Three-Dimensions

1. We use the convention that the arrows denote the positive side of an axes. For each of the following set of axis below, identify the positive z-axis:

2. If the axes are not labeled, we use the convention that the z-axis moves up and down the page. Use the coordinate axis provided on the right for the following questions:
(a) Plot the points
$A=(0,0,0)$,
$B=(1,2,3), \&$
$C=(0,-2,1)$.
Note that the points plotted in part (a) cast 'shadows' on the $x y$-plane. That is, if we drop a perpendicular from a point $P=(a, b, c)$ to the $x y$-plane, the point $Q=(a, b, 0)$ is the projection of P to the $x y$-plane.

(b) Find the $x y$-plane projections for each of the three points you plotted in part (a). Graph the projections and explain why I described these projections as 'shadows'.
(c) Find the $y z$-plane projections of the three points you plotted in part (a).
(d) Find the distance between the point $(0,0,0)$ and $(0,-2,1)$.
(e) Find the distance between the point $(0,0,0)$ and $(1,2,3)$.
(f) Consider the point $P=(a, b, c)$, find the distance between $(0,0,0)$ and P. Justify yourself.

Things to do with vectors...

1. Let $A(0,0,0), B(1,2,3)$, \& $C(0,-2,1)$.
(a) Plot the vectors
$\overrightarrow{A B}, \overrightarrow{A C}, \& \overrightarrow{A B}+\overrightarrow{A C}$.

Notation: vectors \vec{v} who's initial point is at the origin with their terminal point (a, b, c) have what Stewart calls components, $\langle a, b, c\rangle$.
(b) Write the components of $\overrightarrow{A B} \& \overrightarrow{A C}$.

(c) If a vector doesn't have an initial point at the origin, we can move (translate) the vector so that its initial point is at the origin.
Find the components of $\overrightarrow{B A}$ and $\overrightarrow{B C}$.
(d) In general, write down the components of the vector $\overrightarrow{X Y}$ if $X\left(x_{1}, y_{1}, z_{1}\right)$ and $Y\left(x_{2}, y_{2}, z_{2}\right)$.
2. Let the components of \vec{v} and \vec{w} be $\langle 1,2\rangle$ and $\langle 2,-1\rangle$ respectively.
(a) Draw \vec{v}, \vec{w}, and $\vec{v}+\vec{w}$.
(b) What are the components of $\vec{v}+\vec{w} ?$

(c) In general, if the components of \vec{a} and \vec{b} are $\left\langle a_{1}, a_{2}\right\rangle$ and $\left\langle b_{1}, b_{2}\right\rangle$ respectively, write down the components of $\vec{a}+\vec{b}$.
(d) In general, if the components of \vec{a} are $\left\langle a_{1}, a_{2}\right\rangle$, find $|\vec{a}|$.

