Teaching Numerical and Symbolic Computation with Open Source Software

Randall J. LeVeque
Department of Applied Mathematics
University of Washington

With thanks to
Kyle Mandli, Kirsten Fagnan, Donna Calhoun,
William Stein, Josh Cantor,
NSF
Outline

Python

- Why switch to Python?
- Sample code for BVP
- Fortran interface
- Web tools

Sage

- Symbolic + Numerical computing
- Sage notebooks
- Unified interface to other languages, packages
Why Python?

Provides the advantages of Matlab, e.g.

- interactive, simple syntax, dynamic typing
- similar user interface to LAPACK, FFTW, etc.
- matplotlib provides Matlab-style plotting in 1d, 2d
Why Python?

Provides the advantages of Matlab, e.g.

- interactive, simple syntax, dynamic typing
- similar user interface to LAPACK, FFTW, etc.
- matplotlib provides Matlab-style plotting in 1d, 2d

Open source

- Basic Python already available on most computers
- Enthought Python Distribution (enthought.com) makes it easy to install NumPy, SciPy, matplotlib
- Greater availability for students
- Teach them a language they can continue to use beyond the academic environment
- More widely available to collaborators in industry, labs
Why Python? Powerful data structures

- N-dim arrays (arbitrary N),
- mixed-type data structures, e.g.

  ```
  a = [37, 'astring', [5,6], linspace]
  ```

- Dictionaries, e.g.

  ```
  errors = {('LW',0.1): 0.042, ('LW',0.05): 0.0105}
  errors[('upwind', 0.1)] = 0.35
  ```

  ```
  h = []; e = []
  for (key,val) in errors.iteritems():
      if key[0]==='LW':
          h.append(key[1]); e.append(val)
  loglog(h,e); title('Lax-Wendroff errors')
  ```
from numpy import *
from scipy import sparse, linsolve

def bvp(m):

 # True solution and second derivative:
 beta = 30.
 def solution(x):
 u = cos(beta*x); u2 = -beta**2*cos(beta*x)
 return (u, u2)

 ax = 0; bx = 1.
 h = (bx-ax)/(m+1.)
 x = linspace(ax, bx, m+2) # x[0]=ax
 # x[m+1] = bx
Sample Python script for 2-point BVP

```python
e = ones(m+2)
A = sparse.spdiags([e, -2*e, e], [-1, 0, 1], m+2, m+2) / h**2
A[0,0] = 1.; A[0,1] = 0.;
A[m+1,m] = 0.; A[m+1,m+1] = 1.

(utrue,f) = solution(x)  # sets RHS
f[0] = utrue[0]  # BC at ax
f[m+1] = utrue[m+1]  # BC at bx

u = linsolve.spsolve(A,f)

print "max error = ", norm(abs(u-utrue), 'inf')
```

R. J. LeVeque python/bvp2.be
from pylab import *
cf()
plot(x,u,'bo')

hold(True)
xfine = linspace(ax,bx,1001)
(ufine,ffine) = solution(xfine)
plot(xfine,ufine,'r')

axis([ax,bx,-1.1,1.1])
legend([‘computed’,’true’])
title(‘Solution with %s grid points’ % str(m+2))
hold(False)
Interfacing with Fortran: f2py

Fortran program `myf.f`:

```fortran
double precision function myf(x)
  double precision x
  myf = 3.d0 * x
  return
end
```

```
unix% f2py -c -m mymodule myf.f
unix% python
>>> import mymodule
>>> mymodule.myf(5)
15.0
```
Can open files remotely or download from web, e.g.

```python
import urllib
URLfile = 'http://www.clawpack.org/clawlogo.jpg'
try:
    urllib.urlretrieve(URLfile, 'mylogo.jpg')
except:
    print 'Sorry, could not download file'
```
import BaseHTTPServer, CGIHTTPServer, sys
ServerClass = BaseHTTPServer.HTTPServer
HandlerClass = CGIHTTPServer.CGIHTTPRequestHandler
HandlerClass.protocol_version = "HTTP/1.0"
server_address = (‘127.0.0.1’, 50005)

try:
 httpd = ServerClass(server_address, HandlerClass)
except:
 print ’*** Error starting server’
 sys.exit(1)

try:
 httpd.serve_forever()
except KeyboardInterrupt:
 print "Server shutting down"
html file:

```html
<form action="http://.../cgi-bin/mycgi.py.cgi" method="POST">
x = <input type="text" name="x" value="1.0">
<input type="submit" name=request value="Submit">
</form>
```

cgi-script mycgi.py.cgi:

```python
import cgi
form = cgi.FieldStorage()
x = float(form.getvalue('x'))

print 'Content-type: text/html\n'
print 'x = ', x
```
Why use Sage?

- Python based front end to both numerical and symbolic packages
- includes NumPy, SciPy, maxima, etc. plus many more
- Web-based notebooks
 - Uses jsMath to allow typesetting
 - Input boxes can contain Python, Sage, Fortran, C, Matlab, latex, etc.
- Can try out online without downloading.