True/False: If the statement is false, give a counterexample.
If the statement is always true, give a brief explanation of why it is (not just an example!).

1. [3] If p is prime, then there is only one finite ring of order p .
2. [3] Let R be a ring and $x \in R$. If x is not a unit, then x is a zero divisor.
3. [3] Let R be a ring with unity/one. Show if $\phi: R \rightarrow S$ is a ring homomorphism then $\phi(1)$ is idempotent.
4. [8] For each of the terms below, determine if the term is used to describe an element, a set, both, or neither. Then provide examples for each.

	element?	set?
abelian	no	$\begin{gathered} \text { yes, } \\ \text { groups work } \\ C_{5}=\left\{r \mid r^{5}=1\right\} \end{gathered}$
unit		
zero divisor		
kernel		
prime		

5. Consider $R=\mathbb{Z}_{9} \times \mathbb{Z}_{3}$.
(a) [3] Find an ideal I, so that R / I is a ring but not a field. Justify your answer.
(b) [3] Find an ideal I, so that R / I is a field. Justify your answer.
6. Use the first three letters of your first name to build a polynomial of the form $a_{0}+a_{1} x+a_{2} x^{2}$ in $\mathbb{Z}_{3}[x]$. Specifically, use the table below to let a_{0} be the number that corresponds to the first letter in your first name. For Ruth then "R" would set $a_{0}=0$. Let a_{1} be the number that corresponds to the second letter and a_{2} correspond to the third letter. For Ruth then $a_{1}=0$ and $a_{2}=2$, thus the polynomial for Ruth is $0+0 x+2 x^{2}$.

1	A	D	G	J	M	P	S	V	Y
2	B	E	H	K	N	Q	T	W	Z
0	C	F	I	L	O	R	U	X	

(a) [1] Let $p(x)$ represent the polynomial of the form $a_{0}+a_{1} x+a_{2} x^{2}$ corresponding with your first name. Write down $p(x)$.
(b) [2] Find a representative of x^{3} in $\mathbb{Z}_{3}[x] /(p(x))$ with degree less than 2.
(c) [4] how many elements does $\mathbb{Z}_{3}[x] /(p(x))$ have? Justify your answer.

7. Consider:

Theorem 1. Let I and J be ideals in a ring R. Then $I \cap J$ is an ideal in R.
(a) [2] Find an example I, J, and R that helps verify Theorem 1 .
(b) [8] Prove Theorem 1.

