions 1 by consulting $\S 4.3$ example 10,11 , \& \#14.

