A proof of the Brown–Goodearl Conjecture for module-finite weak Hopf algebras

AMS Western Sectional Meeting
University of California, Riverside

Robert Won
University of Washington
Joint work with

Daniel Rogalski (UC San Diego) and James Zhang (University of Washington).
Hopf algebras

- Throughout, work over a field \mathbb{k}.
- A bialgebra H over \mathbb{k} is a \mathbb{k}-algebra (H, m, u) and a \mathbb{k}-coalgebra (H, Δ, ε) such that

 (a) m and u are coalgebra morphisms

 $$\Delta(ab) = \Delta(a)\Delta(b) \quad \text{and} \quad \Delta(1) = 1 \otimes 1$$

 (a’) Δ and ε are algebra morphisms

 $$\Delta(ab) = \Delta(a)\Delta(b) \quad \text{and} \quad \varepsilon(ab) = \varepsilon(a)\varepsilon(b).$$

- **Sweedler Notation.** $\Delta(a) = a_1 \otimes a_2$.
- A Hopf algebra is a bialgebra with a \mathbb{k}-linear antipode S

 $$S(a_1)a_2 = a_1S(a_2) = \varepsilon(a).$$
Hopf algebras

Example

G a group. The group algebra $\mathbb{k}G$.

For $g \in G$: $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, $S(g) = g^{-1}$

Example

L a Lie algebra. The universal enveloping algebra $U(L)$.

For $x \in L$: $\Delta(x) = 1 \otimes x + x \otimes 1$, $\varepsilon(x) = 0$, $S(x) = -x$.

Example

H a finite-dimensional Hopf algebra. Then the dual $H^* = \text{Hom}_{\mathbb{k}}(H, \mathbb{k})$ is also a Hopf algebra.
Hopf algebras are nice

- Hopf algebras possess good homological properties.
- If $\text{char } k = 0$, then every affine commutative Hopf algebra over k is regular (finite global dimension).
- Every affine commutative Hopf algebra over k is Gorenstein (finite injective dimension).
- Finite-dimensional Hopf algebras are Frobenius.
The Brown–Goodearl Conjecture

Question [Brown 1998]
Let H be an affine noetherian Hopf algebra satisfying a polynomial identity. Does H have finite injective dimension?

Theorem [Wu–Zhang 2003]
Yes!

Question [Brown–Goodearl and Wu–Zhang]
Does every noetherian Hopf algebra have finite injective dimension?
The Brown–Goodearl Conjecture

Stronger Question [Brown–Goodearl and Wu–Zhang]
Is every noetherian Hopf algebra Artin–Schelter Gorenstein?

Definition
A \(k \)-algebra \(A \) is Artin–Schelter Gorenstein of dimension \(d \) if:
(1) \(_AA \) has finite injective dimension \(d \),
(2) for all finite-dimensional \(A \)-modules \(_AM \),
\[
\operatorname{Ext}^i_A(M, A) = \begin{cases}
0, & i \neq d \\
\text{finite-dimensional}, & i = d.
\end{cases}
\]
(3) The right-sided versions of (1) and (2) hold.
Why are Hopf algebras nice?

- Let H-mod be the category of left H-modules.
- Let H-mod_{fd} be the category of finite-dimensional ones.
- If H is a Hopf algebra, for $M, N \in H$-mod, $M \otimes_k N \in H$-mod where
 \[h.(m \otimes n) = h_1.m \otimes h_2.n. \]
- Uses the coalgebra structure of H.
- This makes H-mod a monoidal category.
- $1 = H \mathbb{1}_k$ where H acts by ε.
- The above works for any bialgebra. The antipode S makes H-mod_{fd} rigid. Every $M \in H$-mod_{fd} has a left dual.
Weak Hopf algebras

- A weak bialgebra H over k is a k-algebra (H, m, u) and a k-coalgebra (H, Δ, ε) such that

 1. $\Delta(ab) = \Delta(a)\Delta(b)$,
 2. $(\Delta \otimes \text{Id}) \circ \Delta = (\Delta(1) \otimes 1)(1 \otimes \Delta(1)) = (1 \otimes \Delta(1))(\Delta(1) \otimes 1)$,
 3. $\varepsilon(abc) = \varepsilon(ab_1)e(b_2c) = \varepsilon(ab_2)e(b_1c)$.

- Bialgebra if and only if $\Delta(1) = 1 \otimes 1$ if and only if $\varepsilon(ab) = \varepsilon(a)\varepsilon(b)$.

- A weak Hopf algebra is a weak bialgebra with antipode S:

 $S(a_1)a_2 = 1_1\varepsilon(a_12)$, \quad $a_1S(a_2) = \varepsilon(1_1a)1_2$, \quad $S(a_1)a_2S(a_3) = S(a)$.
Why weak Hopf algebras?

• Introduced by [Böhm–Nill–Szlachanyi 1999], motivated by physics: study symmetries in conformal field theory.

• Axioms are self-dual, so the dual of a finite-dimensional weak Hopf algebra is again a weak Hopf algebra.

Example

If H, K are bialgebras, then $H \oplus K$ is an algebra as usual and a coalgebra under

$$\Delta(h, k) = (h_1, 0) \otimes (h_2, 0) + (0, k_1) \otimes (0, k_2)$$

$$\varepsilon(h, k) = \varepsilon_H(h) + \varepsilon_K(k)$$

But $\Delta(1, 1) = (1, 0) \otimes (1, 0) + (0, 1) \otimes (0, 1) \neq (1, 1) \otimes (1, 1)$. So $H \oplus K$ not a bialgebra, only a weak bialgebra.
Why weak Hopf algebras?

- If \(G, H \) are groups, then \(G \sqcup H \) is not a group, but a groupoid.

Example

\(\mathcal{G} \) is a groupoid. \(k\mathcal{G} \) the groupoid algebra is a weak Hopf algebra.

For \(g \in \mathcal{G} \):

\[
\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad S(g) = g^{-1}.
\]

\[
\mathcal{G} = \begin{array}{c}
1 \\
\alpha \downarrow \\
\alpha^{-1} \uparrow \\
2
\end{array}
\]

Then \(1 = e_1 + e_2 \) but \(\Delta(1) = e_1 \otimes e_1 + e_2 \otimes e_2 \neq 1 \otimes 1 \).

- For any (weak) Hopf algebra \(H \), the matrix algebra \(M_n(H) \) is a weak Hopf algebra.
Why weak Hopf algebras?

Theorem [Hayashi 1999, Szlachányi 2001]

Every *fusion category* is equivalent to $H\text{-mod}_{fd}$ for some weak Hopf algebra H.

- Hopf algebras **not general enough** to describe all fusion categories.
- If $(H, m, u, \Delta, \varepsilon)$ is an algebra and coalgebra such that $\Delta(ab) = \Delta(a)\Delta(b)$, then

 $$\Delta^2(1) = (\Delta(1) \otimes 1)(1 \otimes \Delta(1)) = (1 \otimes \Delta(1))(\Delta(1) \otimes 1)$$

 \Rightarrow comod-H and H-comod are monoidal,

 $$\varepsilon(abc) = \varepsilon(ab_1)\varepsilon(b_2c) = \varepsilon(ab_2)\varepsilon(b_1c)$$

 \Rightarrow mod-H and H-mod are monoidal.

- (But not \otimes_k!) [Nill 1998], [Böhm–Caenepeel–Janssen 2011]
The Brown–Goodearl Question

- \(H \)-mod monoidal structure \(\Rightarrow H \) good homological properties.

Question

If \(H \) is a noetherian weak Hopf algebra, does \(H \) have finite injective dimension? Is \(H \) AS Gorenstein?

- **Remark.** The direct sum of AS Gorenstein algebras of different dimensions is not AS Gorenstein.

Question

If \(H \) is a noetherian weak Hopf algebra, does \(H \) have finite injective dimension? Is \(H \) a direct sum of AS Gorenstein algebras?
The Brown–Goodearl Question

Theorem [Rogalski, —, Zhang]

If H is a weak Hopf algebra or quasi-Hopf algebra which is module-finite over its affine center, then H is a direct sum of AS Gorenstein algebras. In particular, H has finite injective dimension.
Thank you!