Exam 2 TMath 126

Autumn 2024

As a reminder, you are welcome to use a non-internet accessing calculator (which includes Desmos Test Mode) and a one-sided 8.5 by 11 sheet of notes. Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

- 1. [6] TRUE/FALSE: Write True in each of the following cases if the statement is *always* true and provide a brief justification. Otherwise, write False and provide a counterexample or brief justification.
 - (a) If $f_x(2,3) = 0$ then (2,3, f(2,3)) will be a critical point.
 - (b) To optimize the function $f(x, y) = e^{xy}$ subject to the constraint $x^3 + y^3 = 16$ we would need to solve the following system of equations:

$$\left\{\begin{array}{c}
ye^{xy} = 3x^2 \\
xe^{xy} = 3y^2 \\
x^3 + y^3 = 16
\end{array}\right\}$$
(1)

2. Consider
$$\int_0^7 \int_{x^2}^{49} 1 + xy \, dy \, dx$$

- (a) [2] (WebHW15.2 #7) Sketch the region of integration.
- (b) [2] (Practice Exam 2 # 4) Switch the order of integration.

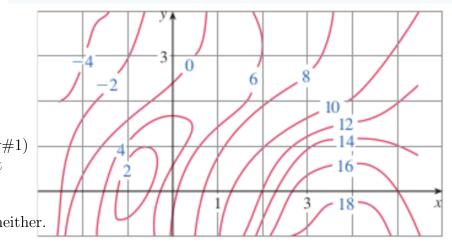
3. Consider the table that provides the heat index (I) as a function of temperature (T) and relative humidity (H).

Table 1	Heat Index	(I As	s a Fi	uncti	on o	f Ten	npera	ature	and	Hun	nidity
(a) [2] (WrittenHW 14.3#2) ∂I	Relative humidity (%)										
Estimate $\frac{\partial I}{\partial H} _{(92,55)}$	Actual temperature (°F)	T H T	50	55	60	65	70	75	80	85	90
		90	96	98	100	103	106	109	112	115	119
		92	100	103	105	108	112	115	119	123	128
		94	104	107	111	114	118	122	127	132	137
		96	109	113	116	121	125	130	135	141	146
		98	114	118	123	127	133	138	144	150	157
		100	119	124	129	135	141	147	154	161	168
					1						

(b) [3] (Quiz6#2) Find the linear approximation/linearization of I when T = 92 and H = 55.

(c) [2] (WrittenHW 14.4#28) Use your linear approximation to approximate I when T = 94 and H = 60. Is the approximation an overestimate or an underestimate to the actual value?

- 4. Let $f(x, y) = x^2 \sin(x) \sin(y)$.
 - (a) [3] (Quiz5 #2) Draw sections of the contour map/the level curves of f when z = 1and z = 2. Label the curves!


				y 4	_				
				3					
				2					
				1					
-4	-3	-2	-1	0	1	2	3	4	
				-1					
				-2					
				-3					
				-4					

(b) [3] (WebHW14.3) Find $f_x(x, y)$

(c) [2] (WrittenHW14.6 #26) Sketch the direction of $\nabla f(2,0)$ on the graph.

(d) [3] (DirectionActivity #2) Find $D_{\overrightarrow{u}}(2,0)$ where $\overrightarrow{u} = \langle \frac{\sqrt{3}}{2}, \frac{1}{2} \rangle$.

- 5. Let f have the contour lines shown on the right.
 - (a) [1] Estimate f(-1, 3)
 - (b) [2] (OptimizationActivity#1)
 Identify one critical point on the graph of f and identify it as a local minimum, maximum or neither.

(c) [3] (PracticeExam2 #2) Estimate the volume bounded by f above the rectangle $0 \le x \le 3$ and $1 \le y \le 3$. Be clear about what choices you are making to estimate the volume.

- 6. [6] (§14.7 ex5) Find the shortest distance between the point (1, 0, -2) and the surface described by x + 2y + z = 4. Note that this problem can be solved in dramatically different ways!!! If you choose to solve this using chapter 14 techniques you can outline the solution making sure to include:
 - (a) definitions of variables used,
 - (b) identifying the function that needs to be optimized,
 - (c) boxing systems of equations that need to be solved (but do not solve them!), &
 - (d) explaining how you would verify your work is correct (ie a maximum)