Special Section

The Thick of the Fray: Open Source Software in
Libraries in the First Decade of this Century

by K.G. Schneider

software (OSS). The air is thick with wildly divergent opinions of its
value and utility for libraries even as wikis, blogs, conferences and
journal articles about OSS flood the library attention-economy.

| he library community has been a-buzz of late about open source

The Body Count

To no one’s surprise, a raw “body count” of libraries using open source
integrated library systems indicates that the vast majority of libraries
continue to rely on legacy proprietary systems. However, awareness of OSS
as a potentially viable approach for library technology is much more
widespread and growing, particularly as libraries use and become
comfortable with reliable, high-performing OSS programs such as Firefox.

Libraries are even reengaging with software development projects for
the first time in decades, and there are at least a dozen active OSS projects
based in or with their genesis in library organizations, including such better-
known projects as the integrated library systems Evergreen, Koha, OPALS,
OLE and xCatalog; discovery layers such as LibraryFind, Blacklight,
VuFind, Fish4Info, Scriblio and SOPAC; and component projects such as
Umlaut, the OpenURL resolver and iVia, a search engine/portal.

Major grants through LSTA and Mellon have helped fuel some of these
projects, while library systems committed to OSS development have
donated sweat equity, hardware and the gift of moral support.

Even OCLC - an organization which for years has zealously protected its
data and which in a public relations faux pas in the 1990s sicced its lawyers
on New York’s Library Hotel for using Dewey decimal numbers on its hotel

K.G. Schneider, community librarian with Equinox Software, Inc., can be reached by
email at kgs<at>freerangelibrarian.com

rooms — has gotten into the game. OCLC’s Developer’s Network now
collaborates in an “open source, code-sharing infrastructure” in which library
developers, among other things, “share software code with other network
members and the community-at-large in an open source environment” [1].

What Is Free?

The chattering classes have been busy with OSS. At one extreme, skeptics
condemn OSS as a low-grade, poor-man’s substitute for licensed software
and argue that libraries are better served with off-the-shelf proprietary
products. At the other extreme, OSS evangelists intimate it can cure cancer,
dissolve cellulite and always out-perform any other software. Between both
extremes float misconceptions, assumptions, anxieties and wish fulfillment.

Somewhere amid the fog and friction of myth lie the simple facts of
open source software. What makes OSS different from proprietary software
is that it is free in every sense of the word: free as in “no cost,” free as in
“unencumbered” and free as in “not locked up.” OSS is free to download, free
to use and free to modify (though the process for committing modifications
to the core code has a slight air of mystery, as will be discussed below).
OSS code is also freely viewable.

Each definition of “free” has its own significance for the value of OSS
in libraries, and each definition has also led to some confusion.

For software to be free as in “no cost” means that the software itself has
no licensing fees. This definition of “free” has led library technologists such
as Eric Lease Morgan to observe that free software is free as in “free
kittens” — that is, that these programs still require support and maintenance.
It is a matter of debate how freedom from licensing fees directly factors into
the total cost of ownership for software.

Marshall Breeding, the director of Innovative Technologies and Research

15

NEXT PAGE >

mailto:kgs<at>freerangelibrarian.com
carlabadaracco
Rectangle

carlabadaracco
Rectangle

carlabadaracco
Rectangle

SCHNEIDER, continued

Special Section

for the Jean and Alexander Heard Library at Vanderbilt University and author
of the popular website, Library Technology Guides, has frequently questioned
whether OSS is overall less expensive than its proprietary counterparts and
has called for libraries to look hard at cost factors. He tells me that it is
important to question whether OSS offers a lower overall TCO (total cost of
ownership) than its proprietary counterparts and to not base decisions on
philosophical preferences.

Meanwhile, organizations such as the Georgia Public Library Service
(GPLS) have reported significant first- and second-year savings in the
implementation and maintenance costs for their automated systems. In the
case of GPLS, funding from other organizations has underwritten all or part
of new services for their Evergreen system, including acquisitions,
internationalization, a low-cost non-SIP (session initiative protocol) self-
check alternative and other features.

The “free-as-in-no-cost” characteristics of OSS have led to concerns
that libraries would have to provide their own support for OSS. This is a
legitimate concern, as few libraries (or for that matter, few organizations in
any profession) are in a position to provide most or all of the support and
development required to maintain and develop software.

However, “free-as-in-no-cost” does not preclude commercial support
models for OSS — and in fact, unlike the proprietary software world, because
OSS is open to anyone to use, this vaguely communistic approach to software
development has led to a strong free market for software support and
development services. In the world beyond libraries, numerous companies
have arisen to provide support for various OSS products, such as Red Hat
for Linux and Acquia for Drupal.

The Net Under the Tightrope
Within LibraryLand, at least five companies now provide support for OSS.
Several of these companies are associated with a specific software program
(Equinox for Evergreen, Liblime for Koha and Media Flex for OPALS),
while other companies such as Alpha-G and Galecia Associates provide
consulting, and some companies, such as IndexData, provide a little of each.
Another common misconception about the “free-as-in-no-cost” nature of

OSS is the belief that none of the code is produced through paid development.
This misconception has been supported by some of the more woo-woo
philosophizing found in works such as Eric Raymond’s The Cathedral and
the Bazaar 2], the first half of which tosses around speculative theorizing
about “hacker milieus,” “gift cultures” and reputation game analyses to create
a myth of the noble OSS developer, contributing code for the good of the
community for nothing more than an enhanced reputation. Volunteer ” and
many OSS projects are thriving communities with leaders, followers,
contributors, audiences and reputation systems. The library community, with its
strong ethos of sharing and openness, is well-suited for volunteer development.

However, the pragmatic investment of money or sweat equity into OSS
development is equally if not more significant than the role of volunteer
contributions — particularly in librarianship, where developers are scarce to
begin with and usually involved with far too many projects to donate the gift
of development time. Companies such as Equinox, Liblime and Media Flex
use the proceeds from service or special-project contracts to fund future devel-
opment in the products they support, while library organizations contribute
developer hours to developing services they will need, as is happening with
Project Conifer, a consortium of Canadian academic librarians contributing to
the development of acquisitions and internationalization for Evergreen.

This blended development model is unique to OSS — and is directly a
result of the other ways OSS is “free.” Like so many things librarians hold
dear — information, books and library buildings themselves — OSS is open,
available and visible for all to see. This consonance with librarian values is
a philosophical advantage that should not be downplayed.

Leave the Cloak and Daggers at Home

However, this openness is also a significant strategic advantage. Even if
OSS were a financial wash compared to proprietary software, or only neutrally
consonant with librarian values, there are benefits to OSS that make OSS
preferable to proprietary products.

Vendors for proprietary software have a ready excuse for cloak-and-
dagger development: if they developed their code where everyone could see
it, they would be compromising the source of their revenue. OSS completely

16

TOP OF ARTICLE

< PREVIOUS PAGE NEXT PAGE >

carlabadaracco
Rectangle

carlabadaracco
Rectangle

SCHNEIDER, continued

Special Section

removes that problem from the table. When anyone can see the code, the
code itself has no monetary value, so the economic model for OSS is
dependent on the services that software companies can deliver — a point made
quite well in the second (and far superior) half of The Cathedral and the
Bazaar. There is no motivation to reduce maintenance support when that is
the company’s primary revenue stream.

With OSS, it is also much easier for customers to perform due diligence
about the products they are selecting — in other words, no more false promises.
Many librarians have lived through years of reassurances that the companies
they were working with would deliver the next version Real Soon Now,
only to learn through terse press releases that the long-promised product
would never be materializing. (Some librarians recall being “trained” on
Taos, the never-to-emerge vaporware from DRA.) As Raymond also makes
clear in the second half of The Cathedral and the Bazaar, “when your key
business processes are executed by opaque blocks of bits that you can’t
even see inside (let alone modify), you have lost control of your business”
[2, p. 152] (Raymond’s rather needless emphasis).

Put on Your Big-Girl Britches

There was a time, decades ago, in the early days of library automation,
when libraries built the software that drove their systems. Melvyl, NOTIS
and LRS share the proud heritage of systems that were designed and written
by libraries and for libraries.

It has been suggested that if the Internet had existed in those days, and
those early developers had ready access to file-sharing and online community-
building, librarians might have invented open source. Instead, companies
founded by people with the best of intentions took over fledgling software
efforts and struggled to build viable businesses. While some vendors proved
scurrilous, and some customers proved exasperating, in most cases the vendor-
customer relationships were riddled with endemic and unavoidable “no-fault”
problems. Library software vendors found themselves dealing with customers
who in a chronically under-funded profession were never able to pay realistic
licensing fees, while librarians were dealing with vendors who, unable to earn
enough revenue through licensing, scrimped on maintenance and development.

“Learned helplessness” is what Lori Ayre of The Galecia Group calls
the outcome of this folie a deux. Ayre writes, “It's ridiculous that libraries
are stuck with the systems they've got without options to determine what
changes get made or even the access or privileges that would allow them to
make the changes for themselves.” [3]

“Learned helplessness” has resulted in library automation software that is
generally years if not decades behind development found outside LibraryLand
with the result that library services are often cramped by the limitations of
aged library software that all too often falls short both in features (how many
catalogs still do not perform spell-check? How many do not allow patrons to
pay fees by credit cards?) as well as in functionality (such as poor reindexing
or transaction load capabilities). In an era of budget reductions, the last thing
libraries need is software that positions them poorly with their communities.

Ayre has further commented on the stagnation in ILS development.
“Library system admins simply stopped asking their ILS vendors for the
changes they needed after seeing their requests end up in some future
release black hole. Library staff soon learned that “it wasn't possible with
their system” and stopped asking system admins for changes. Eventually,
people just stopped thinking about how things could be improved.
Somehow, we now have to reverse this trend.”

Ayre has also shared her experiences trying to get proprietary software to
communicate with other vendor products. In this area — interoperability — OSS
again presents distinct advantages. This superiority becomes sharply clear in
discussions about emerging standards, where vendors for proprietary products
can spend years in stalemate, because to become compliant for a particular
product means that the software vendor must make its code open and available.
Foot-dragging about standards compliance may often have much less to do
with the vendor’s reluctance to hew to a shared model than to open its code
for the world to see.

Debunking the Hype

As discussed earlier in this article, there are numerous strong cases to
be made for the adoption of open source software in libraries. But in some
circles the hype has far exceeded what any software can deliver. It’s

17

TOP OF ARTICLE

< PREVIOUS PAGE NEXT PAGE >

carlabadaracco
Rectangle

carlabadaracco
Rectangle

SCHNEIDER, continued

Special Section

important to underscore that beyond the core characteristic of openness,
nothing else can be inferred about OSS. The quality of OSS ranges from
superior, industrial-strength, ever-adapting programs such as Firefox, Linux,
Apache and PostgreSQL, to what can be charitably called GIAG, or Guy in
a Garage software — the poorly documented, badly maintained programs
about which the most we can say is that it’s “free” (less the many hours lost
struggling within its limitations). Some OSS programs have grown huge
contributor communities — thousands of developers have contributed to the
latest Linux releases. Some have one or a handful of developers involved
and will never grow beyond that number.

Quite a few OSS programs exhibit the latest characteristics of good
software — reliance on modern programs and service-oriented architecture —
but this desirable attribute is in part an accident of the relatively recent
history of OSS. The history of software makes it clear that at some point not
all that far in the future, all OSS known today will be obsolete. For example,
among larger applications, there is an argument to be made that PostgreSQL
is replacing MySQL for serious database developers.

So while it is beneficial that so much OSS leaves behind the ratty, tatty
code used in some of the more notorious examples of elderly library software,
it is still incumbent on the library OSS development community to evolve
its products in concert with larger changes in software development outside
LibraryLand. An open, collaborative model can facilitate healthy code
evolution, but it cannot guarantee it.

Not only that, but OSS occasionally lives up to its stereotypes and even some
of the FUD (rumors based on Fear, Uncertainty and Doubt) spread about it.

OSS can be developer-centric, with an emphasis on bare-metal interfaces
and text-heavy script configurations that privilege the technically savvy at
the expense of those who are inexperienced or who prefer to showcase their
mettle through other means than hand-editing lengthy scripts. Software that
is more time-consuming or complex for general users than its proprietary
counterparts can feel like software of last resort, even when the software has
superior characteristics that may endear it to power-users or make it the
better choice for high-end needs.

Join these problems with some websites associated with OSS projects —

with their overly bright web pages reminiscent of mid-1990s web development,
cartoonish software “mascots,” confusing and vaguely cultic invitations to
“join the community” and grudging invitations to download “unsupported”
Windows “binaries” (perhaps with a jab at “Micro$oft”) — and hesitation
about OSS becomes understandable, particularly for library administrators
accustomed to products that are superficially more polished and who direct
their appeal at the people writing checks, rather than the developers.

Also, while some OSS is exhaustively documented — MySQL is an
example — overall documentation is a pervasive problem. Stuart Yeates from
the University of Oxford and a contributor to the Educause blog, Open Source
in Higher and Further Education, observes in his article, “Documentation
Issues in Open Source,” that “[m]any open source projects face significant
challenges generating and maintaining high quality, end-user
documentation.” [4]

Yeates traces these challenges to nine issues, including the fact that
documentation is rarely considered “sexy.” Yeates’ recommendations include
requiring documentation as part of the code roll-out and underwriting the
cost of professional documentation, which are practices embraced in whole
or in part by several library software development projects.

One issue Yeates leaves off the table is that most people vastly
underestimate the skill and resources required to write good documentation
— or for that matter, to produce good writing at all. In an environment
dominated by brilliant, dedicated coders, it can be easy to devalue the humble
efforts of right-brainers and the skills they bring to writing, graphics design,
project management and information architecture.

OSS may always trend to these limitations; these problems may be ones
that are in constant mitigation, but never fully resolved. That said, the
sometimes messy, poorly documented, developer-centric world of open
source development, for all its foibles (endemic or otherwise), is a healthy
improvement on the “learned helplessness” of the last two decades.

Oh Brave New World...
OSS presents important opportunities for libraries — though in most
ventures, opportunity is also a synonym for risk. We can take back

18

TOP OF ARTICLE

< PREVIOUS PAGE NEXT PAGE >

carlabadaracco
Rectangle

carlabadaracco
Rectangle

Bulletin of the American Society for Information Science and Technology — December/January 2009 —Volume 35, Number 2

SCHNEIDER, continued

Special Section

ownership of our future, returning software development to its early glory
days, when software development was intimately intertwined with, and
helped drive, rapid changes in library services. As this author wrote in a
biography of the technology pioneer Anne Lipow, there was a time when
librarians envisioned major new services such as document delivery, and
developers working right in the same library wrote the code to help make
these services happen.

This is the world we want to be in again. It will not always be easy, and
there will be a few spectacular failures. But there will also be spectacular
successes — and this time, they will happen in the open.

R r Mentioned in the Articl

[1] WorldCat. (2008). WorldCat Developer’s Network. Retrieved October 15, 2008, from
http://worldcat.org/devnet/wiki/Main_Page.

[2] Raymond, E.S. (2001). The cathedral and the bazaar: Musings on Linux and open
source by an accidental revolutionary. Cambridge, MA: O'Reilly.

[3] Ayre, L. B. (2008, July 10). Ten years of learned helplessness coming to an end.
Mentat [blog]. Retrieved October 15, 2008, from www.galecia.com/weblog/mt/
archives/cat_especially_for_libraries.php.

[4] Yeates, S. (2005-2008). Documentation issues in open source. 0SS Watch. Retrieved
October 30, 2008, from www.0ss-watch.ac.uk/resources/documentation.xml.

—

9

(TOP OF ARTICLE) (< PREVIOUS PAGE)

www.oss-watch.ac.uk/resources/documentation.xml
www.galecia.com/weblog/mt/archives/cat_especially_for_libraries.php
www.galecia.com/weblog/mt/archives/cat_especially_for_libraries.php
http://worldcat.org/devnet/wiki/Main_Page
carlabadaracco
Rectangle

carlabadaracco
Rectangle

	Button7:
	Button8:

