Exam 2

NAME:

1. [6] TRUE/FALSE Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let x and y be positive real numbers.

T (F) $\frac{2}{b^{2}}+\frac{1}{b}=\frac{5}{b^{2}}$

$$
\frac{\partial}{b^{2}}+\frac{1 b}{b b}=\frac{2+b}{b^{2}}
$$

$\mathrm{T}(\mathrm{F})\left(x^{3}\right)^{3}=x^{6} . \quad\left(x^{3}\right)^{3}=x^{3} x^{3} x^{3}=(x \times x)(\times x x)(x \times x)=x^{9}$
T (F) The range of $y=e^{x}-2$ is $(-1, \infty)$.

$y=e^{x-2}$
$\operatorname{tans}(x \cos$ dan 2

$=>(-2, \infty)$
$\begin{aligned} & y=e^{x}-2 \\ & \operatorname{tansh} \operatorname{down} 2 \\ & \Rightarrow(-2, \infty)\end{aligned}$
(T) $\mathrm{F} \quad y=(x-2)^{3} x(x+50)$ has 3 roots.

T (F) $x^{-2}=x^{\frac{1}{2}}$
(a), 0 ad - 50
$\frac{1 y=e^{x}}{\operatorname{rang}:(0, \infty)}$
$x^{1 / 2}=\sqrt{x}$ and $x^{-2}=1 / x^{2}$
$\begin{aligned} \mathrm{T}(\mathrm{F}) \log (x-y)= & \log (x)-\log (y) \\ & \log (x)-\log (y)=\log \left(\frac{x}{y}\right)\end{aligned}$
Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. [3] (WebHW7 \#22) How long does it take for a deposit of $\$ 1400$ to double at 3% compounded continuously?

$$
P e^{r t}=A+1
$$

SDdogree 4 3. [4] (Quiz \#2) Given the graph below is of a polynomial of degree four, find the 55 poynomieh algebraic rule/write an equation for the graph.

$$
(.5)=x(x-1)^{2} \quad-(x-2)^{\prime}
$$

4. [3] ($\S 3.2 \# 56)$ The graph is of an exponential function $\log _{b}(x)$ that has been horizontally shifted. Find the algebraic rule/write an equation for the graph.

5. For each equation below, find x.

$$
\begin{aligned}
& \text { Tho }(1,1)(15) \\
& \Rightarrow 1=\log _{1}(1+2) \quad \leq 1=\log _{0}(3)
\end{aligned}
$$ (a) [3] (exponentActivity \#3) $(x+1)^{-1}+3=x$

neg exp \mathbb{A}
oder sep e(1) $\frac{1}{x+1}+3=x$
solve quad (t)

$$
\left.\begin{array}{l}
1=(x-3)(x+1) \\
1=x^{2}+x-3 x-3 \\
1=x^{2}-2 x-3
\end{array}\right\} \begin{aligned}
& x^{2}-2 x-4=0 \\
& x^{2}-2 x+1-4=1 \\
& (x-1)^{2}-4=1 \\
& (x-1)^{2}=+5 \\
& x-1= \pm \sqrt{+5} \\
& x=1 \pm \sqrt{-5}
\end{aligned}
$$

(b) [3] (WebHW8 \#21) $6^{1-x}=5^{5 x+6}$
use logs. +.5

$$
\ln \left(6^{1-x}\right)=\ln \left(5^{5 x+6}\right)
$$

ogre (1)

$$
\begin{aligned}
& (1.5)(1-x) \ln (6)=(5 x+6) \ln (5) \\
& \ln (6)-x \ln (6)=x \cdot 5 \ln (5)+6 \ln (5) \\
& -6 \ln (5)+x \ln (6) \quad+x \ln (6)-6 \ln (5) \\
& \ln (6)-6 \ln (5)=x(5 \ln (5)+\ln (6)
\end{aligned} \quad \begin{aligned}
& x=\frac{\ln (6)-6 \ln (5)}{5 \ln (5)+\ln (6)} \approx \approx-.799
\end{aligned}
$$

$\log p \operatorname{pos}(1)$ usexprigutes
exprent pops (41)

$$
\log _{4} \frac{\sqrt{x+3}}{\sqrt{2 x-1}}=\frac{1}{4}
$$

$\rightarrow 2(2 x-1)=x+3$

$$
4^{\frac{1}{4}}=\frac{\sqrt{x+3}}{\sqrt{2 x-1}}
$$

order or up (1)

$$
\begin{aligned}
& \left(4^{\frac{1}{4}}\right)^{2}=\left(\frac{\sqrt{x+3}}{\sqrt{2 x-1}}\right)^{2} \\
& 2=\frac{x+3}{2 x-1}
\end{aligned}
$$

6. [3] (PracticeExam\#6) The function $f(x)=3 \cdot 2^{x}+5$ passes the horizontal line test so has an inverse. Find $f^{-1}(x)$.
surterxisdys
$y=3 \cdot 2^{x}+5$
(41)

$$
\frac{x-5}{3}=\frac{8 \cdot 2 y}{3} \int \log _{2}\left(\frac{x-5}{3}\right)=y
$$

$$
\frac{x-5}{3}=2^{y}
$$

7. [2] (Quiz3 \#3) Write the following logarithmic statement in exponential form:

move 2 rand (1)
8. [3] Write a polynomial p that satisfied the following criteria: polynowad -5

- as x goes to ∞, then y goes to $-\infty$
- the only roots are: $-1,2$ and 4

$$
\begin{aligned}
& -3(x-1)(x-2)(x-4) \\
& \uparrow+1.5(4.3)
\end{aligned}
$$

Note: there is more than one right answer!! (+) to get y togo to $-\infty$ as $x \rightarrow \infty$
9. [4] (WebHW6 \#16) Find the remainder when $x^{4}-398 x^{2}+1$ is divided by $x^{2}-20 x+1$

$$
\begin{array}{r}
20 x^{3}-399 x^{2}+0 x+1 \\
\frac{-\left(20 x x^{3}-400 x^{2}+20 x\right)}{x^{2}-20 x+1} \\
-\frac{\left(x^{2}-20 x+1\right)}{0}
\end{array}
$$

10. [3] (\log Properties \#3) Let $\log _{2}(x)=7$ and $\log _{2}(y)=6$. Find $\log _{2}(8 x y)$

$$
\begin{aligned}
& \log _{2}(x)=7 \Rightarrow 2^{7}=x \\
& \log _{2}(y)=6 \Rightarrow 2^{6}=y \\
& \text { So } \log _{2}(8 x y)=\log _{2}\left(8 \cdot 2^{7} \cdot 2^{6}=16\right.
\end{aligned}
$$

11. [4] Choose $O N E$ of the following. Clearly identify which of the two you are answering and what work you want to be considered for credit.
No, doing both questions will not earn you extra credit.
(a) (WebHW9 \#10) pH Scales: Let $\left[H^{+}\right]$be the concentration of hydrogen ions in solution X measured in moles per liter (denoted M). Then
pH level of solution $X=-\log \left[H^{+}\right]$。
Suppose that hydrogen ion concentration in a solution A is 10,000 times that in solution B. Find a function relating the pH level of solution A to the pH level of solution B.
(b) (§3.2 \#115) Benford's Law: The probability that the first decimal-digit of a raw data sample (from 1 to 9) is given by $P_{m}=\log (m+1)-\log (m)$.
What percentage of data would financial investigators expect the numbers in accounting books to have 3 as a first digit?
(a) $\left[\mathrm{H}_{A}^{+}\right]=$cancentetion st had ions \& Sol. A
$\left[\mathrm{H}_{\beta}^{\circ}\right]=$ conceatationd had ios d

$$
P_{A}=p H \text { level of sol } A
$$

$$
P H_{A}=P H_{B} \text { P Po vel level of sol } B
$$

$$
\text { Given }\left[\mathrm{H}_{A}^{+}\right]=10,000\left[\mathrm{H}_{B}^{+}\right]
$$

wort relater between $P_{A}+p_{A} B^{2(S)}$

(b)
porboralifythat the firs deaind diagts a raw late somple'is 3 isgrenty

$$
\begin{aligned}
& P_{3}=\log (3+1)-\log (3) \\
&=\log (4)-\log (3) \\
&=\log (4 / 3) \\
& \approx .249 \text { so } 12.5 \% \\
& \text { wimple }(1)
\end{aligned}
$$

start (41)
internet correct? (1)
12. [5] Choose ONE of the following. Clearly identify which of the two you are answering and what work you want to be considered for credit.
No, doing both questions will not earn you extra credit.
(a) (expActivity \#5) Newton's Law of Cooling: If D is the initial temperature defference between an object and its surroundings, and if its surroundings have a temperature T, then the temperature of the object A and time t is modeled by:

$$
A=T+D e^{-k t}
$$

where k is a positive constant that depends on the type of object.
Initially coffee has a temperature of $200^{\circ} \mathrm{F}$ in a room that is 70°. After ten minutes the temperature is 150°. What will the temperature of the coffee be after an additional ten minutes passes?
(b) ($\S 3.3 \# 108)$ Amortization formula: If r is the annual interest rate, M is the mortgage amount, t is the number of years, and n is the number of payments a year, then the payment P on a mortgage is given by:

$$
P=\frac{r \cdot M}{1-\left(1+\frac{r}{n}\right)^{-n t}} \div n
$$

The Garcia family wanted to take out a mortgage for $\$ 150,000$ with 8% with monthly payments. The family can afford monthly payments of $\$ 1200$. How long would they have to make payments to pay off their mortgage and how much interest would they be paying?
(a) start +4.5
chliz

