Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. Let $f(x)=\sin (\pi x)$.

The graph of g is given on the right. Estimate (if possible):
(a) [1] (TrigPractice\#4) $f(-2)$

(b) [2] (ProductActivity \#1) $\left.\frac{d}{d x}(g(x))\right|_{x=-2}$.
(c) [2] an x value where $g^{\prime}(x) \approx 2$
(d) [3] (WebHW8\#7) $\left.\frac{d}{d x}(f(x) g(x))\right|_{x=-2}$
(e) $[3](\S 3.4 \# 72)(f \circ g)^{\prime}(0)$
2. [2] (PracticeExam2\#1) Find $\lim _{x \rightarrow 0} \frac{\sin (7 \theta)}{\theta}$ (either numerically, graphically, or algebraically), if it exists.
3. Consider a particle that is moving with velocity is $v(t)=2 \sin \left(\frac{\pi t}{3}\right)$ (inches per second), graphed on the right.
(a) [1] Find the velocity when $t=1$.
(b) [2] (WordProblem2\#3) Find 2 times that the particle is at rest?

(c) [3] (WordProblem2\#3) Find the acceleration as a function of t.
(d) $[3](\S 3.3 \# 40)$ Find a time when the acceleration is -1 (inch per second squared).
4. [3] (WebHW9\#7 or WebHW8\#1) Find $\frac{d y}{d x}$ of $O N E$ of the listed functions below. Doing both does not earn extra credit and only one will be marked so clearly indicate what you want marked!

$$
y=\left(\frac{1}{x^{3}}+3\right) e^{x} \quad y=\frac{x+7 \sqrt{x}}{\cos (x)}
$$

5. The differentiable functions f and g are defined for all real numbers. Values for f, f^{\prime}, g, and g^{\prime} for various x values are given in the table.
(a) [1] Find $g(2)$.
(b) [3] (WebHW11\#10) Find the linearization of g at $x=2$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	4	2	6
2	1	5	8	7
3	7	7	2	9

(c) $[1]$ (§3.10\#52a) Use the linearization of g to approximate $g(2.05)$.
(d) $[1]$ (ImplicitDifActivity\#5)Given that $h(x)=[f(x)]^{g(x)}$, find $h(1)$.
(e) $[4]$ (ImplicitDifActivity\#5)Given that $h(x)=[f(x)]^{g(x)}$, find $h^{\prime}(1)$.
6. [5] (WebHW10\#8 or PracticeExam2\#4) Find $\frac{d y}{d x}$ of $O N E$ of the listed functions below. Doing both does not earn extra credit and only one will be marked so clearly indicate what you want marked!

$$
y=\frac{4^{x} \cdot \log _{4}(x)}{x^{2}-4 x}
$$

$$
y+x 8^{y}=\ln (x)
$$

7. Suppose there is an oil spills that is spreading in a cylindrical pattern that has uniform thickness of .001 meters. On day 9 the area of the spill area was $13,000 \mathrm{~km}^{2}$ and the radius of the spill was increasing by about 10 meters a day.
(a) [2] (WebHW11 \#1)Find a function for the rate the volume is changing as a function of the radius r, and the rate of change of r.
(b) [3] (RelatedRatesActivity\#2) Find the rate that the volume was changing on the 9 th day. Clearly identify what it is you are looking for in calculus notation.
