Take Home Final

This section is to be taken home, completed, and turned in by 5:00pm Wednesday June 5 th. There is no time limit and you do not need to type up your solutions to get full marks although the answers should be well edited and readable.

You may discuss this problem with anyone else from the class and use the class resources posted on Canvas. You may not consult anyone or any resource that is not affiliated with the class such as tutors, websites, or other textbooks.

Consider two points on a piece of paper, P_{0} and P_{1} with the distance between them defined as 1. We can fold a line that passes through P_{0} and P_{1} to create an x axis. By folding the line on top of itself and sliding the paper until the new fold passes through P_{0} we can create a perpendicular line through P_{0} that gives us a y axis. Using only paper folding (which corresponds to the following six axioms) we can identify points on the plan from intersecting folds. We call the set of all possible points on the plan that can be obtained in a finite number of folds, Origami-constructible numbers.

1. Given two points p_{1} and p_{2} we can fold a line connecting them.
2. Given two points p_{1} and p_{2} we can fold p_{1} onto p_{2}.
3. Given two lines l_{1}, and l_{2}, we can fold line l_{1} onto l_{2}.
4. Given as point p_{1} and a line l_{1}, we can make a fold perpendicular to l_{1} passing through the point p_{1}.
5. Given two points p_{1} and p_{2} and a line l_{1}, we can make a fold that places p_{1} onto l_{1} and passes through the point p_{2}.
6. (Beloch's Fold) Given two points p_{1} and p_{2} and two lines l_{1} and l_{2}, we can make a fold that places p_{1} onto line l_{1} and
 places p_{2} onto line l_{2}.
7. [2] Verify Origami-constructible numbers form a field. (Note the addition and multiplication defined for constructible numbers will be of use here but we need to verify paper folding is a strong enough tool! Do not worry about verifying distribution.)
8. [1] Origami-constructible numbers are larger than \mathbb{Q}. Identify a subfield of Origamiconstructible numbers that contains \mathbb{Q}.
9. [2] Identify all subfields of $F=\mathbb{Q}(\sqrt{3}, \sqrt{5})$ that are extensions of \mathbb{Q} and arrange these in a lattice.
10. Let $F=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. We write an element of F with the basis $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$. Define $\tau: F \rightarrow F$ by $\tau(a+b \sqrt{3}+c \sqrt{5}+d \sqrt{15})=a-b \sqrt{3}+c \sqrt{5}-d \sqrt{15}$ for $a, b, c, d \in \mathbb{Q}$. Define $\sigma: F \rightarrow F$ by $\sigma(a+b \sqrt{3}+c \sqrt{5}+d \sqrt{15})=a+b \sqrt{3}-c \sqrt{5}-d \sqrt{15}$ for $a, b, c, d \in \mathbb{Q}$.
(a) [4] Verify τ is a field isomorphism.
(b) [3] Verify the set of isomorphisms from F to F forms a group generated by σ and τ. Provide a Cayley table or Cayley Diagram.
(c) [2] Create a subgroup lattice for the group above.
(d) [1] Compare the lattice of (c) to the lattice (3).
