Vanderpool

TMath 403

Spring 2024

True/False: If the statement is false, give a counterexample. If the statement is *always* true, give a brief explanation of why it is (not *just* an example!).

1. [3] If p is prime, then there is only one finite ring of order p.

2. [3] Let R be a ring and $x \in R$. If x is not a unit, then x is a zero divisor.

3. [3] Let R be a ring with unity/one. Show if $\phi : R \to S$ is a ring homomorphism then $\phi(1)$ is idempotent.

4. [8] For each of the terms below, determine if the term is used to describe an element, a set, both, or neither. Then provide examples for each.

	element?	$\operatorname{set}?$
abelian	no	yes, groups work $C_5 = \{r r^5 = 1\}$
unit		
zero divisor		
kernel		
prime		

5. Consider $R = \mathbb{Z}_9 \times \mathbb{Z}_3$.

(a) [3] Find an ideal I, so that R/I is a ring but not a field. Justify your answer.

(b) [3] Find an ideal I, so that R/I is a field. Justify your answer.

6. Use the first three letters of your first name to build a polynomial of the form $a_0 + a_1x + a_2x^2$ in $\mathbb{Z}_3[x]$. Specifically, use the table below to let a_0 be the number that corresponds to the first letter in your first name. For Ruth then "R" would set $a_0 = 0$. Let a_1 be the number that corresponds to the second letter and a_2 correspond to the third letter. For Ruth then $a_1 = 0$ and $a_2 = 2$, thus the polynomial for Ruth is $0 + 0x + 2x^2$.

1	А	D	G	J	М	Р	\mathbf{S}	V	Υ	
2	В	Е	Η	Κ	Ν	Q	Т	W	Ζ	
0	C	F	Ι	L	0	R	U	Х		

- (a) [1] Let p(x) represent the polynomial of the form $a_0 + a_1x + a_2x^2$ corresponding with your first name. Write down p(x).
- (b) [2] Find a representative of x^3 in $\mathbb{Z}_3[x]/(p(x))$ with degree less than 2.
- (c) [4] how many elements does $\mathbb{Z}_3[x]/(p(x))$ have? Justify your answer.

7. Consider:

Theorem 1. Let I and J be ideals in a ring R. Then $I \cap J$ is an ideal in R.

(a) [2] Find an example I, J, and R that helps verify Theorem 1.

(b) [8] Prove Theorem 1.