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Abstract

Wave Propagation Algorithms

for Multicomponent Compressible Flows

with Applications to Volcanic Jets

by Marica Pelanti

Chair of the Supervisory Committee:

Professor Randall J. LeVeque
Applied Mathematics

Numerical algorithms are developed for compressible multicomponent flow problems in the framework

of wave propagation finite volume methods based on approximate Riemann solvers. Both models for

multifluid flows, which involve pure species separated by well-defined interfaces, and for two-phase flows

made of gas carrying a particulate suspension are studied.

In the context of multifluid problems, I propose a method for flows governed by an arbitrary equation

of state p(E , ρ) based on a local linearization of the pressure law. The scheme is able to guarantee pres-

sure equilibrium at material interfaces, avoiding the well-known numerical difficulty of the appearance

of spurious pressure oscillations.

A two-phase model for particle-laden gases is then studied, which accounts for inter-phase drag and

heat transfer, and gravity for both phases. A wave propagation algorithm is proposed to solve the

governing equations, designed to guarantee an efficient treatment of source terms, and overcome the

difficulties related to the non-strictly hyperbolic character of the equations of the pressureless particulate

phase. In this context, the f-wave approach is employed, which enters into the framework of a general

class of Riemann solvers (Relaxation Riemann Solvers) that we have introduced in a parallel study on

the relation between relaxation schemes and approximate Riemann solvers.

The multi-dimensional two-phase dusty gas model is then applied to the simulation of jets and

pyroclastic dispersion processes that characterize explosive volcanic events. In particular, I focus on

the decompression phase of underexpanded supersonic volcanic jets on different crater morphology,

describing the fluid dynamic structures that develop in the jet thrust region, such as internal shock

waves. By means of numerical simulation I investigate the main factors controlling the expansion

of the eruptive mixture and the generation of wave patterns above the conduit exit, with the aim

of contributing to a better understanding of the complex and highly nonlinear thermo-fluid dynamic

mechanisms governing these processes.
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Chapter 1

INTRODUCTION

1.1 Thesis Objectives

Hyperbolic conservation laws play a central role in physical modeling in several areas of science, as for

instance fluid dynamics, geophysics, astrophysics, elastodynamics, magnetohydrodynamics, to mention

only a few.

Among the numerical techniques for the solution of hyperbolic systems of conservation laws, a

popular class of methods are finite volume schemes based on Godunov-type solvers. The contribution

of Godunov in his celebrated paper [69] of 1959 is the idea of utilizing the solution of local Riemann

problems in the construction of numerical schemes. Following Godunov, a wide variety of approximate

Riemann solvers have been developed, especially in the context of Computational Fluid Dynamics. An

important advance was in particular the solver of Roe presented in his famous paper [169] of 1981.

Notable progress has been made in the design of Godunov-type algorithms, but further work is needed

in the development of new and improved numerical methods. The general objective of my research

activity that has led to the results reported in this thesis is the desire of contributing to this task.

This thesis concerns the numerical approximation of hyperbolic conservation laws by means of finite

volume methods based on Riemann solvers with a special focus on compressible multicomponent fluid

dynamics problems. Several theoretical and numerical challenges arise in the field of single, multifluid,

and multi-phase flow modeling. Some aspects to be studied are for example the proper numerical

treatment of source terms for gravity as well as terms expressing mechanical and thermal inter-phase

energy exchange, and the need of avoiding unphysical solutions in the numerical approximation, such as

negative densities or spurious pressure oscillations. Another challenging task is the design of solvers for

systems with a non classical structure, as for instance the non-strictly hyperbolic system which arises

in particle-laden flows modeling (zero pressure gas dynamics equations).

The work presented here is a collection of several distinct but related topics reflecting my research

activity as a graduate student. In the context of multicomponent flows, two different physical problems

have been studied: the case of two-fluid flows consisting of two pure species separated by well-defined

interfaces, and the case of a two-phase flow made of a gaseous phase with suspended solid particles.

My main interest in the latter model has been its application to volcanic processes occurring during

explosive events. In the following, I give an overview of the various work done illustrating motivations

and purposes.

1.2 Relaxation Riemann Solvers

With the aim of overcoming some difficulties of existing methods and developing more robust and

efficient numerical schemes, I have investigated the relation between relaxation schemes and approximate

Riemann solvers. This has led to the work [124], which I partially incorporated in Chapter 5. In

this paper we illustrate how a simple relaxation scheme of the type proposed by Jin and Xin [93]

can be reinterpreted as defining a particular approximate Riemann solver for the original system of

conservation laws. Based on this observation, a more general class of approximate Riemann solvers
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(relaxation solvers) is proposed, and connections with standard solvers such as Roe’s [169] and HLL

[78] are explored. These relaxation solvers present a noticeable flexibility that can be exploited in

deriving more efficient schemes.

In this framework enters the so-called f-wave formulation of the finite volume wave propagation

algorithms described in [120], which has many useful applications, for example in the treatment of

source terms and in the solution of conservation laws with spatially varying flux functions [10]. In

particular, in our subsequent work on modeling two-phase particle-laden flows we have taken advantage

of this f-wave approach to handle gravity source terms and to design a scheme that helps overcome the

difficulties related to the non-strictly hyperbolic character of the equations of the pressureless particulate

phase.

1.3 Real Compressible Multifluid Flows

Multifluid flows consist of pure fluids separated by well defined material interfaces. A classical example

of multifluid problems is the simulation of shock-bubble interactions [73, 87, 165], which has applications

for instance in the study of shock-induced mixing enhancement, underwater explosions, and lithotripsy.

A well-known difficulty [2, 108, 96, 193] in the computation of such flows by means of the Euler

equations in conservative form is the possible appearance of spurious pressure oscillations at material

interfaces. Many of the methods developed for compressible multifluid problems that are able to guar-

antee pressure equilibrium at material interfaces are restricted to the ideal polytropic gas law or the

slightly more general stiffened gas equation of state [3, 4, 178, 74, 182]. Only recently has progress been

made to build methods for multifluid flows governed by more general pressure laws [177, 179, 184, 5].

With the aim of ultimately contributing to the design of efficient algorithms for real multifluid

problems, I have first developed a method for the computation of single-fluid real flows. This has

been designed with the purpose of constructing a framework that could then be used in the solution

of multifluid flows. The main idea of the method is to perform a local linearization of the governing

equation of state. The approach of this Pressure Linearization Method (PLM) [163] defines a general

and simple procedure for constructing finite volume methods for the computation of real fluids, and in

particular it is advantageous in the extension of some classical solvers designed for a restricted class of

equations of state to problems involving general pressure laws. An interesting feature of this method

is its interpretation as a relaxation scheme. From this point of view it has similarity with the energy

relaxation theory of Coquel and Perthame [39].

I have then extended this method to multifluid problems with arbitrary equations of state. This

has led to the definition of a general and flexible algorithm for real multifluids which is able to avoid

unphysical pressure oscillations at material interfaces. Although some work is still in progress, the

results obtained until now are satisfactory.

1.4 Dusty Gas Flows and Applications to Volcanic Jets and Plumes

Another primary focus of my thesis is the analysis and development of numerical algorithms for gaseous

flows carrying a particulate suspended phase (dusty gas flows), with applications to the modeling of

the dynamics of volcanic explosive processes. Explosive volcanic eruptions release a hot dense mixture

of gas and particulate material into the atmosphere. Characteristic features of these processes are the

jet thrusting at the vent exit, pyroclastic dispersion in the atmosphere, and pyroclastic flows on the

ground surface.

Since the mid-1970s notable progress has been made in the physical modeling of the eruption dy-

namics, and in particular of pyroclastic dispersion mechanisms. The first step was the formulation of

one-dimensional steady-state single-phase and incompressible flow models that attempted to investi-



3

gate the main features of Plinian (buoyant) and collapsing columns (Sparks and Wilson in 1976 [185],

Wilson in 1976 [204], Sparks et al. in 1978 [186]). Although these and following theoretical models, e.g.

Wilson and Walker [205] (1987), Woods [208] (1988), Bursik and Woods [23] (1996), are effective in

describing some of the mechanisms of eruption phenomena, they are unable to address time-dependent

or multidimensional processes, and thus their simplified formulation limits their applicability to real

volcanic events.

A fundamental advance in the analysis of eruption dynamics processes has been the introduction

of numerical multidimensional multi-phase flow models. Some early numerical studies on explosive

volcanic phenomena were made in 1984 by researchers at the Los Alamos National Laboratory, who

performed simulations of caldera-forming eruptions (Wohletz et al. [206]).

Further progress and considerable work have been made since then in the numerical multi-phase

modeling of volcanic plumes and pyroclastic flows. Among the relevant contributions let us mention for

instance the work of Valentine and Wohletz [197] (1989), Wohletz and Valentine [207] (1990), Dobran

et al. [51] (1993), Neri and Dobran [150] (1994), Papale et al. [162] (1998), Neri et al. [156] (1998), Neri

et al. [153] (2003), Dartevelle et al. [44] (2004).

These numerical studies have provided new insight into many relevant features of volcanic phenom-

ena, and in particular have allowed the description of the unsteady and transient behaviour of eruption

columns. The results obtained have shown how numerical simulation is an important tool in the un-

derstanding of the complex and highly nonlinear mechanisms that govern the thermo-fluid dynamics of

volcanic eruptions.

Well established numerical models used in volcanology to simulate explosive eruption processes, like

those employed in the works mentioned above, commonly use a numerical methodology based on the

technique for multi-phase flows presented by Harlow and Amsden in 1975 [75], and known as Implicit

MultiField method (IMF). Here the time-dependent two-phase compressible Navier–Stokes equations

are solved by a finite difference algorithm that uses an iterative procedure for pressure to satisfy mass

conservation. Moreover, an implicit treatment is adopted for the momentum exchange term. First

computer codes to implement this approach were the KACHINA program [6] (Amsden and Harlow,

1974) and the KACHINA with Fully Implicit Exchange (K-FIX) of Rivard and Torrey [168] (1977).

Different computer programs were later used by Wohletz and co-workers [206, 207, 197], Neri and co-

workers [51, 150, 162, 156, 155], Dartevelle et al. [44], but all belong to the so called “FIX” family

descending from the K-FIX code of [168].

Here we propose a different numerical approach in this field, modeling the dynamics of explosive

eruptions by means of the wave propagation algorithms as implemented in the clawpack software [115].

These are high resolution finite volume methods based on Riemann solvers used for the hyperbolic

conservation law portion of the governing equations. Moreover, interphase momentum and energy

exchange terms are treated explicitly, by employing a fractional step technique combined with a semi-

analytical solver (see Chapter 7).

Although to start the numerical study a simple physical model based on the compressible Euler

equations has been adopted, which neglects some effects such as viscosity and turbulence, we will show

that we are able to capture some of the characterizing features of volcanic columns and pyroclastic

flows.

A primary objective of our numerical investigation is to study the structure and dynamics of over-

pressured volcanic jets. Gas flows containing particulate material can have very low sound speed, so

that volcanic jets are often supersonic, and they undergo an expansion at the exit of the conduit in

which complex fluid dynamic structures such as internal shock waves may develop.

The decompression process is very important in determining the evolution of the volcanic column

above the conduit exit and its atmospheric dispersal behaviour (e.g. [210]). This phase of the eruption

is not a process susceptible to direct observation, and the internal structure of volcanic jets is very
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difficult to document. Theoretical analyses such as the one of Woods and Bower [210] (1995) are

based on simplified models, which use a homogeneous pseudo-gas approximation. Although important,

they are unable to describe transient processes and flow unsteadiness and instabilities. Laboratory

experiments have also been performed on volcanic jets, e.g. Kieffer and Sturtevant [100] (1984). The

main limit of this experimental approach is the lack of a scaling relation for gravity and the description

of the related buoyancy forces. Therefore, numerical simulation is a precious tool to investigate the

mechanisms of the decompression phase of volcanic jets.

While extensive studies have been done on the numerical modeling of pyroclastic dispersion dynam-

ics processes, little numerical work exists on the description of the jet internal structure. This motivates

further our investigation. Moreover, because of the conservative shock-capturing character of our nu-

merical algorithm, we expect our method to be particularly effective in modeling the development of

shock wave patterns in the jet thrust region.

On the simulation of overpressured jets joint work is also in progress with A. Neri and T. Esposti

Ongaro of INGV (Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy), who already made pre-

liminary studies on this subject [159] (1999), and suggested to us the guidelines of our investigation.

The aim of this joint project is to compare results obtained with two different numerical multi-phase

models, our model that uses clawpack and their model that employs PDAC (Pyroclastic Dispersion

Analysis Code) [155], which is based on the Harlow and Amsden technique [75]. Preliminary results are

encouraging. In the context of this work we study in particular the role played in the expansion process

by the crater morphology. As it will be shown by the numerical simulations reported in Chapter 8 the

type of internal shock structure can be significantly different depending on the geometry of the crater.

Another challenge in the context of the simulation of volcanic phenomena is the development of a

fully three dimensional model, which in particular could be useful in the assessment of volcanic hazard.

We will return to discuss this in outlining the directions of future work in Chapter 9.

1.5 Thesis Outline

The general notions of hyperbolic conservation laws, together with the standard compressible Euler

equations of gas dynamics, are introduced in Chapter 2 of the thesis. Chapter 3 is dedicated to presenting

multicomponent flow models on which I focused my work. The numerical algorithms used, and in

particular their wave propagation formulation, are presented in Chapter 4. Chapter 5 is dedicated to

reporting the results of the study on the relation between relaxation schemes and approximate Riemann

solver [124]. In Chapter 6 I will describe the Pressure Linearization Method for single and multifluid

real compressible flows. In Chapter 7 the proposed physical and numerical model for dusty gas flows

is illustrated, and results of the numerical simulation of the dynamics of volcanic eruption processes

performed by applying this model are reported and discussed in Chapter 8. Finally, in Chapter 9, I

write some concluding remarks and outline some directions for future work.
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Chapter 2

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND

THE COMPRESSIBLE EULER EQUATIONS OF GAS DYNAMICS

2.1 Hyperbolic Systems of Conservation Laws

The general form of a system of m conservation laws in d space dimensions is

∂q

∂t
+

d∑

j=1

∂fj(q)

∂xj
= 0 , x = (x1, . . . , xd)

T ∈ R
d , t > 0 , (2.1)

where q = (q1, . . . , qm)T, qp = qp(x, t), 1 ≤ p ≤ m, is the vector of the state variables, and fj =

(f1j , . . . , fmj)
T, 1 ≤ j ≤ d, are called flux functions.

We can see that formally the system (2.1) expresses the conservation of the m quantities q1, . . . , qp
. In fact, let Ω be an arbitrary domain in R

d, and n = (n1, . . . , nd)
T the outward unit normal to the

boundary ∂Ω of Ω. Then, from (2.1) we have

d

dt

∫

Ω

q dx+
d∑

j=1

∫

∂Ω

fj(q)njdS = 0 . (2.2)

This balance equation states that the positive time variation of
∫
Ω
qdx is equal to the inward flux of q

through the boundary ∂Ω.

We are here interested in studying system of conservation laws that are hyperbolic in the following

sense:

Definition 2.1 For j = 1, . . . , d, let

Aj(q) =

(
∂fij
∂qp

(q)

)

1≤i,p≤m

be the Jacobian matrix of fj(q); the system (2.1) is called hyperbolic if for any q ∈ Ω and any ω =

(ω1, . . . ωd)
T ∈ R

d, |ω| = 1, the matrix

A(q, ω) =
d∑

j=1

ωjAj(q)

has m real eigenvalues λ1(q, ω) ≤ λ2(q, ω) ≤ . . . ≤ λm(q, ω) and m linearly independent corresponding

eigenvectors r1(q, ω), . . . , rm(q, ω) , that is

A(q, ω)rp(q, ω) = λp(q, ω)rp(q, ω) , 1 ≤ p ≤ m.

If, in addition, the eigenvalues λp(q, ω) are all distinct, then the system (2.1) is called strictly hyperbolic.

For the hyperbolic systems introduced here we shall consider the initial value problem (Cauchy

problem) consisting of the equations (2.1) augmented with the initial condition q(x, 0) = q0(x), where

q0(x) is a given function defined on R
d.
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2.2 Weak Solutions

A classical solution of (2.1) is a smooth function q that satisfies (2.1) pointwise. An important feature

of the problems we are interested in is that we want to allow for solutions having discontinuities. Such

functions cannot satisfy the partial differential equations (2.1), but do satisfy the integral form of the

conservation laws

∫

T

∫

Ω

q dxdt+
d∑

j=1

∫

T

∫

∂Ω

fj(q)njdSdt = 0 , ∀Ω ⊆ R
d , ∀T ⊆ [0,+∞) . (2.3)

Hence we appeal to the integral form (2.3) to define a solution q in a generalized sense, or weak solution 1

of (2.1).

If we consider a piecewise smooth function q, then in the regions where q is smooth it is a classical

solution, while we can use the integral form of the equations to derive conditions that hold across

discontinuities. Specifically, denoting with q± the limits of q on each side of a surface of discontinuity,

the following Rankine–Hugoniot condition is satisfied:

s(q+ − q−) =
d∑

j=1

nj(f(q+) − f(q−)) , (2.4)

where s represents the speed of propagation of the discontinuity and n ∈ R
d is a unit vector indicating

the direction of propagation.

To end this section, we remark that a weak solution of a system of conservation laws is not necessarily

unique, hence we need to select among the possible weak solutions the unique physically relevant solution

of the problem. This is called entropy solution by analogy with gas dynamics, and can be viewed as

the limit of the viscous (parabolic) problem associated to the considered hyperbolic problem as the

viscosity parameter goes to zero (vanishing viscosity solution). See e.g. [118, 68].

2.3 One-Dimensional Riemann Problem

We now focus on the one-dimensional system

∂q

∂t
+
∂f(q)

∂x
= 0 , x ∈ R , t > 0 . (2.5)

Here q is a vector of m conserved quantities and f(q) the corresponding flux function. We will assume

that (2.5) is strictly hyperbolic, that is, according to Definition 2.1, for any q ∈ Ω ⊂ R
m the Jacobian

matrix A(q) = f ′(q) has m distinct real eigenvalues λp(q) and m linearly independent eigenvectors

rp(q), 1 ≤ p ≤ m. We remark that most of the results reported in this section will hold also for a (non

strictly) hyperbolic system, provided the eigenvectors are complete and the eigenvalues have constant

multiplicity.

For (2.5), we shall consider initial data with the particular form:

q0(x) =

{
q` if x < 0 ,

qr if x > 0 .
(2.6)

In such a case, problem (2.5), (2.6) is called the (one-dimensional) Riemann problem.

It is important to note that solutions q(x, t) to this problem are self-similar, that is q(x, t) = qR(xt ).

1A rigorous mathematical definition of weak solution of a hyperbolic system of conservation laws is based on distribution
theory.
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2.3.1 Linear Systems

For a linear system ∂q/∂t + A∂q/∂x = 0, with a constant coefficient matrix A, the solution of the

Riemann problem consists of (m + 1) constant states q̃ 0 = q`, q̃
1, . . . , q̃ (m−1), q̃m = qr, separated by

m discontinuities that propagate at speeds given by the eigenvalues of A. Each constant state can be

expressed as q̃ p = q` +
∑p
k=1 α

krk, where the coefficients α1, . . . , αm are obtained by projecting the

jump qr − q` onto the eigenvectors of A, i.e., qr − q` =
∑m
p=1 α

prp.

2.3.2 Nonlinear Systems

We introduce the following definitions:

Definition 2.2 The p-th characteristic field is said to be genuinely nonlinear if

∇λp(q) · rp(q) 6= 0 , ∀q ∈ Ω . (2.7)

Definition 2.3 The p-th characteristic field is said to be linearly degenerate if

∇λp(q) · rp(q) = 0 , ∀q ∈ Ω . (2.8)

Let us consider a single discontinuity connecting two states q` and qr and travelling at speed s. In

order for this discontinuity to be a (weak) solution of the Riemann problem, the Rankine–Hugoniot

condition (2.4) must be satisfied:

s(qr − q`) = f(qr) − f(q`) . (2.9)

In a genuinely nonlinear field a discontinuous solution of this type is a shock wave, whereas in a linear

degenerate field it is called contact discontinuity, and in this case s = λp(q`) = λp(qr). Note that for

shock waves proper conditions will be needed in addition to (2.9) in order to select the unique physically

relevant solution. In particular, the so-called Lax entropy condition requires that λp(q`) > s > λp(qr),

this meaning that the characteristic lines should go into the shock.

In a genuinely nonlinear field a smoothly varying solution, a rarefaction wave, can also occur. This

solution has the property of lying on integral curves of the characteristic field, i.e. curves v(ξ) satisfying

v′(ξ) = rp(v(ξ)).

Let us conclude with the following result (e.g. [68]): under the hypothesis that the characteristic

fields of the system (2.5) are either genuinely nonlinear or linearly degenerate, the Riemann problem

(2.5),(2.6) has a unique (weak) solution, assuming |qr − q`| is sufficiently small; moreover, this solu-

tion consists of at most (m + 1) constant states separated by rarefaction waves, shocks, or contact

discontinuities.

2.4 The Compressible Euler Equations of Gas Dynamics

The Euler equations for a compressible inviscid fluid with no thermal conductivity can be written, in

the one-dimensional case, as the following system of conservation laws:

∂q

∂t
+
∂f(q)

∂x
= 0 , (2.10a)

with

q =




ρ

m

E


 and f(q) =




m

m2

ρ
+ p

m

ρ
(E + p)



. (2.10b)
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Here ρ is the fluid density, m = ρu the linear momentum, with u denoting the velocity along the x

axis, E = E + 1
2ρu

2 the total energy per unit volume, E = ρε the internal energy per unit volume,

and ε the internal energy per unit mass (specific internal energy). Finally p denotes the pressure. The

complete definition of the problem requires the specification of the relation between the pressure and

the conserved variables.

In condition of local equilibrium, the pressure can be expressed as a function of two other thermo-

dynamic variables through an equation of state (EOS). Unless otherwise specified, we will assume the

pressure is a function of the variables E and ρ, p = p(E , ρ), hence the closure of the system (2.10) is

obtained through the relation:

p = p(E , ρ) = p

(
E − m2

2ρ
, ρ

)
. (2.11)

For convenience in describing some thermodynamic properties, exclusively at this point in this section,

let us consider the pressure in terms of the specific entropy s and the density ρ, p = p(s, ρ). Assuming

that (∂p/∂ρ)s=const. > 0, as required for thermodynamic stability, we can introduce the speed of sound

c,

c =

√
∂p

∂ρ

∣∣∣∣
s

(2.12)

and the so-called fundamental derivative

G =
1

c

∂(ρ c)

∂ρ

∣∣∣∣
s

. (2.13)

We will assume G > 0 (convex equation of state), which implies in particular that the density and the

pressure of the fluid increase across the shock waves (compression shocks).

Returning from now on to the equation of state in terms of the variables (E , ρ), we introduce the

thermodynamic derivatives

κ(E , ρ) ≡ ∂p(E , ρ)
∂E and χ(E , ρ) ≡ ∂p(E , ρ)

∂ρ
. (2.14)

The speed of sound is related to the above quantities through the equality:

c2 = κh+ χ , (2.15)

where

h =
E + p

ρ
(2.16)

is the specific enthalpy. We also define here the total specific enthalpy:

H = h+
1

2
u2 . (2.17)

The Jacobian matrix A(q) = f ′(q) of the Euler system is

A(q) =




0 1 0

χ+ κ u2

2 − u2 (2 − κ)u κ

u
(
χ+ κ u2

2 −H
)

H − κu2 (1 + κ)u


 , (2.18)

and it has eigenvalues

λ1 = u− c , λ2 = u , λ3 = u+ c , (2.19)
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with right eigenvectors:

r1 =




1

u− c

H − uc


 , r2 =




1

u

H − c2

κ


 , r3 =




1

u+ c

H + uc


 . (2.20)

For the eigenstructure above, under the hypothesis G > 0, we find that the first and third charac-

teristic fields are genuinely nonlinear, while the second field is linearly degenerate. As a consequence,

the solution of the Riemann problem for the Euler equations will be composed by three waves, of which

the first and the third can be either shocks or rarefactions (acoustic waves), while the second wave will

always be a contact discontinuity. It is important to note that across the contact wave the pressure

and the velocity are invariant. It carries however a jump in entropy and for this reason is also called

entropy wave. A typical solution is shown in Fig. 2.4.

PSfrag replacements

ρ`, u`, p`

ρ∗` , u
∗, p∗ ρ∗r , u

∗, p∗

ρr, ur, pr

1-rarefaction 3-shockcontact wave

Figure 2.1: Typical solution of the Riemann problem for the Euler equations.

2.4.1 Two-Dimensional Euler Equations

In two space dimensions the Euler equations take the form:

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= 0 , (2.21a)

with

q =




ρ

ρu

ρv

E


 , f(q) =




ρu

ρu2 + p

ρuv

u(E + p)


 , g(q) =




ρv

ρuv

ρv2 + p

v(E + p)


 . (2.21b)

The components of the velocity in the x and y direction are denoted with u and v, respectively. The

total energy is E = E + 1
2 (u2 + v2), and the total enthalpy H = h+ 1

2 (u2 + v2).

Let us consider the matrix A(q, ω) introduced in Definition 2.1:

A(q, ω) = f ′(q)ω1 + g′(q)ω2 , ω = (ω1, ω2)
T , |ω| = 1 , (2.22)



10

where

f ′(q) =




0 1 0 0

χ+ κ u2+v2

2 − u2 (2 − κ)u −κv κ

−uv v u 0

u
(
χ+ κ u2+v2

2 −H
)

H − κu2 −κuv (1 + κ)u



, (2.23)

and

g′(q) =




0 0 1 0

−uv v u 0

χ+ κ u2+v2

2 − v2 −κu (2 − κ)v κ

v
(
χ+ κ u2+v2

2 −H
)

−κuv H − κv2 (1 + κ)v



. (2.24)

The matrix A(q, ω) has eigenvalues

λ1 = V · ω − c , λ2 = V · ω , λ3 = V · ω , λ4 = V · ω + c , (2.25)

where V = (u, v)T. The eigenvectors can be chosen as

r1 =




1

u− c ω1

v − c ω2

H − V · ω c


 , r2 =




1

u

v

H − c2

κ


 , r3 =




0

−ω2

ω1

V · ω⊥


 , r4 =




1

u+ c ω1

v + c ω2

H + V · ω c


 , (2.26)

with ω⊥ = (−ω2, ω1)
T.

The two distinct eigenvalues λ1 and λ4 give genuinely nonlinear fields, while the eigenvalue with

multiplicity 2, λ2 = λ3 = V · ω, is associated to distinct linearly degenerate fields corresponding to r2

and r3.

If we consider a plane-wave Riemann problem in the ω direction (one in which data vary only along

ω), then the solution consists of at most four constant states separated by three waves. Two waves

are associated to the genuinely nonlinear fields of {λ1, r1} and {λ4, r4}, and can be either shocks or

rarefactions (acoustic waves). Then there is a contact discontinuity with speed λ2 = λ3 = V ·ω that can

be considered as composed of two independent linearly degenerate waves corresponding to the distinct

eigenvectors r2 and r3: an entropy wave, carrying a jump in entropy, and a shear wave, which carries

a jump in the tangential velocity V · ω⊥. The pressure p and the normal velocity V · ω are invariant

across the contact discontinuity.

2.4.2 Three-Dimensional Euler Equations

In three space dimensions the Euler equations have a form similar to (2.21), but with an additional

conservation equation for the momentum ρw in the z direction, where w is the z-component of the

velocity. The system is:
∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
+
∂h(q)

∂z
= 0 , (2.27a)

with

q =




ρ

ρu

ρv

ρwE


 , f(q) =




ρu

ρu2 + p

ρuv

ρuw

u(E + p)



, g(q) =




ρv

ρuv

ρv2 + p

ρuw

v(E + p)



, h(q) =




ρw

ρuw

ρvw

ρw2 + p

w(E + p)



. (2.27b)
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Here the total energy is E = E + 1
2 (u2 + v2 +w2). In any direction ω = (ω1, ω2, ω3)

T, |ω| = 1, there are

two nonlinear acoustic fields with eigenvalues V · ω ± c, V = (u, v, w)T, and three linearly degenerate

fields with eigenvalue V · ω.

2.4.3 Three-Dimensional Euler Equations with Axial Symmetry

If the solution of a three-dimensional problem is known to be axisymmetric, then the equations can be

rewritten in cylindrical coordinates (r, θ, z), and the system we obtain can be reduced to a problem in

the two space variables r and z.

Denoting with U and V the components of the velocity in the radial and vertical direction, respec-

tively, the Euler equations with axial symmetry take the following form:

∂

∂t




ρ

ρU

ρV

E


 +

∂

∂r




ρU

ρU2 + p

ρU V

U(E + p)


 +

∂

∂z




ρ V

ρU V

ρV 2 + p

V (E + p)


 =




−(ρU)/r

−(ρU2)/r

−(ρU V )/r

−U(E + p)/r


 . (2.28)

Note that system (2.28) has the same form as the two-dimensional system (2.21), but with the addition

of a geometric source term on the right-hand side.
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Chapter 3

COMPRESSIBLE MULTICOMPONENT FLOW MODELS

3.1 Multicomponent Flows

Multicomponent flows contain distinct species with different physical and thermodynamical properties.

Following Saurel and Abgrall [177], we shall distinguish between two situations: multifluid flows and

multiphase flows. In the first case, we consider pure fluids separated by well defined material interfaces,

as for instance in the classical example of a shock in air interacting with a bubble of helium [73, 87, 165].

On the other hand, multiphase flows consist in general of a carrier phase (gas or liquid) with suspended

solid particles, or droplets or bubbles. Computationally, in the case of multifluid flow nearly all control

volumes contain pure phases, except for the cells around the interface, whereas in the case of multiphase

flows each control volume contains a large number of particles (or droplets, etc.) suspended into the

carrier phase.

Typically, these two distinct situations are treated with different mathematical and numerical

models, though some models have been proposed in the literature that apply to both cases, e.g.

[177, 179, 148]. Here we will consider the mathematical description of the two physical problems and

their numerical treatment separately. In the next section we will illustrate a model for compressible

multifluid flows. Then, in Section 3.3, we will present a two-phase flow model, focusing our study to the

case in which the carried phase is assumed to be dilute, and incompressible at the microscopic scale.

3.2 Multifluid Models

A wide variety of methods have been proposed for the computation of compressible multifluid flows. A

group of methods corresponds to approaches where the numerical diffusion at the interfaces is eliminated.

Among these, there are Lagrangian methods [12], front-tracking methods [67, 72, 34, 135, 125], VOF

(volume-of-fluid) methods [80, 141, 193], level set methods [45, 27, 147], and the ghost-fluid method

[59]. Some concise review can be found for instance in [178, 179].

Here we are interested instead in methods that allow numerical diffusion at the interface [96, 3,

97, 165, 4, 107, 177, 178, 34, 182, 183, 184, 90, 5], and we shall focus on approaches based on the

conservative Euler equations (see e.g. the review of Abgrall and Karni [4]). In this class of methods a

mixture model, or an artificial equation of state for the mixture, must be provided to describe the region

where the interface between different components is numerically spread.

3.2.1 Mixture Model

In general, the fluid flow is modeled by the compressible Euler equations, which here we consider in

the one-dimensional conservative form (2.10). The flow description is then completed by providing one

or more additional equations that govern the dynamics of the fluid composition, and by specifying an

equation of state for the fluid mixture.

We will assume for the moment that the fluid consists of two pure components each governed by

the ideal polytropic gas law p = (γ − 1)E , with the value of the heat coefficient ratio γ depending on

the material.
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Let us denote with ψ a variable describing the flow composition, so that γ = γ(ψ). Several choices of

ψ have been suggested in the literature. For instance in [170] ψ = γ, while in [2, 107, 106] ψ is defined as

the mass fraction of one fluid component. Note that, although formulations based on different definitions

of ψ can be mathematically equivalent, they lead to different numerical discretizations, hence special

care is needed in the choice of ψ, as we will see in the following.

In all the models the variable ψ is governed by an advection equation:

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (3.1a)

which can also be written in conservation form, by using the mass conservation equation ∂ρ/∂t +

∂(uρ)/∂x = 0:
∂

∂t
(ρψ) +

∂

∂x
(uρψ) = 0 . (3.1b)

In summary, the mathematical model of the multifluid flow consists of the Euler system (2.10) aug-

mented with the equation (3.1a) (or (3.1b)), with the closure provided by the equation of state

p = (γ(ψ) − 1)E . (3.2)

The structure of the solution of the Riemann problem for this system of equations is the same as the one

that characterizes the Euler system, that is there are two acoustic waves, and a contact discontinuity

across which the pressure and the velocity are invariant. The variable ψ, as well as γ(ψ) (also convected

by the flow), is invariant across shocks and rarefactions, and can only have discontinuities across the

contact wave, which is also called in this context the material interface.

3.2.2 Pressure Oscillations

A well known difficulty [2, 108, 96, 193] with the class of multifluid models based on the conservative

Euler equations that we have introduced in the previous section is ensuring that pressure equilibrium

is maintained at material interfaces.

In order to obtain a method that avoids pressure oscillations, it is necessary to make an appropriate

choice of the variable ψ and of the discretization of its governing equation (that is (3.1a) vs. (3.1b)).

For example, the choice ψ = γ [170] fails to maintain pressure equilibrium [4]. An effective formula-

tion, adopted for instance by Abgrall [3], Shyue [182], and Saurel and Abgrall [178], is based on taking

ψ = 1
γ−1 , and describing its dynamics through the advection equation:

∂

∂t

(
1

γ − 1

)
+ u

∂

∂x

(
1

γ − 1

)
= 0 . (3.3)

Note that it is important to use a discretization of this equation in nonconservative form. The scheme

will fail to ensure pressure equilibrium if the corresponding conservative form (3.1b) is used [182].

In the next section we will illustrate how we can devise a model that maintains pressure equilibrium

at material interfaces for a more general equation of state which encompasses the ideal polytropic gas

law assumed so far.

Moreover, in Chapter 6 we will discuss the problem of pressure oscillations, ascribing it to an intrinsic

difficulty of conservative formulations.

3.2.3 Shyue-Type Model

Following the method of Shyue [182, 183, 184], we extend the type of model based on (3.3) to the case

of a mixture of fluids each governed by an equation of state linear in the thermodynamic variables ρ

and E :

p(E , ρ) = κ̄E + χ̄ρ+ β . (3.4)
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The quantities κ̄, χ̄ and β are constant for each component, but have different values depending on the

species. These three quantities describe the flow composition and they will be advected by the flow.

However, in order to construct a numerical model that avoids pressure oscillations, we need to select

three appropriate material-dependent quantities as variables of the problem, in general different from

κ̄, χ̄ and β. Correspondingly, three equations expressing the advection of these three selected flow-

composition variables must be provided, either in the nonconservative form (3.1a) or the conservative

one (3.1b). Also this choice is based on the need of maintaining numerically the pressure equilibrium

at material interfaces.

To derive an effective formulation, we begin by considering an interface-only problem, that is the

situation in which both the pressure p and the velocity u are constant in the domain. Other variables

such as the density and the material-dependent parameters κ̄, χ̄, and β have discontinuities across some

interface.

Using the hypothesis of constant pressure and velocity, from the Euler system we obtain the equations

describing the dynamics of interfaces as:

∂ρ

∂t
+ u

∂ρ

∂x
= 0 , (3.5a)

∂E
∂t

+ u
∂E
∂x

= 0 , (3.5b)

which means that for an interface problem both the density and the internal energy per unit volume

are advected. We now introduce the equation of state (3.4) into (3.5b) and obtain

∂

∂t

(
p− χ̄ρ− β

κ̄

)
+ u

∂

∂x

(
p− χ̄ρ− β

κ̄

)
= 0 , (3.6)

which can then be expanded as:

1

κ̄

(
∂p

∂t
+ u

∂p

∂x

)
+

[
∂

∂t

(
1

κ̄

)
+ u

∂

∂x

(
1

κ̄

)]
−

[
∂

∂t

(
χ̄ρ− β

κ̄

)
+ u

∂

∂x

(
χ̄ρ− β

κ̄

)]
= 0 . (3.7)

Since we consider conditions of pressure equilibrium, ∂p/∂t+ u ∂p/∂x = 0, so that the first term of the

relation above vanishes. Moreover, the remaining equality must hold for any value of p in the physical

space, hence the quantities in the square brackets in the second and third term of (3.7) must vanish

simultaneously:

∂

∂t

(
1

κ̄

)
+ u

∂

∂x

(
1

κ̄

)
= 0 , (3.8)

∂

∂t

(
χ̄ρ− β

κ̄

)
+ u

∂

∂x

(
χ̄ρ− β

κ̄

)
= 0 . (3.9)

In order to obtain three equations governing the dynamics of the material-dependent quantities, we can

split the last equation in two parts, separating the term that involves the density ρ:

∂

∂t

( χ̄ρ
κ̄

)
+ u

∂

∂x

( χ̄ρ
κ̄

)
= 0 , (3.10)

∂

∂t

(
β

κ̄

)
+ u

∂

∂x

(
β

κ̄

)
= 0 . (3.11)

We obtain that (3.8), (3.10) , (3.11) are the effective equations for the interface problem that need to

be considered in the formulation of a numerical model to guarantee pressure equilibrium. Based on this

result, we define the effective variables that define the flow composition as:

ψ =
1

κ̄
, η =

χ̄

κ̄
, and µ =

β

κ̄
. (3.12)
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Then, the transport equations (3.8), (3.10) , (3.11) take the form

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (3.13)

∂

∂t
(ηρ) + u

∂

∂x
(ηρ) = 0 , (3.14)

∂µ

∂t
+ u

∂µ

∂x
= 0 . (3.15)

Until this point, we have just focused on the problem of maintaining pressure equilibrium in the case

of an interface-only problem. To be able to treat a general solution in which also acoustic waves may

be present, we need to take the equations above in a form such that the selected variables ψ, η, µ

remain invariant across shocks and rarefaction. We observe that the advection equations for ψ and µ

are already in the proper form. On the other hand, we need to express the dynamics of η through the

conservative equation:
∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 . (3.16)

In summary, the multifluid model consists of the Euler system (2.10), with the additional equations

(3.16), (3.13), (3.15) for η, ψ, µ:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (3.17a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0 , (3.17b)

∂E

∂t
+

∂

∂x
(u(E + p)) = 0 , (3.17c)

∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 , (3.17d)

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (3.17e)

∂µ

∂t
+ u

∂µ

∂x
= 0 , (3.17f)

with the equation of state:

p =
1

ψ
(E + ηρ+ µ) . (3.18)

The structure of the solution of the Riemann problem for this system is illustrated in Fig. 3.1.

The multifluid model (3.17) extends those of Shyue [182]) and Saurel–Abgrall [178], where an equa-

tion of state of the form (3.4) with η = 0 is considered (stiffened gas). On the other hand, the model

represents a particular case of the more recent work of Shyue [184] for the Mie–Grüneisen equation of

state, which has the form (3.4), but with quantities κ̄, χ̄ and β in general dependent on the density

ρ. The choice of presenting here the formulation (3.17) is related to the topics that we will discuss in

Chapter 6. In particular, we postpone in Section 6.8 a proof of the pressure equilibrium preservation

property of (3.17) for a certain class of numerical schemes.

3.3 A Multiphase Model

A widely used approach to model multiphase flows consists in treating the different phases as interpen-

etrating continua, and describing the fluid dynamics of the macroscopic quantities through equations
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Figure 3.1: Solution of the Riemann problem for the multifluid model of Section 3.2.3.

in Eulerian form that are obtained by averaging the equations governing each single phase at the mi-

croscopic scale. For the details of this averaging technique we especially refer to Ishii [85] and Drew

and Passman [54]. Models of this type have been adopted to describe multiphase flows arising in dif-

ferent areas of applications, such as vaporizing sprays [173], reactive granular materials undergoing

deflagration-to-detonation transition (DDT) [9, 95], volcanic eruptive mixtures [206, 197, 51, 44].

In the framework of this class of models, here we consider a two-phase flow composed by a gaseous

carrier phase and a suspended phase that can consist of either solid particles (dust) or liquid droplets.

In the following, the subscripts g and d will refer to the gas and the dust (or droplets), respectively.

Each phase is modeled as a continuum, with the gas phase being compressible, and the suspended phase

incompressible at a microscopic level (microscopic density ρd = constant). Moreover, we assume the

carried phase is dilute, that is its volume fraction ϑd � 1, and, finally, no viscous stresses are considered.

The formulation we adopt to describe the dynamics of this two-phase flow under the above assump-

tions is based mostly on the work of Harlow and Amsden [75], Sainsaulieu [173, 175, 174] and Saito [176].

In particular, the physical and numerical model in [75] has been widely used in the field of geophysics

to study the particle-laden flows ejected during volcanic eruptions (see Section 8.1). The derivation of

the governing equations of the model presented here through the averaging technique mentioned before

has been illustrated in detail by Sainsaulieu in [173].

The flow (here in one space dimension) is described by two sets of equations expressing the conser-

vation of mass, momentum, and total energy per unit volume for each phase:
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∂

∂t
(ϑgρg) +

∂

∂x
(ϑgρgug) = 0 , (3.19a)

∂

∂t
(ϑgρgug) +

∂

∂x

(
ϑgρgu

2
g + ϑgpg

)
= pg

∂ϑg
∂x

−D(ug − ud) , (3.19b)

∂

∂t
(ϑgρgeg) +

∂

∂x
((ϑgρgeg + ϑgpg)ug) (3.19c)

= −pg
∂

∂x
((1 − ϑg)ud) −D(ug − ud)ud −Q(Tg − Td) ,

∂

∂t
(ϑdρd) +

∂

∂x
(ϑdρdud) = 0 , (3.19d)

∂

∂t
(ϑdρdud) +

∂

∂x

(
ϑdρdu

2
d + ϕ

)
= −ϑd

∂pg
∂x

+D(ug − ud) , (3.19e)

∂

∂t
(ϑdρded) +

∂

∂x
((ϑdρded + ϕ)ud) (3.19f)

= −ϑdud
∂pg
∂x

+D(ug − ud)ud + Q(Tg − Td) .

Here ρg, ρd are the material microscopic densities, ϑg, ϑd the volume fractions, ug, ud the velocities

along the x axis, eg, ed the specific total energies, and Tg, Td the temperatures. Moreover, pg denotes

the gas pressure, and ϕ a pressure correction for the suspended phase. Finally, D and Q express a drag

and heat transfer function, respectively.

The specific total energies are related to the specific internal energies εg, εd through:

eg = εg +
1

2
|ug|2 and ed = εd +

1

2
|ud|2 . (3.20)

The gaseous phase is assumed to follow the ideal polytropic gas thermodynamic relations:

pg = (γ − 1)ρgεg , γ = constant , (3.21a)

εg = cvgTg , cvg = constant . (3.21b)

The pressure ϕ associated to the suspended phase is small in comparison to the gas pressure pg,

and considering negligible interaction between particles (droplets), it can be assumed zero, as in [75,

176]. However, a nonzero ϕ plays an important role from a mathematical point of view, since the

homogeneous equations of the suspended phase lose strict hyperbolicity under the the hypothesis ϕ ≡ 0.

Following [174], here a nonzero ϕ is viewed as a pressure correction that allows one to maintain the

strict hyperbolicity of the suspended phase system. We will consider ϕ a function of the macroscopic

density only:

ϕ = ϕ(β) , β ≡ ϑdρd . (3.22)

For instance, we can define ϕ based on the pressure law of the isothermal flow equations:

ϕ(β) = a2β , (3.23)

with a small. In [173, 174], where in particular the suspended phase is considered made of droplets, ϕ

is expressed in the form

ϕ = ϕ0ϑ
δ
d = ϕ0

(
β

ρd

)δ
, (3.24)
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where ϕ0 is a constant proportional to the rest pressure of the gas flow on the droplets, and δ = 4
3 .

Note that mathematically we recover (3.23) from (3.24) taking ϕ0 = ρda
2 and δ = 1.

The specific internal energy of the suspended phase is related to the temperature through a constant

heat coefficient cvd :

εd = cvdTd , cvd = constant . (3.25)

System (3.19) is closed by the equations (3.20), (3.21), (3.22), (3.25), together with the algebraic

constraint ϑg + ϑd = 1, and definitions for the drag and heat transfer functions D and Q. Specific

expressions of D and Q will be reported in Chapter 7, where we will present a multidimensional version

of the two-phase model introduced here, and, moreover, we will describe a numerical method for its

solution. Applications to particle-laden flows characterizing volcanic phenomena will be then presented

in Chapter 8.

3.3.1 Homogeneous System

Let us analyze the structure of the homogeneous part of system (3.19):

∂

∂t

[
qg

qd

]
+

∂

∂x

[
fg(qg)

fd(qd)

]
=

[
0

0

]
, (3.26a)

with

qg =




ρ

ρug

E


 , fg(qg) =




ρug

ρu2
g + p

(E + p)ug


 , qd =




β

βud

Ω


 , fd(qd) =




βud

βu2
d + ϕ

(Ω + ϕ)ud


 , (3.26b)

where we have introduced the notation:

ρ = ϑgρg , p = ϑgpg , E = ϑgρgeg , β = ϑdρd , Ω = ϑdρded . (3.27)

We can observe that in the system above the two sets of conservation equations of the two phases are

decoupled, and the Jacobian matrix has the block-diagonal form

A(q) =

[
Ag(qg) 0

0 Ad(qd)

]
, (3.28)

where Ag(qg) = f ′g(qg), and Ad(qd) = f ′d(qd).

Gas Phase

The set of equations of the gas phase

∂qg
∂t

+
∂fg(qg)

∂x
= 0 (3.29)

is the Euler system presented in section 2.4. We recall here the eigenstructure of this system, specializing

the results to the ideal polytropic gas equation of state. The Jacobian matrix has the form:

Ag(qg) =




0 1 0

(γ − 3)
u2

g

2 −(γ − 3)ug (γ − 1)

ug

[
(γ − 1)

u2
g

2 −H
]

−(γ − 1)u2
g +H γug



, (3.30)
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where H = E+p
ρ =

ρgeg+pg

ρg
is the specific total enthalpy. The eigenvalues are

λ1
g = ug − cg , λ2

g = ug , λ3
g = ug + cg , (3.31)

and the corresponding right eigenvectors

r1g =




1

ug − cg
H − ugcg


 , r2g =




1

ug
u2

g

2


 , r3g =




1

ug + cg
H + ugcg


 , (3.32)

where the sound speed cg is given by

cg =

√
(γ − 1)

(
H −

u2
g

2

)
. (3.33)

Suspended Phase

Let us now consider the homogeneous set of equations of the carried phase,

∂qd
∂t

+
∂fd(qd)

∂x
= 0 . (3.34)

The Jacobian matrix has the form:

Ad(qd) =




0 1 0

−u2
d +X 2ud 0

−uded + Y1 ed + Y2 ud


 , (3.35)

where

X = ϕ′(β) , Y1 = −udϕ
β

+ udϕ
′ , Y2 =

ϕ

β
, (3.36)

and the speed of sound is

cd =
√
X =

√
ϕ′(β) . (3.37)

If for instance we consider the expression (3.23), ϕ = a2β, then

X = a2 , Y1 = 0 , Y2 = a2 , and cd =
√
X = a . (3.38)

For a nonzero function ϕ the system is strictly hyperbolic, and it has three real distinct eigenvalues

λ1
d = ud − cd , λ2

d = ud , λ3
d = ud + cd , (3.39)

with three corresponding independent eigenvectors:

r1d =




1

ud − cd
ed − Y1

cd
− Y2

ud−cd

cd


 , r2d =




0

0

1


 , r3d =




1

ud + cd
ed − Y1

cd
+ Y2

ud+cd

cd


 . (3.40)

The assumption that ϕ depends only on the macroscopic density β = ϑdρd implies that the dynamics

of this phase in the absence of source terms is fully described by the first two conservation laws, the one

for the density and the one for the momentum. However, the energy equation (third conservation law)

is needed if we wish to follow the evolution of the energy or of any other quantity related to it such as
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the temperature, and it is required when the source terms are taken into account. If we consider the

reduced system of the two independent equations of (3.34)

∂

∂t

[
β

βud

]
+

∂

∂x

[
βud

βu2
d + ϕ

]
=

[
0

0

]
, (3.41)

the eigenstructure consists of the eigenvalues ud± cd, with eigenvectors [1, ud± cd]T, cd =
√
ϕ′(β). As a

consequence of the decoupling of (3.41) from the energy equation, the full system (3.34) is characterized

by the invariance of both the density β and the momentum (βud) across the second wave associated to

λ2
d = ud and r2d = [0, 0, 1]T, which carries a jump in the energy.

If we now consider the pressureless case ϕ ≡ 0, then we lose strictly hyperbolicity of the reduced

system (3.41), and hence of the full system (3.34). System (3.41) has one eigenvalue equal to ud with

algebraic multiplicity 2, associated to a single eigenvector [1, ud]
T. For the full system with the energy

equation, in the case ϕ ≡ 0 we have X = Y1 = Y2 = 0, and the Jacobian matrix has one eigenvalue

equal to ud with algebraic multiplicity 3 and geometric multiplicity 2. A basis for the space of the

eigenvectors can be chosen as {[1, ud, 0]T, [0, 0, 1]T}.
The pressureless equations given by (3.41) for ϕ ≡ 0 have been extensively studied, e.g. [14, 17,

18, 20, 30, 172, 82, 126, 123]. Most of the analyses view these equations as the limit of system (3.41)

as a pressure correction ϕ = ϕ(β; ε) vanishes with some parameter ε. For instance in [18, 123] the

isothermal pressure law ϕ(β; a) = a2β is assumed, and the limit a → 0 is taken. Similarly in [30] the

authors consider an isentropic law ϕ(β; ε) = ε β
γ

γ and study the solution of the pressureless system in

the limit ε → 0. The Riemann solution for system (3.41) with a nonzero ϕ consists of two distinct

waves, which can be either shocks or rarefactions if ϕ(β) is convex, such in the isothermal or isentropic

case. In the vanishing pressure limit, the solution to the pressureless equations is found to consist of

two contact waves with vacuum in between if ud,` < ud,r, and of a single delta-shock (singularity in

density and momentum) if ud,` > ud,r. The propagation speed of the delta-shock can be shown to be

[30, 123]

ûd =

√
β`ud,` +

√
βrud,r√

β` +
√
βr

. (3.42)

This corresponds to the expression of the usual Roe average for the dust velocity, based on the dust

density (see Section 4.1.3 in the next chapter).

3.3.2 Source Terms

The coupling between the two phases takes place through the drag terms D(ug − ud), D(ug − ud)ud,

the heat transfer term Q(Tg − Td), and terms modeling the gas pressure gradient force exerted on the

particles and its work, in the form ϑd
∂pg

∂x , ϑd
∂pg

∂x ud.

The form of the contribution of the drag term in the energy equations, D(ug − ud)ud, follows from

the assumption (as in [75]) that the effects of drag dissipation are assigned completely to the heating

of the gas. This is more clear if we write the equations for the specific internal energies:

ϑgρg

(
∂εg
∂t

+ ug
∂εg
∂x

)
= −pg

∂

∂x
(ϑgug + (1 − ϑg)ud) −D(ug − ud)

2 −Q(Tg − Td), (3.43a)

ϑdρd

(
∂εd
∂t

+ ud
∂εd
∂x

)
= Q(Tg − Td) . (3.43b)

Only in the equation for the gas phase do we need to include a contribution D(ug − ud)
2. Let us

remark that the effect of drag dissipation is of minor importance in comparison with heat conduction
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between the phases [48], and for instance in the formulations adopted in [51, 150, 155] this contribution

is neglected.

The nonconservative terms modeling exchange of momentum and energy related to the gas pressure

gradient, namely pg
∂ϑg

∂x , pg
∂
∂x ((1 − ϑg)ud), ϑd

∂pg

∂x , ϑd
∂pg

∂x ud, under the hypothesis ϑd � 1 are small

and give a weak coupling. They can be neglected, as in [176]. These nonconservative terms pose a

mathematical difficulty when we wish to allow for discontinuous solutions of the two-phase system. An

extensive mathematical analysis of the nonconservative system (3.19) without drag and heat transfer

terms has been performed by Sainsaulieu in [175, 174]. The author gives a definition of shock waves

solutions for the two-phase nonconservative system and derives explicit approximate jump conditions

for these discontinuous solutions, showing that they are perturbations of order ε = 1
ρd

� 1 of the

decoupled jump conditions of the homogeneous system.

3.3.3 The Mixture Speed of Sound

Gas flows carrying a particulate phase may exhibit a sound speed that is much lower than the sound

speed of the pure gas. We here derive an expression for the speed of sound of the mixture of gas and

particles, based on the model (3.19) with ϕ ≡ 0, under the assumption that momentum and energy

exchange between the gas and dust occurs rapidly enough so that they are in mechanical and thermal

equilibrium (homogeneous flow hypothesis). The result will be used in Chapter 7 (Section 7.4.1) for a

numerical test with the algorithm we propose to model dusty gas flows.

We consider the propagation of small amplitude pressure waves (acoustic waves) against a steady

background with constant velocities ug0 = ud0 = 0, constant densities ρ0 = ϑg0ρg0, β0 = ϑd0ρd =

(1− ϑg0)ρd (recall that ρd = const.), and constant gas pressure. We also assume that cvdβ0 � cvgρ0 so

that the dust contains much more thermal energy than the gas. Since we are assuming the temperature

equilibrates rapidly between the gas and dust and we are considering small perturbations about a

constant state, it is then reasonable to assume that the dust acts as a heat reservoir that keeps the gas

at a constant temperature as the acoustic wave propagates. We can then drop the corresponding source

term and simply consider isothermal behaviour. The effective equation of state is then

pg = c2g,isot ρg , c2g,isot = R T̄g , (3.44)

where cg,isot represents the isothermal sound speed of the pure gaseous phase and T̄g denotes the

constant temperature of the two-phase mixture. Under the above assumption of isothermal flow, and

using (3.44), equations (3.19) give the reduced system

∂

∂t
(ϑgρg) +

∂

∂x
(ϑgρgug) = 0 , (3.45a)

∂

∂t
(ϑgρgug) +

∂

∂x

(
ϑgρgu

2
g

)
+ c2g,isot ϑg

∂ρg
∂x

= −D(ug − ud) , (3.45b)

∂

∂t
((1 − ϑg)ρd) +

∂

∂x
((1 − ϑg)ρdud) = 0 , (3.45c)

∂

∂t
((1 − ϑg)ρdud) +

∂

∂x

(
(1 − ϑg)ρdu

2
d

)
+ c2g,isot (1 − ϑg)

∂ρg
∂x

+D(ug − ud) , (3.45d)

where we have also used the algebraic constraint ϑg + ϑd = 1. Considering small perturbations with

respect to background variables, we write

ρg = ρg0 + ρ̃g and ϑg = ϑg0 + ϑ̃g . (3.46)
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Linearizing (3.45), and dividing the resulting continuity equations of the two phases by the corresponding

background microscopic densities, we obtain

ϑg0
ρg0

∂ρ̃g
∂t

+
∂ϑ̃g
∂t

+ ϑg0
∂ug
∂x

= 0 , (3.47a)

ϑg0ρg0
∂ug
∂t

+ c2g,isot ϑg0
∂ρ̃g
∂x

= −D(ug − ud) , (3.47b)

−∂ϑ̃g
∂t

+ (1 − ϑg0)
∂ud
∂x

= 0 , (3.47c)

(1 − ϑg0)ρd
∂ud
∂t

+ c2g,isot (1 − ϑg0)
∂ρ̃g
∂x

= D(ug − ud) . (3.47d)

Adding now (3.47b) and (3.47d) eliminates the drag source term, and if we assume that this acts

sufficiently fast that velocity perturbations satisfy ug = ud ≡ u, then the resulting equation along with

the sum of (3.47a) and (3.47c) gives a reduced system of two equations for ρ̃g and u:

ϑg0
ρg0

∂ρ̃g
∂t

+
∂u

∂x
= 0 , (3.48a)

(ϑg0ρg0 + (1 − ϑg0)ρd)
∂u

∂t
+ c2g,isot

∂ρ̃g
∂x

= 0 . (3.48b)

This system has wave speeds ±cm where

cm = cg,isot

√
ρg0

ϑg0(ϑg0ρg0 + ϑd0ρd)
(3.49)

is the mixture sound speed in the considered case of equilibrium flow. This expression can be derived

more generally for the case in which the suspended phase is also compressible and governed by a non

zero pressure law, see for example [202, 54].

Under the considered assumption of dilute dust phase, we can approximate ϑg0 ≈ 1, and hence

ρg0 ≈ ρ0. Therefore, cm ≈ cg,isot
√

ρ0
ρ0+β0

. This expression of the sound speed, c′m = cg,isot
√

ρ0
ρ0+β0

, is

the result we can obtain directly with an analogous procedure to the one described above by neglecting

in (3.19) the terms modeling momentum exchange due to the gas pressure gradient, which is again valid

if ϑg0 ≈ 1. This in particular suggests that neglecting pressure gradient terms in the hypothesis ϑd � 1

still allows to model correctly the propagation of acoustic waves.

Note that cm < cg,isot < cg =
√
γRT̄g, where cg is the isentropic pure gas sound speed (at same

Tg), and, moreover, cm can be significantly lower than cg,isot and cg if β0 is large compared to ρ0.
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Chapter 4

HIGH RESOLUTION WAVE PROPAGATION METHODS

4.1 Godunov-Type Methods

For the numerical approximation of hyperbolic systems of conservation laws we consider Godunov-

type schemes, that represent a particular class of finite volume methods. We will first focus on the

one-dimensional case, i.e. system (2.5).

Let us consider a discretization in space and time with spatial interval ∆x and time step ∆t.

We define the discrete points (xi, t
n) by xi = i∆x, i ∈ Z, and tn = n∆t, n ∈ N. In the finite

volume approach, the numerical solution Qni ∈ R
m that we associate to the point (xi, t

n) is viewed

as an approximation of the average of the exact solution q(x, t) at time tn over the spatial cell Ci =

(xi−1/2, xi+1/2), xi±1/2 = (i± 1/2)∆x:

Qni ' 1

∆x

∫

Ci

q(x, tn) dx ≡ Q̄n
i . (4.1)

We shall consider 3-point explicit schemes in conservation form, of the following type:

Qn+1
i = Qni − ∆t

∆x

[
F (Qni , Q

n
i+1) − F (Qni−1, Q

n
i )

]
, (4.2)

where the function F : R
m × R

m → R
m is called numerical flux. The form (4.2) is very natural with

the interpretation of Qni as in (4.1). In fact, since we know that every weak solution q(x, t) satisfies the

integral form of the conservation law (2.3), we can write

∫

Ci

q(x, tn+1) dx =

∫

Ci

q(x, tn) dx−
[∫ tn+1

tn
f(q(xi+1/2, t)) dt−

∫ tn+1

tn
f(q(xi−1/2, t)) dt

]
. (4.3)

Dividing by ∆x and using the cell average (4.1), we have

Q̄n+1
i = Q̄n

i − 1

∆x

[∫ tn+1

tn
f(q(xi+1/2, t)) dt−

∫ tn+1

tn
f(q(xi−1/2, t)) dt

]
. (4.4)

Comparing this to (4.2), we see that the numerical flux function F (Qni , Q
n
i+1) plays the role of the

average physical flux through xi+1/2 over the time interval [tn, tn+1):

F (Qni , Q
n
i+1) '

1

∆t

∫ tn+1

tn
f(q(xi+1/2, t)) dt . (4.5)

For consistency with the physical flux f(q), we will in general require F (w,w) = f(w), ∀w.

Godunov-type methods are based on solving Riemann problems between cell averages Qn
i , Q

n
i+1 in

order to define the numerical flux F (Qni+1, Q
n
i ) associated to the interface at xi+1/2. We can either

compute the exact solution of the Riemann problem at each cell interface, as in the original Godunov’s

method [69], or we can use an approximate solution. A wide variety of Approximate Riemann Solvers

has been proposed that can be applied with much less computational effort than the exact Riemann

solver, and yet are in many cases equally effective. Let q∗(x, t) = q∗R(xt ;Q
n
i , Q

n
i+1) denote the similarity
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solution, either exact or approximate, for a Riemann problem with initial data Qni and Qni+1. The

numerical flux for this class of methods is defined as

F (Qni , Q
n
i+1) =

1

∆t

∫ tn+1

tn
f(q∗(xi+1/2, t)) dt = q∗R(0;Qni , Q

n+1
i+1 ) . (4.6)

4.1.1 Structure of the Approximate Riemann Solvers

The general structure of the class of approximate Riemann solver we are interested in consists of Mw

waves W p ∈ R
m propagating at some speeds sp ∈ R, p = 1, 2, · · · ,Mw . For assigned values q` and

qr for the left and right state of the Riemann problem, the vectors W p represent the jump in q across

each wave and their sum must recover the total jump:

qr − q` =

Mw∑

p=1

W p . (4.7)

Moreover, the following conservation condition needs to be satisfied:

f(qr) − f(q`) =

Mw∑

p=1

spW p . (4.8)

For these solvers the numerical flux can be expressed as:

F (Qi, Qi+1) = f(Qi) +

Mw∑

p=1

(
spi+1/2

)−

W p
i+1/2 = f(Qi+1) −

Mw∑

p=1

(
spi+1/2

)+

W p
i+1/2 , (4.9)

where s+ = max(s, 0), s− = min(s, 0), and the subscript (i+1/2) indicates quantities computed for the

Riemann problem at x1+1/2. The updating formula (4.2) then takes the form of the following first-order

upwind scheme:

Qn+1
i = Qni − ∆t

∆x

[
Mw∑

p=1

(
spi+1/2

)−

W p
i+1/2 +

Mw∑

p=1

(
spi−1/2

)+

W p
i−1/2

]
. (4.10)

Let us finally recall that the CFL stability condition [41, 42] must hold:

Courant number =
∆t

∆x
max
p

|sp| ≤ 1 , 1 ≤ p ≤Mw . (4.11)

4.1.2 The HLL Solver

The HLL solver was introduced by Harten, Lax, and van Leer in [78]. This solver consists in approx-

imating the Riemann solution by two waves (Mw = 2 regardless of the dimension m of the system),

with some speed a` and ar chosen to approximate the minimum and maximum characteristic speed of

the system. The solver is called HLLE when the definition of a` and ar proposed by Einfeldt [57] in

the context of gas dynamics is used. Specifically, Einfeldt defines:

a` = min
p

(
min

(
λp(q`), λ̂

p(q`, qr)
))

and ar = max
p

(
max

(
λp(qr), λ̂

p(q`, qr)
))

, (4.12)

where λp(q) is the p-th eigenvalue of the Jacobian matrix f ′(q) of the system, and λ̂p(q`, qr) is the p-th

eigenvalue of a Roe linearization for the problem (see next section).

The waves for the HLL solver are

W1 = qm − q` and W2 = qr − qm , (4.13)
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where the intermediate state qm is determined by the conservation condition (4.8) as

qm =
ar qr − a` q` − [f(qr) − f(q`)]

ar − a`
. (4.14)

A disadvantage of this solver is that the full Riemann solution structure is approximated by only two

waves based on the approximate speeds of the fastest and slowest wave in the system. For a system

with more than two equations, as in the case of the Euler system, this in general will lead to a loss of

resolution for waves traveling at intermediate speeds. However, this solver is very robust in problems

where other more accurate solvers may suffer from the appearance of unphysical solutions (e.g. negative

densities).

4.1.3 The Roe Solver

One of the most popular approximate Riemann solvers is due to Roe [169], and it has been extensively

used. The idea is to determine an approximate Riemann solution by solving a linear system with a

constant coefficient matrix Â = Â(q`, qr), instead of the original nonlinear system (2.5).

Definition 4.1 The matrix Â(q`, qr) is called a Roe linearization if it is endowed with the following

properties:

(i) Hyperbolicity of the linearized system:

Â(q`, qr) has real eigenvalues and a corresponding complete set of eigenvectors;

(ii) Consistency: Â(q`, qr) → f ′(q̄) as q`, qr → q̄;

(iii) Conservation condition:

f(qr) − f(q`) = Â(q`, qr) (qr − q`) . (4.15)

Denoting with {r̂p, λ̂p} the eigenstructure of Â, and with αp the coefficients of the projection of the

jump (qr − q`) onto the eigenvectors r̂p, the waves W p and corresponding speeds sp that form the

structure of the Roe solver are given by:

W p = αpr̂p and sp = λ̂p , p = 1, · · · ,Mw ≡ m. (4.16)

The conservation condition (4.8) follows from the property (iii) above.

In [169] Roe suggests to take Â in the form

Â(q`, qr) = A(q̂) , q̂ = q̂(q`, qr) , (4.17)

where A(q) = f ′(q) is the Jacobian matrix of the original system and q̂ = q̂(q`, qr) is an average state

defined so that the properties (i)-(iii) listed above will hold. In particular, Roe derives Â(q`, qr) for

the Euler equations of gas dynamics with the ideal polytropic gas law p(E , ρ) = (γ − 1)E . Focusing

here on the one-dimensional case (2.10), for the considered equation of state the Jacobian matrix of the

system (2.18) can be expressed as a function of the only two variables u (velocity) and H (specific total

enthalpy). The linearization Â(q`, qr) is then defined by Roe as the Jacobian matrix evaluated in an

average state (û, Ĥ), which is determined by the conditions of Def. 4.1 as

û =

√
ρ` u` +

√
ρr ur√

ρ` +
√
ρr

and Ĥ =

√
ρ`H` +

√
ρrHr√

ρ` +
√
ρr

. (4.18)



26

A well-known drawback of the Roe solver is that it may compute entropy-violating solutions. This

happens when the true solution of the Riemann problem contains a transonic rarefaction, that is one

for which λp changes sign from negative to positive through the rarefaction fan, and the failure of the

solver is caused by the approximation of this rarefaction by means of a single discontinuity. Several

‘entropy fixes’ have been proposed to address this problem, e.g. [76, 77, 55]. We will return on this

topic in Chapter 5.

4.2 Wave Propagation Algorithms

A class of high resolution multidimensional Wave Propagation Algorithms for general time-dependent

hyperbolic systems is described in [120], and implemented in the clawpack software [115]. These

methods are based on solving Riemann problems for waves and, in one dimension, use an updating

formula of the form:

Qn+1
i = Qni − ∆t

∆x

(
A+∆Qi−1/2 + A−∆Qi+1/2

)
− ∆t

∆x

(
F̃i+1/2 − F̃i−1/2

)
, (4.19)

where A±∆Qi+1/2 are the left-going and right-going fluctuations resulting from the Riemann solution

at the grid interface xi+1/2, and F̃i+1/2 are correction fluxes yielding high resolution. For a hyperbolic

system of conservation laws of the form (2.5), the fluctuations must satisfy the conservation condition

f(Qi+1) − f(Qi) = A−∆Qi+1/2 −A+∆Qi+1/2 . (4.20)

We stress that this class of methods can be applied also to equations that are not in conservation form

(e.g. the advection equations (3.17e), (3.17f)), in which case there is no flux function f(q), and the

constraint (4.20) does not need to be satisfied.

We show in particular how schemes that are based on a decomposition of the form (4.7), and give

the algorithm (4.10), enter in the framework of the wave propagation methods. Let us define:

A−∆Qi+1/2 =

Mw∑

p=1

(
spi+1/2

)−

W p
i+1/2 and A+∆Qi+1/2 =

Mw∑

p=1

(
spi+1/2

)+

W p
i+1/2 . (4.21)

Note that the quantity A+∆Qi+1/2 measures the net effect of all right-going waves from xi+1/2, while

A−∆Qi+1/2 measures the net effect of all left-going waves from this same interface. Using (4.21), the

updating formula (4.10) takes the form (4.19) with F̃i+1/2 = 0 :

Qn+1
i = Qni − ∆t

∆x

(
A+∆Qi−1/2 + A−∆Qi+1/2

)
. (4.22)

This first-order method is then extended to high resolution by adding the term of the correction fluxes.

4.2.1 Second-Order Corrections

The second-order correction fluxes F̃i+1/2 are defined by

F̃i+1/2 =
1

2

Mw∑

p=1

∣∣spi+1/2

∣∣
(

1 − ∆t

∆x

∣∣spi+1/2

∣∣
)
W̃ p
i+1/2 (4.23)

where W̃ p
i+1/2 is obtained by multiplying the wave Wp

i+1/2 by a limiter function φ(θ):

W̃ p
i+1/2 = φ(θi+1/2)W p

i+1/2 . (4.24)
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In the absence of limiters, (4.23) can be interpreted as arising from propagating a piecewise linear

“correction wave”, as described in [117, 122]. Limiter functions are needed to avoid oscillations near

discontinuities, and they depend on a variable θ that measures the smoothness of the solution. The

value of θpi+1/2 in (4.24) is obtained by comparing the wave Wp
i+1/2 with the wave W̃ p

I+1/2 in the same

family p at the neighbouring Riemann problem in the upwind direction, i.e.

I =

{
i− 1 if spi+1/2 > 0 ,

i+ 1 if spi+1/2 < 0 .
(4.25)

One approach to define θpi+1/2 is

θp
i+1/2

=
W̃ p
I+1/2 · W̃

p
i+1/2

W̃ p
i+1/2 · W̃

p
i+1/2

. (4.26)

Other methods can be used, as the one proposed by Liu and Lax in [111, 132].

We conclude this section by reporting some standard limiter functions:

Minmod: φ(θ) = max(0,min(1, θ)) (4.27)

Superbee: φ(θ) = max(0,min(1, 2θ),min(2, θ)) (4.28)

van Leer: φ(θ) =
θ + |θ|
1 + θ

(4.29)

MC: φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)) . (4.30)

4.2.2 The F-Wave Formulation

The definition (4.21) of the fluctuations A±∆Qi+1/2 is based on a decomposition of the jump in q

between the left and right state in the Riemann problem of the form (4.7). An alternative approach is

to decompose the jump in f into waves Z p, called f-waves:

f(qr) − f(q`) =

Mw∑

p=1

Z p . (4.31)

Assuming these waves Z p are moving at some speeds sp, we define the fluctuations directly from Z p

as:

A−∆Qi+1/2 =

Mw∑

p:sp
i+1/2

<0

Z p
i+1/2 and A+∆Qi+1/2 =

Mw∑

p:sp
i+1/2

>0

Z p
i+1/2 , (4.32)

where the subscript (i + 1/2) refers to quantities resulting from the Riemann problem at the grid

interface xi+1/2. Moreover, in this framework, the high resolution correction fluxes are written as

F̃i+1/2 =
1

2

Mw∑

p=1

sgn
(
spi+1/2

) (
1 − ∆t

∆x

∣∣spi+1/2

∣∣
)
Z̃ p
i+1/2 . (4.33)

If we have a set of Mw waves W p and speeds sp resulting from a decomposition in the jump in q

of the form (4.7), and satisfying the conservation condition (4.8), as for the HLL solver and the Roe

solver of Sections 4.1.2 and 4.1.3, then we can formulate the corresponding scheme in terms of f-waves

setting

Z p = spW p , 1 ≤ p ≤Mw . (4.34)
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Note, on the other hand, that if we start with a decomposition of the jump in f in f-waves Z p of the

form (4.32), given the speeds sp we can recover the waves W p through the formula above only if the

speeds are not zero.

An advantage of the f-wave approach is that using the condition (4.32) to define the Z p guarantees

that the method will be conservative when the fluctuations (4.32) are used. This is true for any

linearization Ã(q`, qr) of the Jacobian matrix A(q) = f ′(q) of the system, for instance the simple

arithmetic average Ã(q`, qr) = A
(

1
2 (q` + qr)

)
, whereas (4.8) may not be satisfied if the wave splitting

is based on (4.7), unless Ã(q`, qr) is chosen to be a special average such as the Roe average.

The f-wave formulation is also advantageous in the context of spatially-varying flux functions and

problems with source terms. We will discuss these applications in Chapter 5, where a more general

approach is explored, based on the simultaneous decomposition in waves of both the jump in q and f .

Useful applications of the f-wave approach will be also illustrated in Chapter 7 in presenting a numerical

model for dusty gas flows.

4.3 Multidimensional Numerical Methods

We consider the numerical approximation of a two-dimensional hyperbolic system of conservation laws

of the form
∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= 0 . (4.35)

Let us assume a uniform Cartesian grid with space intervals∆x, ∆y in the x and y direction, respectively,

and let us set xi = i∆x, yj = j∆y, i, j ∈ Z. We will denote with Qni,j the approximate average of the

solution q(x, y, t) at time tn over the cell Ci,j = (xi−1/2, xi+1/2)×(yj−1/2, yj+1/2), xi±1/2 = (i±1/2)∆x,

yj±1/2 = (j ± 1/2)∆y :

Qni,j '
1

∆x∆y

∫∫

Ci

q(x, y, tn) dx dy . (4.36)

4.3.1 Dimensional Splitting

A simple way to extend one-dimensional numerical methods to more space dimensions is to use di-

mensional splitting. A fractional-step method is applied to split the multidimensional problem into a

sequence of one-dimensional problems. To solve (4.35), for example, we might alternate between solving

∂q/∂t+ ∂f(q)/∂x = 0 and ∂q/∂t+ ∂g(q)/∂x = 0. Given the initial cell values Qni,j at time tn, we solve

the first system along each row of cells Ci,j with j fixed to update Qni,j to Q∗
i,j . Then, these values Q∗

i,j

are used as initial data to solve the second system along each column of cells Ci,j with i fixed, which

finally gives the approximate cell values Qn+1
i,j at time tn+1.

4.3.2 Fully Discrete Flux-Differencing Methods

Let us consider the integral form of the system (4.35) given by:

d

dt

∫∫

Ci,j

q(x, y, t)dx dy =

∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t))dy −
∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t)) dy

+

∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t)) dx−
∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t)) dx . (4.37)

If we integrate this expression from tn to tn+1, we are led to a fully discrete flux-differencing method

of the form

Qn+1
i,j = Qni,j−

∆t

∆x

[
F (Qni,j , Q

n
i+1,j) − F (Qni−1,j , Q

n
i,j)

]
− ∆t

∆y

[
G(Qni,j , Q

n
i,j+1) −G(Qni,j−1, Q

n
i,j)

]
, (4.38)
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where the numerical fluxes F (Qni,j , Q
n
i+1,j) and G(Qni,j , Q

n
i,j+1) represent an approximation of the phys-

ical fluxes through the edges given by x = xi+1/2, y ∈ (yj−1/2, yj+1/2) and x ∈ (xi−1/2, xi+1/2),

y = yj+1/2, respectively, over the time interval [tn, tn+1):

F (Qni,j , Q
n
i+1,j) ' 1

∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t)) dy dt , (4.39a)

G(Qni,j , Q
n
i,j+1) ' 1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t)) dx dt . (4.39b)

To define the numerical fluxes in (4.38), we can solve one-dimensional Riemann problems normal to

each cell interface. If we perform this task by employing the approximate Riemann solvers described in

Section 4.1.1, then, for the F fluxes we have:

F (Qi,j , Qi+1,j) = f(Qi,j) +

Mw∑

p=1

(
sx,pi+1/2,j

)−

W x,p
i+1/2,j

= f(Qi+1,j) −
Mw∑

p=1

(
sx,pi+1/2,j

)+

W x,p
i+1/2,j , (4.40a)

where the set of Mw waves W x,p
i+1/2,j and speeds sx,pi+1/2,j is obtained by solving a Riemann problem in

the x-direction for the system ∂q/∂t+ ∂f(q)/∂x = 0 with data Qi,j , Qi+1,j . Similarly, for the G fluxes:

G(Qi,j , Qi,j+1) = g(Qi,j) +

Mw∑

p=1

(
sy,pi+1/2,j

)−

W y,p
i+1/2,j

= g(Qi,j+1) −
Mw∑

p=1

(
sy,pi+1/2,j

)+

W y,p
i+1/2,j , (4.40b)

where the set of Mw waves W y,p
i,j+1/2 and speeds sy,pi,j+1/2 results from solving a Riemann problem in the

y-direction for the system ∂q/∂t+ ∂g(q)/∂x = 0 with data Qi,j , Qi,j+1.

We can write the algorithm in terms of fluctuations by setting

A±∆Qi+1/2,j =

Mw∑

p=1

(
sx,pi+1/2,j

)±

W x,p
i+1/2,j and B±∆Qi,j+1/2 =

Mw∑

p=1

(
sy,pi,j+1/2

)±

W y,p
i+1/2,j . (4.41)

We then obtain the following first-order upwind scheme:

Qn+1
i,j = Qni,j −

∆t

∆x

(
A+∆Qi−1/2,j + A−∆Qi+1/2,j

)
− ∆t

∆y

(
B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)
. (4.42)

This method is typically stable only for Courant numbers up to 1
2 .

4.3.3 Multidimensional Wave Propagation Algorithms

The general form of the wave propagation algorithms for solving two-dimensional hyperbolic systems is

Qn+1
i,j = Qni,j − ∆t

∆x

(
A+∆Qi−1/2,j + A−∆Qi+1/2,j

)

− ∆t

∆y

(
B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)

− ∆t

∆x

(
F̃i+1/2,j − F̃i−1/2,j

)
− ∆t

∆x

(
G̃i,j+1/2 − G̃i,j−1/2

)
, (4.43)
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where the quantities A±∆Q and B±∆Q represent fluctuations arising from Riemann problems in the

x and y direction, respectively. The F̃ and G̃ fluxes are used to perform second order corrections, and

also corrections for cross-derivative terms that arise in two dimensions and which did not appear in one

dimension.

A method of the form (4.42), that is (4.43) with F̃ = G̃ = 0, is based on propagating waves

normal to each interface. In reality the waves should propagate in a multidimensional manner and

affect other cell averages besides those adjacent to the interface. This is accomplished by splitting each

fluctuation A∗∆Qi+1/2,j (and similarly B∗∆Qi,j+1/2) for ∗ = + and − into two transverse fluctuations

which will be denoted B+A∗∆Qi+1/2,j (up-going) and B−A∗∆Qi+1/2,j (down-going). This transverse

decomposition of the fluctuations can be viewed as solving a second Riemann problem in the transverse

direction, even though it is not based on left and right states as we normally interpret a Riemann solver.

Let us assume, for example, that the waves and speeds resulting from solving Riemann problems in the

normal direction are based on the eigenstructure of some linearized matrices Ã and B̃ of f ′(q) and g′(q),

respectively. Then we compute the coefficients βp of the projection of A+∆Qi+1/2,j on the eigenvectors

ry,p of B̃, A+∆Qi+1/2,j =
∑Mw

p=1 β
pry,p, and we set

B±A+∆Qi+1/2,j =

Mw∑

p=1

(λp,y)
±
βpry,p , (4.44)

where λp,y are the eigenvalues of B̃.

The transverse fluctuations are used to update the four neighbouring G̃ fluxes (and similarly F̃

fluxes), which are initialized to zero, according to:

G̃i+1,j+1/2 = G̃i+1,j+1/2 −
∆t

2∆x
B+A+∆Qi+1/2,j ,

G̃i+1,j−1/2 = G̃i+1,j−1/2 −
∆t

2∆x
B−A+∆Qi+1/2,j ,

G̃i,j+1/2 = G̃i,j+1/2 −
∆t

2∆x
B+A−∆Qi+1/2,j ,

G̃i,j−1/2 = G̃i,j−1/2 −
∆t

2∆x
B−A−∆Qi+1/2,j . (4.45)

We remark that the transverse corrections terms have also the effect of improving the stability limit,

allowing full Courant number 1, relative to the maximum wave speed in any direction.

Once the transverse corrections described above have been implemented, it is possible to achieve

second-order accuracy by making one-dimensional flux corrections analogous to (4.23). Here we use

waves and speeds computed in solving the Riemann problem normal to each interface. We perform

corrections of the form:

F̃i+1/2,j =
1

2

Mw∑

p=1

∣∣sx,pi+1/2,j

∣∣
(

1 − ∆t

∆x

∣∣sx,pi+1/2,j

∣∣
)
W̃ x,p
i+1/2,j , (4.46)

where W̃ x,p
i+1/2,j is a limited version of W x,p

i+1/2,j , obtained comparing W x,p
i+1/2,j to W x,p

i−1/2,j if sx,pi+1/2,j > 0,

or to W x,p
i+3/2,j if sx,pi+1/2,j < 0.

We can also propagate the second-order corrections in the transverse direction, this improving

the stability properties and reducing spurious oscillations in many problems (see e.g. [119]). This is



31

accomplished by applying the routine that performs the splitting into transverse fluctuations to

A±∆Qi+1/2,j ∓
Mw∑

p=1

∣∣sx,pi+1/2,j

∣∣
(

1 − ∆t

∆x

∣∣sx,pi+1/2,j

∣∣
)
W̃ x,p
i+1/2,j , (4.47)

instead of to A±∆Qi+1/2,j .

4.4 The clawpack Software

The software package clawpack [115] (conservation law package) is a collection of Fortran routines

that implement the wave propagation methods described in the previous sections. It solves hyperbolic

systems of conservation laws and hyperbolic nonconservative systems as well. Systems with variable

coefficients and problems with source terms can also be treated.

The software performs multidimensional computations on Cartesian grids and more generally on

logically rectangular quadrilateral grids (curvilinear grids).

Moreover, the package includes adaptive mesh refinement versions (amrclaw) [13], and a MPI

version in which the domain can be distributed among multiple processors.

We refer to [122] for a complete description of the algorithms implemented in the software.
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Chapter 5

RELAXATION SCHEMES AND THEIR RELATION TO

APPROXIMATE RIEMANN SOLVERS

The idea of relaxation methods for systems of conservation laws is to approximate a system of

the form (2.1) by solving a modified system with a relaxation source term that formally reduces to the

original equations in the limit as the relaxation time τ → 0+. Relaxation schemes have been extensively

studied in the literature. We refer for example to [7], [26], [29], [70], [91], [99], [109], [130].

Considering here the one-dimensional case, a general form of relaxation system associated to the

conservation law (2.5) is

∂q

∂t
+

∂

∂x
g(q, v) = 0 , (5.1a)

∂v

∂t
+B(q, v)

∂q

∂x
+ C(q, v)

∂v

∂x
= −1

τ
(v − veq(q)) , (5.1b)

where v ∈ R
l is an additional vector variable whose equilibrium value for τ → 0+ is veq(q) and the

function g : R
m×R

l → R
m is such that g(q, veq(q)) = f(q). This function g and the matrices B ∈ R

l×m

and C ∈ R
l×l must be defined so that the homogeneous relaxation system is hyperbolic, and in general

they will be chosen so that the new problem (5.1) is easier to solve than the original one. For instance, a

linear relaxation system can be used to solve a nonlinear conservation law. The equations (5.1) formally

recover the original conservation law in the relaxation limit τ → 0+. A general necessary condition for

convergence is the so-called subcharacteristic condition [131], which requires that the eigenvalues of the

hyperbolic part of (5.1) span the characteristic speeds of the original problem.

One way to solve the relaxation system (5.1) is to is to employ a fractional step method. First, given

the initial data qn and vn at time tn, we apply some finite volume scheme to the homogeneous system

∂q

∂t
+

∂

∂x
g(q, v) = 0 , (5.2a)

∂v

∂t
+B(q, v)

∂q

∂x
+ C(q, v)

∂v

∂x
= 0 , (5.2b)

for advancing the solution over a time step ∆t. Let us denote q∗ and v∗ the updated variables we find

through this step. Then we consider the solution over time ∆t of the ordinary differential equations

∂q

∂t
= 0 , (5.3a)

∂v

∂t
= −1

τ
(v − veq(q)) . (5.3b)

We can solve exactly the system above, obtaining:

qn+1 = q∗ , (5.4a)

vn+1 = veq(q
n+1) + e−

∆t
τ (v∗ − veq(q

n+1)) . (5.4b)
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Since we are only concerned with the equilibrium limit τ → 0+, we simply set, instead of (5.4b),

vn+1 = veq(q
n+1) = veq(q

∗) . (5.5)

This is what is called relaxed scheme in [93]. Employing the equilibrium condition above allows us to

ignore v∗, so that we don’t need to update vn to v∗ in the first step. Here we are considering this special

case of relaxation scheme in order to be able to relate it to approximate Riemann solvers, as we will

explain in the next section.

In summary, our relaxation scheme consists of the following two steps:

Algorithm 5.1 (Relaxed Scheme)

1. Solve the hyperbolic system (5.2) to update qn to qn+1.

2. Set vn+1 = veq(q
n+1) (equilibrium condition).

5.1 Relaxation Schemes and Approximate Riemann Solvers

Relaxation methods based on the Algorithm 5.1 can result in the definition of a class of approximate

Riemann solvers for the original system of conservation laws. This has been explored in our work [124],

and much of this chapter is taken from that paper. Let us restrict here our analysis to a relaxation

system in the following form, that slightly extends the one proposed by Jin and Xin in [93]:

∂q

∂t
+
∂v

∂x
= 0 , (5.6a)

∂v

∂t
+D2 ∂q

∂x
= −1

τ
(v − f(q)) , (5.6b)

where v ∈ R
m, and D2 ∈ R

m×m is a positive definite matrix. Note that in this case l = m, so that

we are replacing the original m conservation laws with 2m equations. Moreover, g(q, v) = v, B = D2,

C = 0, and veq(q) = f(q). In [93] Jin and Xin choose D2 to be a diagonal matrix with positive diagonal

elements. We assume without loss of generality that D itself has positive eigenvalues given by the pairs

±dj for j = 1, · · · ,m. Then the matrix [
0 I

D2 0

]
(5.7)

appearing as the coefficient matrix on the left-hand side of (5.6) has 2m eigenvalues given by

s2j−1 = −dj and s2j = +dj (5.8)

with 2m eigenvectors

θ2j−1 =

[
zj

−djzj
]

and θ2j =

[
zj

+djzj

]
, (5.9)

for j = 1, · · · ,m. Note that, if λj(q) denotes the j-th eigenvalue of f ′(q), the subcharacteristic condition

for (5.6) reads

−dmax ≤ λj(q) ≤ dmax , ∀j = 1, · · · ,m , ∀q , (5.10)

where dmax = maxj d
j is the spectral radius of D.

Let us now consider the solution of a Riemann problem for (5.6), by applying the Algorithm 5.1.

Given the states q` and qr, we compute v` = f(q`) and vr = f(qr). This corresponds to the equilibrium
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condition that is imposed at each time step in the algorithm. We then solve a Riemann problem for

the homogeneous system associated to (5.6) with initial data
[

q`
f(q`)

]
,

[
qr

f(qr)

]
. (5.11)

The solution of this linear Riemann problem requires the decomposition

[
qr − q`

f(qr) − f(q`)

]
=

2m∑

p=1

αp θp . (5.12)

Once we have determined the scalar coefficients αp by solving the system above, we can define

W 2j−1 = α2j−1 zj and W 2j = α2j zj , (5.13)

for j = 1, · · · ,m. These 2m waves W p ∈ R
m, p = 1, · · · , 2m, together with the corresponding propa-

gation speeds sp given in (5.8), are used to update the vector q. By virtue of step 2 in the algorithm,

v is simply reset through the equilibrium condition v = veq(q), thus we don’t need to keep track of

this variable. The relaxation process has disappeared, and we view the relaxation schemes as a way to

update q. Note that by using (5.8),(5.9) and (5.13), from (5.12) we can write the jump in q as

qr − q` =

2m∑

p=1

W p , (5.14)

which is the form of the decomposition (4.7) (with Mw = 2m) that characterizes the structure of the

approximate Riemann solvers presented in Section 4.1.1. Also, from (5.12), the jump in the flux satisfies

f(qr) − f(q`) =
2m∑

p=1

spW p , (5.15)

which corresponds to the conservation condition (4.8) with Mw = 2m.

In conclusion, the relaxation scheme has led to the definition of an approximate Riemann solver for

the original system of m conservation laws consisting of the 2m waves W p in (5.13) with the speeds sp

given in (5.8).

5.1.1 Diagonal Matrix D

For the case of a diagonal matrix D = diag(d1, d2, . . . , dm) as used by Jin and Xin in [93], we have

zj = ej , the jth unit vector. The elements dj of D must be chosen so that the subcharacteristic

condition (5.10) is satisfied. For the Euler equations, Jin and Xin choose them as some approximations

to the eigenvalues u− c, u, and u+ c of the Jacobian matrix (where u is the velocity and c the sound

speed).

Note that when zj = ej , the decomposition (5.12) splits into m decoupled 2 × 2 problems of the

form [
qjr − qj`
vjr − vj`

]
= α2j−1

[
1

−dj
]

+ α2j

[
1

dj

]
(5.16)

involving only the jth component of the vector q and the jth component of the flux vector v = f(q).

Solving this system gives

α2j−1 =
1

2dj
(dj(qjr − qj` ) − (vjr − vj` )) , (5.17a)

α2j =
1

2dj
(dj(qjr − qj` ) + (vjr − vj` )) . (5.17b)
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When applied to the Euler equations, for example, the density and its flux are split into one pair of

waves with speeds ±d1, the momentum is split into a second pair of waves with speeds ±d2, and the

energy is split into a third pair of waves with speeds ±d3. The splitting of each component is done

in such a way that conservation is maintained, which is guaranteed by the manner in which the flux

differences are split along with the components of qr − q` so that (5.15) is satisfied. In the next section

we will show that this can be viewed as a generalization of the HLL Riemann solver.

5.2 Relation to the HLL Solver

Let us consider the HLL solver introduced in Section 4.1.2, and assume for the moment that a` = −ar
with ar > 0. Then this is equivalent to the relaxation Riemann solver described in the previous section

if we take D to be the diagonal matrix D = arI, so that

s2j−1 = −dj = a` and s2j = dj = ar . (5.18)

Then the jth system (5.16) splits the jth component of qr − q` into 2 waves propagating at speeds

a` and ar. After doing this for all m components we obtain 2m waves, each carrying a jump in only

one component of q. But m of these waves travel at the same speed a` and the other m at speed ar
and so we can lump these together into 2 waves, which then must be the HLL waves (4.13) since both

approaches are conservative. We can verify directly that these are the same by using the solution (5.17).

The left-going wave carries a jump α2j−1 in the jth component and so the intermediate state qm in

(4.14) has jth component

qjm = qj` + α2j−1 =
1

2dj
(dj(qjr + qj` ) − (vjr − vj` ))

=
1

2
(qjr + qj` ) −

1

2dj
(f(qjr) − f(qj` )) . (5.19)

Since dj = ar = −a` we have 2dj = ar − a` and this agrees with the jth component of (4.14).

We thus see that the relaxation scheme in the case D = dI amounts to using the HLL Riemann

solver with a` = −d and ar = d. Let λj(q) denote the jth eigenvalue of the Jacobian matrix f ′(q). If

we choose

d = max
1≤j≤m

(
max(|λj(q`)|, |λj(qr)|)

)
(5.20)

as an upper bound on the characteristic speeds (assuming the system is genuinely nonlinear) and then

apply the first-order upwind method together with this approximate Riemann solver, the resulting

method is simply Rusanov’s method, as discussed in [194], for example. This method is also known as

the Local Lax–Friedrichs method. If we choose d = ∆x/∆t, an upper bound on all possible wave speeds

provided the CFL condition is satisfied for the grid being used, then this method reduces to the classical

Lax–Friedrichs method. We note in passing that the Local and classical Lax–Friedrichs methods can

be extended to second-order accuracy to obtain the central schemes of Nessyahu & Tadmor [157] and

Kurganov & Tadmor [103] respectively, and connections between these methods and relaxation schemes

are briefly discussed in the introduction to [103].

If D is diagonal but the diagonal elements dj are not equal (as in the choice of Jin and Xin [93]),

we can view the relaxation scheme as a generalization of the HLL solver in which separate speeds

ajr = −aj` = dj are chosen for each component of the vector q. It is not clear that this generalization will

be an improvement, however, since in coupled systems of conservation laws we do not expect information

in different components of q to propagate at different speeds. Rather, it is different eigencomponents of

q (based on the eigenvectors of f ′(q)) which propagate at different speeds. This suggests that a more

substantial improvement might be made by replacing the unit vectors zj = ej used in deriving HLL
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from the decomposition (5.12) by some approximations to the eigenvectors of f ′(q). Generalizations of

this form will be pursued in the following sections.

First we present a generalization of the relaxation scheme that agrees with the more general HLL

method in the case when a` 6= −ar. Rather than using a matrix of the form (5.7), consider a relaxation

system

∂q

∂t
+
∂v

∂x
= 0 , (5.21a)

∂v

∂t
− (D`Dr)

∂q

∂x
+ (D` +Dr)

∂v

∂x
= −1

τ
(v − f(q)) , (5.21b)

with

D` = diag(a`) and Dr = diag(ar) . (5.22)

The coefficient matrix appearing in this system,

[
0 I

−D`Dr D` +Dr

]
, (5.23)

has eigenvalues

s2j−1 = a` and s2j = ar (5.24)

and eigenvectors

θ2j−1 =

[
ej

a` e
j

]
and θ2j =

[
ej

ar e
j

]
, (5.25)

for j = 1, · · · ,m. Note that if a` = −ar then the matrix (5.23) reduces to (5.7). Using the vectors

(5.25) in the decomposition (5.12) gives the HLL solver for arbitrary a` and ar.

5.3 Relaxation Riemann Solvers

The analysis of the relation between relaxation schemes and Riemann solvers has led us to introduce

a general class of approximate Riemann solvers which allows as many as 2m waves in the resulting

solution. The idea is to decompose both the jump in q and the jump in the flux f simultaneously, in

the form: [
qr − q`

f(qr) − f(q`)

]
= α1

[
w1

φ1

]
+ · · · + α2m

[
w2m

φ2m

]
, (5.26)

where the vectors wp, φp ∈ R
m must be chosen in some manner, together with speeds sp, p = 1, · · · , 2m.

In general, the definition of the speeds sp must satisfy proper stability criteria, that from the relaxation

method’s viewpoint correspond to the subcharacteristic condition.

Once we have determined the scalar coefficients α1, α2, · · · , α2m by solving the 2m × 2m system

(5.26) (provided the vectors [wp, φp]T are linearly independent), the waves needed for updating q are

then

W p = αpwp , p = 1, 2, · · · , 2m, (5.27)

with speeds sp. We will refer to this solver as a relaxation Riemann solver, based on the considerations

in the previous sections. Note also that conservation requires:

2m∑

p=1

αp φp =

2m∑

p=1

spW p , (5.28)

and a sufficient condition for satisfying this equality is to define

φp = sp wp . (5.29)
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With this choice conservation will be always guaranteed, no matter how the wp and sp are defined.

This is accomplished by introducing more degrees of freedom (2m rather than m) and requiring that

the jump in f is decomposed in a manner consistent with the jump in q. Note that (5.29) is reminiscent

of the Rankine-Hugoniot jump conditions relating the jump in f across a shock to the jump in q.

We have seen that the Jin and Xin relaxation scheme and the HLL solver correspond to defining

w2j−1 = w2j = ej , j = 1, 2, . . . , m, in the decomposition (5.26). However, as already noticed,

it is attractive instead to define the vectors wp as some approximations to the eigenvectors of the

Jacobian matrix f ′(q) near q` and qr. Let {r̃j}1≤j≤m denote a set of m linearly independent vectors

approximating the eigenvectors {rj}1≤j≤m of f ′(q), and let us associate to r̃j two distinct speeds sj` , s
j
r,

j = 1, · · · ,m. Then we can define an approximate Riemann solver based on the decomposition (5.26)

with the choice [
w2j−1

φ2j−1

]
=

[
r̃j

sj` r̃
j

]
and

[
w2j

φ2j

]
=

[
r̃j

sjr r̃
j

]
. (5.30)

This decomposition arises naturally in the process of solving the 2m × 2m linear system appearing in

a relaxation scheme based on a relaxation system of the form (5.21) with

D` = R̃ S` R̃
−1 and Dr = R̃ Sr R̃

−1 , (5.31a)

where

S` = diag(sj`) and Sr = diag(sjr) , (5.31b)

and R̃ = [r̃1, · · · , r̃m]. Since we assume sj` 6= sjr, then the coefficient matrix (5.23) is diagonalizable

and the vectors appearing in (5.30) are the eigenvectors. In the following sections we will discuss

some possible definitions of r̃j , sj` , s
j
r. In particular, we will consider the choice r̃j = r̂j , where r̂j ,

j = 1, · · · ,m, are the eigenvectors of the Roe matrix (see Section 4.1.3), and explore in this connection

the relation with the Roe solver.

To conclude, we remark that the added flexibility of specifying 2m waves rather than m also allows

some interesting new possibilities in deriving approximate Riemann solvers. In Sections 5.8 and 5.9 we

will look at possible applications to conservation laws with discontinuous coefficients and with source

terms.

5.4 Relation to the Roe Solver

One obvious choice for the vectors r̃j in (5.30) is to use the eigenvectors r̂j of the Roe matrix Â

satisfying (4.15). If we choose two distinct speeds sj` 6= sjr, since the r̂j for j = 1, 2, . . . , m are

linearly independent, it follows that the full set of 2m vectors given by (5.30) will span R
2m, and a

decomposition of the form (5.26) can always be performed to define an approximate Riemann solution.

It turns out that we can also choose sj` = sjr provided that we define this value to be λ̂j , the jth

eigenvalue of the matrix Â. In this case the two vectors in (5.30) are identical and there are only m

distinct vectors in (5.26),

[
qr − q`

f(qr) − f(q`)

]
= α̂1

[
r̂1

λ̂1r̂1

]
+ · · · + α̂m

[
r̂m

λ̂mr̂m

]
. (5.32)

This 2m × m linear system has a unique solution α̂ ∈ R
m in spite of the fact that it appears to be

overdetermined. The particular vector on the left hand side of (5.32) lies in the span of these m vectors

since r̂j and λ̂j come from the Roe matrix Â satisfying (4.15). In fact, we can simply solve

qr − q` = α̂1r̂1 + · · · + α̂mr̂m (5.33)
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as one usually does with the Roe solver and then

f(qr) − f(q`) = α̂1λ̂1r̂1 + · · · + α̂mλ̂mr̂m (5.34)

will automatically be satisfied by (4.15), as is easily seen if we multiply (5.33) by Â.

5.5 Entropy Fixes

As mentioned in Section 4.1.3, a failing of the Roe solver is that it can lead to entropy-violating shocks.

This typically happens if the true Riemann solution contains a transonic rarefaction wave in some

family, say the kth family, with characteristic speeds that increase from negative to positive values

through the rarefaction fan. This means that information in the kth family should travel partly to the

left and partly to the right and affect cell averages on both sides. The Roe solver approximates every

wave by a single discontinuity propagating at a speed given by an eigenvalue of Â, and in the transonic

rarefaction case λ̂k ≈ 0 typically and the proper spreading does not occur. An entropy fix is often

used to address this problem. One possibility proposed by Harten and Hyman [77] (see also [118]) is

to replace the single wave α̂kr̂k in this case by a pair of waves αk` r̂
k and αkr r̂

k propagating at speeds

sk` < 0 < skr that are chosen to approximate the characteristic speeds at each edge of the rarefaction

fan. The total wave strength should be the same, so we need

αk` + αkr = α̂k, (5.35)

and to maintain conservation we also require

αk` s
k
` + αkrs

k
r = α̂kλ̂k. (5.36)

This gives a linear system of two equations to solve for αk` and αkr , yielding

αk` =
α̂kskr − λ̂k

skr − sk`
and αkr =

λ̂k − α̂ksk`
skr − sk`

. (5.37)

Exactly this same method can be derived by using a relaxation Riemann solver of the form (5.26),

which we now take to be of the special form

[
qr − q`

f(qr) − f(q`)

]
= α1

`

[
r̂1

s1` r̂
1

]
+ α1

r

[
r̂1

s1r r̂
1

]
+ · · · + αm`

[
r̂m

sm` r̂
m

]
+ αmr

[
r̂m

smr r̂
m

]
. (5.38)

Here we are allowing each wave speed λ̂j to be replaced by a pair of speeds sj` and sjr. If we take

sj` = sjr = λ̂j for every j then this reduces to the original Roe solver with each vector repeated twice.

This system will have infinitely many solution since any αj` and αjr satisfying

αj` + αjr = α̂j (5.39)

provides a solution, where α̂j are the Roe coefficients in (5.32). For any such choice of αj` and αjr we

essentially have the original Roe solver — we’ve simply replaced one wave by two waves propagating

at the same speed and adding up to the original wave.

If the kth family has a transonic rarefaction, however, then we can choose sk` < 0 < skr (while

still taking sj` = sjr = λ̂j for j 6= k) and the decomposition (5.38) results in the Roe solver with the

entropy fix described above. As in the discussion of the HLL method in Section 5.2, including ∆f in

the decomposition (5.38) ensures that conservation is maintained and leads to the same coefficients αk`
and αkr as in (5.37).



39

5.6 Generalized Roe Solvers

Let us consider sj` 6= sjr in each family, while still using in (5.30) the eigenvectors r̂j of the Roe matrix

and thus a decomposition of the form (5.38). One possible choice might be

sj` = λj(q`), sjr = λj(qr), (5.40)

for j = 1, 2, . . . , m. This definition would automatically give spreading across any rarefaction wave,

including transonic ones. On the other hand if λj(q`) > λj(qr) then the jth wave in the true Riemann

solution is presumably a shock, but we would be approximating it by two waves. We can still solve

the system (5.38). The state that arises in the approximate solution between these two waves can be

viewed as an approximation to the value that would be found by averaging an overturned compression

wave as in Brenier’s transport-collapse method [19] or the large time step method of [116]. This also

has similarities to the method developed by Engquist & Osher [58] for scalar problems and Osher &

Solomon [161] for systems, often called the Osher solver in general. In this approach only the integral

curves of the eigenvectors are used to compute an approximate Riemann solution, so that rarefaction

waves and overturned compression waves are used in every family. Hence (5.38) with the choice (5.40)

might be viewed as an approximation to the Osher solver based on Roe averages. Perhaps a closer

connection can be made with a different choice of eigenvectors and speeds in (5.38).

Note that if sj` and sjr have the same sign then the generalization proposed in this section does not

really change the contribution from the jth family to the numerical solution, at least not at the level

of a first-order upwind method based on these waves. This is because the two waves in this family

affect only one of the neighboring cell averages and might as well be lumped into a single wave. We can

combine them as

αjl

[
r̂j

sj` r̂
j

]
+ αjr

[
r̂j

sjr r̂
j

]
= βj

[
r̂j

sj r̂j

]
, (5.41)

for some choice of βj and sj , where sj should then be used as the speed of this lumped wave. We can

easily solve for the required values:

βj = αjl + αjr and sj =
αjl s

j
` + αjrs

j
r

αjl + αjr
. (5.42)

On the other hand, we know there is a unique decomposition of qr − q` into the eigenvectors r̂j with

the coefficients α̂j , and from this we can deduce that in fact βj = α̂j and also that sj = λ̂j , the

corresponding Roe velocity.

It is only in the transonic case that something different is obtained by the more general choice (5.40).

For a transonic rarefaction this gives a standard entropy fix, as already discussed. For a transonic shock

this would introduce additional dissipation. This may also be desirable in some cases, since the lack of

dissipation in shocks for which λ̂k ≈ 0 is also known to cause numerical difficulties, such as nonphysical

oscillations near slowly moving shocks. The addition of more dissipation in this case is one approach

to improving solutions in this case. See for example [8], [52], [92], [98].

A further generalization of this solver is obtained by using vectors r̃j in (5.30) that are not the

eigenvectors of the Roe matrix. This may be useful for problems where a Roe average satisfying (4.15)

is not available, and instead one wishes to use a simpler average such as Â = f ′
(

1
2 (q` + qr)

)
. By taking

the r̂j in (5.38) to be the eigenvectors of this matrix and choosing some reasonable values for sjl and

sjr, for example (5.40), it is possible to obtain consistent decompositions of qr − q` and f(qr)− f(q`) in

terms of these 2m waves. Moreover, we can merge each pair of waves into a single wave using (5.41)

with βj and sj defined by (5.42) if desired (typically in all but the transonic rarefaction case). We then
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have a decomposition into m waves,

qr − q` =

m∑

j=1

βj r̂j (5.43)

and set of speeds sj for which

f(qr) − f(q`) =

m∑

j=1

sjβj r̂j (5.44)

holds. This mimics an important property of the Roe solver that is useful in wave-propagation imple-

mentations (see Section 4.2).

One possible application of this idea would be to use the Roe eigenvectors coming from a simpler

but related system of equations as an approximation. This could be useful for problems where a Roe

matrix cannot be found directly.

5.7 The Roe Solver as a Relaxation Scheme

The Roe solver and the generalization presented in the previous section can be viewed in the context

of relaxation schemes using the connection introduced in Sections 5.1, 5.3. This may be useful in

analyzing the Roe scheme. As already noticed, the decomposition (5.38) can be considered as arising

form a relaxation system of the form (5.21) with the matrices D`, Dr as in (5.31) and with the choice

R̃ = R̂, the matrix of Roe eigenvectors. For the original Roe scheme sj` = sjr = λ̂j for all j. In this case

D` = Dr = Â and the coefficient matrix (5.23) reduces to

[
0 I

−Â2 2Â

]
. (5.45)

This matrix is defective: each eigenvalue λ̂j has algebraic multiplicity 2 but geometric multiplicity 1

and there are only m distinct vectors in (5.38) as already discussed.

Normally a relaxation system of the form (5.6) or (5.21) yields a solution q(x, t) which may converge

to the solution of the original conservation law as τ → 0, but will not agree with this solution for τ > 0.

Instead, it approximates the solution to a viscous conservation law of the form

∂q

∂t
+
∂f(q)

∂x
= τ

∂

∂x

(
B(q)

∂q

∂x

)
+ O(τ2), (5.46)

where the viscosity matrix B(q) can be determined by a Chapman-Enskog expansion [29], [131]. The

structure of this viscosity matrix can play a role in determining whether the correct entropy-satisfying

solution is obtained in the limit τ → 0, see for example [15], [16], [68], [134]. For a relaxation system

with the coefficient matrix (5.45), we find that

B(q) = −Â2 + 2Âf ′(q) − (f ′(q))2 . (5.47)

Note that if q` ≈ qr then Â ≈ f ′(q) and the viscosity matrix vanishes in the case of equality. Moreover,

even when there is a large jump between q` and qr it is possible that this relaxation system will reproduce

an exact weak solution to the original conservation law even when τ > 0, as if there were no viscosity.

This happens in the special case when we consider a Riemann problem between states q` and qr that

satisfy the Rankine-Hugoniot jump condition for some scalar value s,

f(qr) − f(q`) = s(qr − q`). (5.48)
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Suppose we solve the relaxation system

∂q

∂t
+
∂v

∂x
= 0 , (5.49a)

∂v

∂t
− Â2 ∂q

∂x
+ 2Â

∂v

∂x
= −1

τ
(v − f(q)) (5.49b)

with this Riemann initial data q`, qr and v` = f(q`), vr = f(qr) and with the matrix Â chosen to be

the Roe matrix for this data (and frozen at this value even if q and v evolve). Then the property (4.15)

of the Roe matrix implies that qr − q` is an eigenvector of Â, proportional to r̂k for some k, and that

s = λ̂k is the corresponding eigenvalue. It follows that

q(x, t) = q(x− λ̂kt, 0) (5.50a)

v(x, t) = v(x− λ̂kt, 0) = f(q(x, t)) (5.50b)

is the solution to the relaxation system (5.49) for any value of τ . The jump discontinuity simply

propagates with speed λ̂k and since v ≡ f(q), the source term vanishes. This is a weak solution of

the original conservation law in this case, though it may not satisfy the entropy condition. If the

discontinuity should spread into a rarefaction wave, the relaxation system will instead produce the

expansion shock.

Of course if this relaxation system is now used numerically as part of a relaxation scheme, then

numerical viscosity may be added when the linear system is solved numerically. But in the case λ̂k = 0

it is possible that no smearing is introduced, as for example in Roe’s first-order method which produces

entropy-violating solutions in the transonic case. It is well known that this is caused by a lack of

numerical viscosity, which has been extensively analyzed by other means, but it is interesting to observe

that this phenomenon is connected with a relaxation system which itself lacks viscosity and produces

entropy-violating weak solutions even in the case when the data is not transonic. It is also interesting

to note that the viscosity matrix (5.47) generally fails to be positive definite. In fact if Â and f ′(q)

commute then B(q) = −(Â− f ′(q))2 is negative definite.

Note that adding an entropy fix to Roe’s method, as described in Sections 5.5 and 5.6, changes the

relaxation system to one of the more general form (5.21). The entropy-violating weak solution is no

longer an exact solution, as we have explicitly added spreading of this wave.

5.8 Discontinuous Flux Functions

As one example of how a relaxation Riemann solver with 2m waves might prove useful, consider a con-

servation law with a spatially varying flux function f(q, x). One way to solve this problem numerically

is to use a finite-volume method with the flux function discretized so that the ith grid cell has a flux

function fi(q) associated with it. At a cell interface we must then solve a Riemann problem with data

q`, qr and two different flux functions f`(q) and fr(q). When f` and fr are nonlinear, determining the

exact Riemann solution for this situation may be nontrivial, e.g, [63], [101], [113], [195].

One natural way to use (5.26) might be to compute two sets of eigenvectors and eigenvalues using

the two Jacobian matrices f ′
`(q`) and f ′r(qr). Call these λj` , r

j
` and λjr, r

j
r. These could be used to define

2m vectors for use in (5.26). This does not seem to be a good idea in general, however. Often both λj`
and λjr will have the same sign, indicating what direction the jth wave is propagating. Suppose these

are both positive, for example, indicating that this wave is propagating into the cell on the right, where

the flux function is fr(q). Then the eigenvector rjr may be a useful component in the decomposition,

but rj` may be completely irrelevant.
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Instead, it is useful to observe that the Riemann solution must typically involve a stationary dis-

continuity in q (moving at speed 0) at the interface, between two values q∗` and q∗r related via

f`(q
∗
` ) = fr(q

∗
r ). (5.51)

This is required because the flux must be continuous at the interface. This suggests that the Riemann

solver should include m waves that allow jumps in each of the m components of q and combine to give

no jump in f . If we also have some m vectors rj and speeds sj (for j = 1, 2, . . . , m) that represent the

propagating waves we expect the Riemann solution to contain, then we can look for a decomposition

of the form
[

qr − q`
fr(qr) − f`(q`)

]
= α1

[
r1

s1r1

]
+ · · · + αm

[
rm

smrm

]
+ αm+1

[
e1

0

]
+ · · · + α2m

[
em

0

]
. (5.52)

The hard part in general may be to determine a suitable choice for rj and sj .

We illustrate this for one simple example, the variable-coefficient advection equation

∂q

∂t
+

∂

∂x
(a(x)q) = 0, (5.53)

where a(x) > 0 everywhere. The Riemann problem with data q`, qr and speeds a`, ar has flux functions

f`(q) = a`q and fr(q) = arq. Physically this might model the density of items traveling on a system of

conveyer belts, at the junction between two belts moving at different speeds. The exact solution of this

Riemann problem is

q(x, t) =





q` if x/t < 0 ,

q∗ if 0 < x/t < ar ,

qr if x/t > ar ,

(5.54)

where

q∗ =
a`q`
qr

, (5.55)

as determined by the requirement that a`q` = arq
∗ so that the flux is continuous.

Applying the decomposition (5.52) with m = 1 to this simple problem yields the correct Riemann

solution if we take r1 = 1 and s1 = ar. We have

[
qr − q`

arqr − a`q`

]
= α1

[
1

ar

]
+ α2

[
1

0

]
. (5.56)

Solving for α1, α2 yields

α1 =
qr − a`q`

ar
= qr − q∗ and α2 =

a`q`
ar

− qr = q∗ − q` , (5.57)

where q∗ is given by (5.55). These waves propagate with speeds s1 = ar and s2 = 0 and so the exact

solution (5.54) is achieved.

Another standard way to approach this variable-flux problem is to view a(x) as a second variable

in a system of two equations
∂

∂t

[
q

a

]
+

∂

∂x

[
aq

0

]
= 0 . (5.58)

This is now a nonlinear system of two conservation laws in which both fields are linearly degenerate

(but there is no longer a spatially-varying coefficient). The flux Jacobian is

[
a q

0 0

]
, (5.59)
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with eigenvalues λ1 = 0, λ2 = a, and eigenvectors

r1 =

[
q

−a

]
, r2 =

[
1

0

]
. (5.60)

Solving the Riemann problem for this system again gives the solution (5.54).

Notice that attempting to use a Roe solver for the system (5.58) (as might be desired for more

complicated problems of this type) would be less successful than the simple Riemann solver proposed

in (5.56). The Roe matrix for the system (5.58) is given by

Â =

[
â q̂

0 0

]
, (5.61)

where â = 1
2 (a` + ar) and q̂ = 1

2 (q` + qr), so the Roe solver uses the decomposition

[
qr − q`

arqr − a`q`

]
= α̂1

[
q̂

−â

]
+ α̂2

[
1

0

]
. (5.62)

This does not give the exact Riemann solution since the propagation speed â of the moving wave is not

the correct speed ar unless a` = ar.

For the simple scalar linear problem (5.53) there are many ways to determine the exact solution,

as we have just illustrated. For more general nonlinear systems with discontinuous fluxes some sort of

approximate Riemann solver must be used. We hope that the relaxation Riemann solvers might provide

a better starting point than augmented systems of the form (5.58).

There is a simplification of the relaxation Riemann solver (5.52) that arises naturally in an imple-

mentation based on the wave-propagation method of Section 4.2 and which leads to the so-called f-wave

formulation introduced in Section 4.2.2. Since the waves numbered m + 1 through 2m are viewed as

being stationary at the interface we have sm+1 = · · · = s2m = 0 and these waves do not contribute to the

fluctuations (4.21) or to the correction fluxes (4.23). Hence we only need to determine the coefficients

α1, . . . , αm. These can be determined by considering only the lower part of the system in (5.52), i.e.,

fr(qr) − f`(q`) = α1s1r1 + · · · + αmsmrm , (5.63)

which is a linear system of m equations for the m unknowns α1, . . . , αm. Note that this is similar to

the standard Riemann solver based on the decomposition

qr − q` =

Mw∑

p=1

αprp , (5.64)

but we decompose the jump in f into eigencomponents rather than the jump in q. This makes sense

since there is no jump in f across the stationary interface and so the full jump fr(qr)−f`(q`) can be split

into pieces corresponding to propagating waves, whereas q has an unknown jump across the interface.

This is consistent with standard Riemann solvers in the case of a single flux function, at least in some

cases. For a linear constant coefficient system with f(q) = Aq, or for Roe’s method based on a matrix

Â satisfying (4.15), performing the decomposition (5.63) would result in exactly the same coefficients

αp as performing the decomposition (5.64).

Approximate Riemann solvers based on splitting the jump in f have been first studied numerically

for various applications by Bale, LeVeque, Mitran and Rossmanith in [10]. This work started directly

from (5.63) and only later was the connection with relaxation schemes realized.
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5.9 Source Terms

Let us now consider a conservation law

∂q

∂t
+
∂f(q)

∂x
= ψ (5.65)

with a source term ψ. One common approach to solving this equation is to use a fractional step method,

alternating between solving the homogeneous conservation law and the ordinary differential equation

(ODE) ∂q
∂t = ψ. This leads to inaccuracy in some cases, for example if the solution is nearly in steady

state with ∂f(q)
∂x ≈ ψ and we wish to study the propagation of small disturbances on this background

state (see the discussion in [121], for example).

Another approach is to somehow incorporate ψ into the solution of Riemann problems. One way to

do this is to discretize the source terms as a sum of delta function singularities with strength proportional

to the cell size ∆x at the cell interfaces, so that the effect of the source is concentrated at these points.

This approach is taken by Jenny and Müller [89] in their Rankine-Hugoniot Riemann solver, for example.

In this case we must solve a more general Riemann problem of the form

∂q

∂t
+
∂f(q)

∂x
= Ψδ(x) (5.66)

where Ψ = ∆xψ`,r is the strength of the delta function at this interface and the data q`, qr comes from

the cells to the left and right. The solution to this Riemann problem consists of propagating waves

satisfying the usual Rankine-Hugoniot jump conditions away from x/t = 0 (where the source term

vanishes) along with jumps in q across x/t = 0 that satisfy

f(q∗r ) − f(q∗` ) = Ψ . (5.67)

This is similar to (5.51) but now the flux is not continuous at the interface because of the singular source.

This suggests that we use a Riemann solver analogous to (5.52) but with the source term included,

[
qr − q`

f(qr) − f(q`) − Ψ

]
= α1

[
r1

s1r1

]
+ · · ·+αm

[
rm

smrm

]
+αm+1

[
e1

0

]
+ · · ·+α2m

[
em

0

]
. (5.68)

As in the wave-propagation implementation of methods based on (5.51), we only need α1, . . . , αm and

these can be obtained by solving the smaller m×m system

f(qr) − f(q`) − Ψ = α1s1r1 + · · · + αmsmrm , (5.69)

and then using

W p = αprp (5.70)

as the pth wave in the wave propagation algorithm of Section 4.2. Again, this corresponds to the f-wave

approach introduced in Section 4.2.2.

Note that a numerical steady state will be maintained by this method. Suppose that the cell averages

Qni and source terms at the interfaces ψni−1/2 satisfy

f(Qni ) − f(Qni−1)

∆x
= ψni−1/2 (5.71)

at time tn. Then the left-hand side of (5.69) will be zero and hence αp = 0 for p = 1, 2, . . . , m.

All waves W p arising from each modified Riemann problem will then have zero strength and a wave-

propagation algorithm will reduce to giving Qn+1
i = Qni .
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If the solution does not satisfy (5.71) exactly but is close to a steady state, then it is the deviation

from steady state that is used to define the waves in the approximate Riemann solution. This is similar

in spirit to the quasi-steady wave-propagation algorithm proposed in [121]. In that algorithm the delta

function singularities were placed at cell centers rather than cell interfaces, however, and a new set of

Riemann problems at these points was introduced to cancel out the source terms. An algorithm based

on (5.69) is easier to implement than the one proposed in [121], and preliminary results indicate that

it may also be more robust when the solution deviates further from steady state.
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Chapter 6

PRESSURE LINEARIZATION METHOD FOR

THE COMPUTATION OF REAL FLUIDS

6.1 Introduction

We consider the numerical solution of the compressible Euler equations (2.10) with a general convex

equation of state (EOS) p = p(E , ρ) in the framework of finite volume schemes.

In the literature, research has been done to extend classical methods designed for ideal polytropic

gases to real gases. Some extensions to the real fluid case of either flux-vector splitting or flux-difference

splitting schemes can be found for instance in [36, 53, 64, 65, 71, 128, 143, 201].

A distinct approach is the method by Coquel and Perthame [39], who introduce the idea of energy

relaxation and propose a general formulation for extending some classical schemes for ideal polytropic

gases to the case of general pressure laws. Numerical results based on this method are reported in [84].

Moreover in [144] the energy relaxation theory is applied to high-order WENO schemes.

In the same spirit of [39], here we develop a method based on the linearization of the equation of

state that defines a general and simple procedure for constructing a Godunov-type finite volume method

for the computation of real fluids. By reinterpreting our scheme as a relaxation method, we then find

close similarity with the energy relaxation approach.

The original starting point for the idea of performing a linerization of the pressure law was the

desire to construct a framework that could be advantageous in the computation of real multicomponent

flows. Many existing methods for multifluid flows are restricted to equations of state linear in the

thermodynamic variable E [3, 4, 178, 74, 182], and the task of defining a multifluid model guaranteeing

pressure equilibrium at material interfaces is more difficult for equations of state of general form. Some

recent successful work in this direction can be found for instance in [177, 179, 184, 5]. We will dedicate

the last sections of this chapter to the discussion of the extension of the pressure linearization method

to the multifluid case.

6.2 Pressure Linearization Algorithm

Our approach for the solution of the Euler equations (2.10) with a general pressure law p = p(E , ρ)
is based on the replacement of the original equation of state with one that is linear in the selected

thermodynamic variables E , ρ:

pL = κ̄E + χ̄ρ+ β , (6.1)

with values κ̄, χ̄, β locally defined for each cell of the computational domain. This linearized equation

of state is employed in the evolution step of a Godunov-type finite volume method, when we construct

the structure of the solution (waves and speeds) that is used to update the vector q = [ρ,m,E]T of the

conserved variables. We then return to the original EOS p = p(E , ρ) to define the updated values of the

pressure p in the projection step.

Assuming κ̄, χ̄, β frozen at some values, the speed of sound corresponding to the pressure law (6.1)

is given by (see (2.15))

cL =
√
κ̄hL + χ̄ , (6.2)

with hL = (E + pL)/ρ.
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Let us consider a discretization with cells indexed in space by i ∈ Z, and in time by n ∈ N. The

following consistency condition for the pressure must hold in each cell:

p(Eni , ρni ) = κ̄ni Eni + χ̄ni ρ
n
i + βni . (6.3)

This equality ensures consistency also for the enthalpy hni = (Eni + p(Eni , ρni ))/ρni = (hL)ni . In order

to guarantee a correct approximation of the propagation speeds of the problem, we then require that

the speed of sound associated in each cell to pL, that is (cL)ni =
√
κ̄ni h

n
i + χ̄ni , is the same as we would

obtain from the original EOS. To this aim, we define κ̄ni and χ̄ni as the cell values of the thermodynamic

derivatives (2.14):

κ̄ni = κ(Eni , ρni ) and χ̄ni = χ(Eni , ρni ) , ∀ i, n . (6.4)

The consistency condition (6.3) then determines uniquely βni :

βni = p(Eni , ρni ) − κ̄ni Eni − χ̄ni ρ
n
i . (6.5)

Geometrically, in the coordinate space (E , ρ, p), we are locally approximating the graph of the function

p(E , ρ) at the point (Eni , ρni , p(Eni , ρni )) with the tangent plane at this point.

The problem we now face in the evolution step consists of solving the Euler equations with a linear

pressure law with parameters κ̄, χ̄ and β varying in the computational domain. This is analogous

to a multifluid problem where the flow composition is described by the three variables κ̄, χ̄ and β.

Therefore, we solve our problem by constructing a multifluid model, requiring in particular the addition

of transport equations governing the dynamics of the flow composition. For instance, we could simply

add advection equations for the quantities κ̄, χ̄ and β:

∂κ̄

∂t
+ u

∂κ̄

∂x
= 0 , (6.6a)

∂χ̄

∂t
+ u

∂χ̄

∂x
= 0 , (6.6b)

∂β

∂t
+ u

∂β

∂x
= 0 . (6.6c)

Instead of the above formulation, we will adopt the Shyue-type multifluid model described in Section

3.2.3. Hence, we select as material variables

ψ =
1

κ̄
, η =

χ̄

κ̄
, and µ =

β

κ̄
, (6.7)

and we describe their dynamics by a set of advection equations, with the one for η in conservative form:

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (6.8a)

∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 , (6.8b)

∂µ

∂t
+ u

∂µ

∂x
= 0 . (6.8c)

Note that (6.6) are mathematically equivalent to (6.8). In the context of genuine multifluid problems

the formulation (6.7), (6.8) is derived in order to guarantee pressure equilibrium at material interfaces,

and it is based on updating the pressure through the mixture equation of state p = 1
ψ (E +ηρ+µ), as in

(3.18). Here in the projection step we will employ the original equation of state to update the pressure,
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and not the linearized one, so until this point there is no special need of adopting (6.7), (6.8). However,

aiming to extend our method to the actual multifluid case, and for other reasons that will be clear

later in the chapter (Sect. 6.7, 6.8), we wish to use a formulation which is already in the framework of

multifluid models.

To summarize, the system that we solve in the evolution step of the chosen Godunov-type finite

volume scheme reads:

∂q

∂t
+

∂

∂x
fL(q, ψ, ηρ, µ) = 0 , (6.9a)

∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 , (6.9b)

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (6.9c)

∂µ

∂t
+ u

∂µ

∂x
= 0 , (6.9d)

where

q =




ρ

m

E


 , fL(q, ψ, ηρ, µ) =




m

m2

ρ
+ pL

m

ρ
(E + pL)



, (6.9e)

and pL is expressed as

pL = pL(E , ψ, ηρ, µ) =
1

ψ
(E + ηρ+ µ) . (6.9f)

In the solution of the system above, we associate to the pressure law (6.9f) the speed of sound (6.2),

that in terms of ψ, η is given by

cL =

√
hL

ψ
+
η

ψ
. (6.10)

This definition assumes frozen conditions for the quantities η, ψ, µ.

Our algorithm consists of the following steps:

Algorithm 6.1 (PLM)

(i) Given qn, we compute ψn, (ηρ)n and µn through (6.7), by using the local values of the thermo-

dynamic derivatives (6.4) and the consistency condition (6.5). With these initial values at time

tn we solve the new system (6.9) by a Godunov-type finite volume method to obtain the updated

vector of the conserved variables qn+1.

(ii) We update the pressure through the original EOS:

pn+1 = p(En+1, ρn+1) . (6.11)

Note that, since in (ii) we just need the updated values of the vector q = (ρ,m,E)T, and not those

of the other variables, we do not have to track ψ, ηρ and µ. Therefore, in the implementation of our

method we can work with vectors with the same dimension as q, that is with a number of components

equal to the number of equations of the original Euler system. However, the additional equations (6.8)

affect the definition of the structure of the solution that is used to update the vector q.
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The Algorithm 6.1 above defines a simple and general procedure to solve the Euler equations for real

fluids, and can be applied to extend some classical schemes designed for a restricted class of equations

of state to the case of more general pressure laws.

In the framework of Godunov-type methods, we observe that the general underlying approximation

of our approach consists of considering the thermodynamic derivatives κ(E , ρ) and χ(E , ρ) frozen across

the acoustic waves of each local Riemann problem, and allowing them to be discontinuous only across

the contact wave. We refer to Fig. 3.1 in Chapter 3, where the Riemann solution of the Shyue-type

model system is illustrated.

Note that if we apply our method to a Godunov-type scheme that is exact on isolated contact

discontinuities we will maintain this property, since the quantities ψ, η and µ are simply advected with

the flow.

In Section 6.4 we will specialize our approach to the Roe solver.

6.2.1 Two-Dimensional System

In two dimensions, the system (6.9) takes the form

∂q

∂t
+

∂

∂x
fL(q, ψ, ηρ, µ) +

∂

∂y
gL(q, ψ, ηρ, µ) = 0 , (6.12a)

∂

∂t
(ηρ) +

∂

∂x
(ηρu) +

∂

∂y
(ηρv) = 0 , (6.12b)

∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
= 0 , (6.12c)

∂µ

∂t
+ u

∂µ

∂x
+ v

∂µ

∂y
= 0 , (6.12d)

where

q =




ρ

ρu

ρv

E


 , fL(q, ψ, ηρ, µ) =




ρu

ρu2 + pL

ρuv

u(E + pL)


 , gL(q, ψ, ηρ, µ) =




ρv

ρuv

ρv2 + pL

v(E + pL)


 , (6.12e)

with E = E + 1
2ρ(u

2 + v2) and pL = pL(E , ψ, ηρ, µ), as in (6.9f).

6.3 Relaxation Method

We now illustrate how the basic formulation of our approach can be interpreted as a relaxation method.

Let us consider here a simpler version of system (6.9), obtained by assuming a linear pressure law

of the form (6.1) with fixed constant values κ̄ > 0 and χ̄ in the whole computational domain, hence

κ̄ni = κ̄, χ̄ni = χ̄, ∀ i, n. Then β is the only variable for which we need to add a transport equation, and

the evolution problem of our method can be formulated more simply as:

∂q

∂t
+

∂

∂x
fL(q, β) = 0 , (6.13a)

∂β

∂t
+ u

∂β

∂x
= 0 , (6.13b)
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where

fL(q, β) =




m

m2

ρ
+ pL

m

ρ
(E + pL)



, (6.13c)

with (6.1):

pL = pL(E , ρ, β) = κ̄E + χ̄ρ+ β . (6.13d)

The pressure linearization algorithm based on (6.13) reads:

Algorithm 6.2 (PLM-β)

(i) Given qn, we compute βn through the consistency condition

βn = p(En, ρn) − κ̄En − χ̄ρn . (6.14)

With these initial values qn, βn, we solve (6.13) by a given Godunov-type finite volume method

over a time step ∆t to obtain the updated vector qn+1.

(ii) We update the pressure by using the original EOS:

pn+1 = p(En+1, ρn+1) . (6.15)

Similarly to what we have observed for Algorithm 6.1, we don’t need to track the variable β in step (i)

of the algorithm above, since only qn+1 is needed to update the pressure in (ii). The value of β is reset

every time step by using the consistency condition (6.14).

Now consider (6.13) with a relaxation source term for the second equation:

∂q

∂t
+
∂

∂t
fL(q, β) = 0 , (6.16a)

∂β

∂t
+ u

∂β

∂x
= −1

τ
(β − βeq(E , ρ)) , (6.16b)

where τ > 0 is the relaxation time and βeq(E , ρ) is defined by the equality

p(E, ρ) = κ̄E + χ̄ρ+ βeq(E , ρ) . (6.16c)

Formally, when τ → 0+ (equilibrium limit), β = βeq, so that we recover the Euler system (2.10) with the

original EOS, since pL(E , ρ, βeq(E , ρ)) = p(E , ρ). Under proper stability conditions that we will discuss

later, the solution of the relaxation system (6.16), in the limit τ → 0+, can provide an approximation

for the Euler equations (2.10).

As we have seen in Chapter 5, one way to solve (6.16) is to employ a fractional step method. First, we

apply some finite volume scheme to the corresponding homogeneous system for advancing the solution

over a time step ∆t. Given the initial data qn and βn, let us denote by q∗ and β∗ the updated variables

that we obtain through this step. Then we consider the solution over time ∆t of the equations that

result from (6.16) setting the spatial gradients to zero:

∂q

∂t
= 0 , (6.17a)

∂β

∂t
= −1

τ
(β − βeq(E , ρ)) . (6.17b)
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We can solve exactly this system, obtaining:

qn+1 = q∗ , (6.18a)

βn+1 = βeq(En+1, ρn+1) + e−∆t/τ (β∗ − βeq(En+1, ρn+1)) . (6.18b)

Since we are only concerned with the equilibrium limit τ → 0+, we simply set, instead of (6.18b),

βn+1 = βeq(En+1, ρn+1) . (6.19)

Employing the equilibrium condition above allows us to ignore β∗, so that we don’t need to update βn

to β∗ in the first step. In summary, our relaxation scheme consists of:

(i) Update qn to qn+1 by solving the homogeneous relaxation system (that is (6.13)). We observe

that this step amounts to considering the frozen conditions limit τ → ∞. Therefore it is appro-

priate here to employ the frozen speed of sound cL given by (6.2), whose definition considers the

nonequilibrium variable β held constant.

(ii) Set βn+1 = βeq(En+1, ρn+1) (equilibrium limit τ → 0+).

Note that step (ii) implies the computation of the updated value of the pressure (pL)
n+1

by means of

the original EOS since

(pL)
n+1

= pL(En+1, ρn+1, βn+1) = pL(En+1, ρn+1, βeq(En+1, ρn+1)) = p(En+1, ρn+1) , (6.20)

through (6.16c). It is then clear that the relaxation scheme (i)-(ii) defined above is equivalent to the

Algorithm 6.2. We conclude that the basic formulation of our pressure linearization approach can be

viewed as a relaxation method, providing a formal mathematical validation of our scheme.

The interpretation as a relaxation scheme shows that there is a close similarity with the energy

relaxation approach of Coquel and Perthame [39]. These authors introduce a relaxation system for

approximating the Euler equations with a general pressure law p(ε, ρ), based on a decomposition of the

internal specific energy in the form ε = ε1 + ε2. The energy ε1 is associated with a a simpler pressure

law p1(ε1, ρ), chosen in the form of the ideal polytropic gas EOS, p1 = (γ1 −1)ρ ε1, and the energy ε2 is

advected by the flow. The advection of β in our basic model (6.13), and correspondingly the advection

of µ = β
κ̄ in (6.9), can be considered analogous to the advection of ε2 in [39]. However, in our method

we keep the energy E as one thermodynamic variable to which our simpler linear pressure law pL is

associated.

An original feature of our approach is the addition of the three equations (6.8) for the parameters ψ,

ηρ, µ of the linear EOS (6.9f), taking them from the framework of multifluid models. In particular, this

formulation allows us to naturally construct a scheme that uses values of ψ, ηρ, µ locally defined in each

cell of the computational domain, so that optimal values can be assigned to these quantities. Moreover,

our formulation is suitable for some important extensions that will be detailed in the following.

6.3.1 First Order Asymptotic Approximation

We here derive the first order approximation of (6.16), which gives a stability criterion on the possible

values that can be assigned to κ̄ and χ̄. Adopting a common technique [28, 131, 81, 93, 149, 39], we

use an asymptotic expansion of the Chapman–Enskog type, which in the present case reads:

β = βeq + τ βd + O(τ2) , (6.21)
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where βd denotes the first order correction for β. By using the definition (6.16c) of βeq, we then have:

pL(E , ρ, β) = p(E , ρ) + τβd + O(τ2) , (6.22)

and hence

fL(q, β) = f(q) + τ




0

βd
uβd


 + O(τ2) . (6.23)

Introducing (6.23) in (6.16a), we obtain, up to O(τ),

∂q

∂t
+
∂f(q)

∂x
= −τ ∂

∂x




0

βd
uβd


 , (6.24)

while using (6.21) in (6.16b) we get, neglecting higher order terms,

−βd =
∂βeq

∂t
+ u

∂βeq

∂x
. (6.25)

Computing now from (6.16c) (assuming smooth solutions)

∂βeq

∂t
= (κ− κ̄)

∂E
∂t

+ (χ− χ̄)
∂ρ

∂t
,

∂βeq

∂x
= (κ− κ̄)

∂E
∂x

+ (χ− χ̄)
∂ρ

∂t
,

(6.26)

formula (6.25) gives

−βd = (κ− κ̄)

(
∂E
∂t

+ u
∂E
∂x

)
+ (χ− χ̄)

(
∂ρ

∂t
+ u

∂ρ

∂x

)
. (6.27)

From (6.16a) we also derive
∂ρ

∂t
+ u

∂ρ

∂x
= −ρ ∂u

∂x
,

∂E
∂t

+ u
∂E
∂x

= −(E + p)
∂u

∂x
,

(6.28)

with the last equality valid up to higher order terms. Therefore we obtain:

−βd = ρ

[
(κ̄− κ)

E + p

ρ
+ (χ̄− χ)

]
∂u

∂x
(6.29)

= ρ [κ̄h+ χ̄− (κh+ χ)]
∂u

∂x

= ρ
[
(cL)2 − c2

] ∂u
∂x

,

where in the last term we have used the speed of sound corresponding to the linear equation of state

pL, cL =
√
κ̄h+ χ̄. By introducing the last result in (6.24), we finally find the first order approximation

of the relaxation system (6.16):

∂q

∂t
+
∂f(q)

∂x
= τ

∂

∂x




0

ρ [(cL)2 − c2]
∂u

∂x

ρ [(cL)2 − c2]u
∂u

∂x



. (6.30)
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In order to have a nonnegative diffusion matrix, we deduce from (6.30) that a stability criterion is

cL ≥ c . (6.31)

The above relation represents a subcharacteristic condition [131] for the problem, expressing the re-

quirement that the speed of sound cL of the homogeneous relaxation system is at least as large as the

speed of sound c of the original Euler equations.

Even if we could always choose κ̄ and χ̄ such that (6.31) is satisfied, we need indeed to set these

parameters so that cL is close to c, in order to minimize the numerical diffusion. In this sense, the local

definition (6.4) of κ̄ and χ̄ that we have proposed in the formulation of our method in Section 6.2 is an

optimal choice, since it guarantees locally the same speed of sound as we would have from the original

EOS, and (6.31) is satisfied in each cell in the equality limit.

Note that in our scheme we can also employ global constant parameters κ̄ and χ̄ satisfying the

subcharacteristic condition (6.31) to avoid the computation of the derivatives of the pressure, thus

following the idea of [39]. In this case there would be the difficulty of estimating appropriately the global

values κ̄ and χ̄, and in general we would have the drawback of a larger numerical diffusion. However,

the possibility of adopting global parameters gives further flexibility to our method, in particular when

we do not have a pressure law in explicit form, or whenever we wish to reduce as much as possible the

computational cost.

6.4 Application to the Roe Method

We illustrate in this section how our approach applies to the Roe method [169]. We will call the resulting

scheme PLM-Roe (Pressure Linearization Method applied to Roe’s method).

Consider the system (6.9), which here we rewrite compacting together the equations in conservative

form, by introducing the vector of the conserved variables qC and the corresponding flux function fL
C :

∂qC
∂t

+
∂

∂x
fL

C(qC, ψ, µ) = 0 ,

∂ψ

∂t
+ u

∂ψ

∂x
= 0 ,

∂µ

∂t
+ u

∂µ

∂x
= 0 ,

(6.32a)

where

qC =

[
q

ηρ

]
and fL

C(qC, ψ, µ) =

[
fL(q, ψ, ηρ, µ)

(ηρ)u

]
. (6.32b)

We can express the system above in a fully quasi-linear form as follows:

∂z

∂t
+AL(z)

∂z

∂x
= 0 , (6.33a)

where

z = [ρ,m,E, ηρ, ψ, µ]
T
, (6.33b)
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and the matrix AL(z) is given by:

AL(z) =




0 1 0 0 0 0

1

ψ

u2

2
− u2

(
2 − 1

ψ

)
u

1

ψ

1

ψ
− ζ

ψ2

1

ψ

u

(
1

ψ

u2

2
−H

)
H − 1

ψ
u2

(
1 +

1

ψ

)
u

1

ψ
u − ζ

ψ2
u

1

ψ
u

−ηu η 0 u 0 0

0 0 0 0 u 0

0 0 0 0 0 u




, (6.33c)

where we have defined

ζ ≡ E + ηρ+ µ . (6.33d)

Following the approach of Roe [169], we solve Riemann problems at interfaces between neighbouring

cell averages with a linearized version of the system (6.33). The problem we have at each cell interface

takes the form:
∂z

∂t
+ ÂL(z`, zr)

∂z

∂x
= 0 ,

z(x, 0) =

{
z` for x to the left of the interface ,

zr for x to the right of the interface ,

(6.34)

where ÂL(z`, zr) is a constant coefficient matrix that is locally defined depending on the values of the

initial data z` and zr of the Riemann problem. Extending Roe’s idea, we define the matrix ÂL as

the original matrix AL evaluated in an average state (û, Ĥ, η̂, ψ̂, ζ̂), involving those variables explicitly

appearing in AL:

ÂL = AL(û, Ĥ, η̂, ψ̂, ζ̂) . (6.35)

Let us introduce here the following operator, which we will use frequently hereafter, producing the

difference between the right and left value of its argument:

∆(·) ≡ (·)r − (·)` . (6.36)

In order to obtain a method guaranteeing the conservation of the quantities in qC, we need to satisfy

the condition (iii) of Def. 4.1, which in this case reads:

∆fL

C = {ÂL∆z}1≤i≤4 , (6.37)

where we recall that fL
C is the flux function associated to qC (see (6.32)). As we will detail in the next

section, we can ensure the above property by defining the average variables as follows:

û =

√
ρ` u` +

√
ρr ur√

ρ` +
√
ρr

, (6.38a)

Ĥ =

√
ρ`H` +

√
ρrHr√

ρ` +
√
ρr

, (6.38b)

η̂ =

√
ρ` η` +

√
ρr ηr√

ρ` +
√
ρr

, (6.38c)

ψ̂ =
ψ` ψr

ψ̃
, (6.38d)
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where

ψ̃ =

√
ρ` ψ` +

√
ρr ψr√

ρ` +
√
ρr

, (6.38e)

and

ζ̂ =
ψ` ψr

ψ̃2
ζ̃ , (6.38f)

with

ζ̃ =

√
ρ` ζ` +

√
ρr ζr√

ρ` +
√
ρr

. (6.38g)

Moreover, the average speed of sound associated to (û, Ĥ, η̂, ψ̂, ζ̂) is given by:

ĉ =

√
1

ψ̂

(
Ĥ − û2

2

)
+
η̂

ψ̂
. (6.39)

With (6.33c), (6.35), (6.38), the definition of the matrix ÂL is complete. The eigenvalues of ÂL are

found to be:

λ̂1 = û− ĉ , λ̂2 = λ̂3 = λ̂4 = λ̂5 = û , λ̂6 = û+ ĉ , (6.40)

and the matrix of the corresponding right eigenvectors takes the form:

R̂ =
[
r̂1, · · · , r̂6

]
=




1 1 0 0 0 1

û− ĉ û 0 0 0 û+ ĉ

Ĥ − ûĉ Ĥ − ψ̂ĉ2 −1 ζ̂

ψ̂
−1 Ĥ + ûĉ

η̂ η̂ 1 0 0 η̂

0 0 0 1 0 0

0 0 0 0 1 0




. (6.41)

The solution of the linear problem (6.34) consists of six discontinuities propagating at constant speed.

The jump across the p-th discontinuity is a multiple through a coefficient αp of the eigenvector r̂p of

ÂL , and propagates at a velocity given by the corresponding eigenvalue λ̂p. The total jump zr − z` is

then recovered by the sum:
6∑

p=1

αp r̂p = zr − z` . (6.42)

By solving the linear system above for the coefficients αp, we obtain:

α2 =
1

ψ̂ ĉ2

[
(Ĥ − û2 + η̂)∆z1 + û∆z2 −∆z3 −∆z4 +

ζ̂

ψ̂
∆z5 −∆z6

]
, (6.43a)

α6 =
1

2 ĉ

[
∆z2 + (ĉ− û)∆z1 − ĉ α2

]
, (6.43b)

α1 = ∆z1 − α2 − α6 , (6.43c)

α3 = −η̂ ∆z1 +∆z4 , (6.43d)

α4 = ∆z5 , (6.43e)

α5 = ∆z6 . (6.43f)
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These coefficients can be also rewritten as:

α1 =
∆p− ρ̂ ĉ ∆u

2 ĉ2
, (6.44a)

α2 = ∆ρ− ∆p

ĉ2
, (6.44b)

α3 = ρ̂ ∆η , (6.44c)

α4 = ∆ψ , (6.44d)

α5 = ∆µ , (6.44e)

α6 =
∆p+ ρ̂ ĉ ∆u

2 ĉ2
, (6.44f)

where

ρ̂ ≡ √
ρ`

√
ρr . (6.44g)

We remarked in Section 6.2 that in our algorithm we don’t have to track in time the variables ψ, ηρ, µ,

since these quantities are reset each time step, and we only need to update the vector q . This implies

that the last three rows of the right eigenvectors matrix R̂ (6.41) are not employed in the construction

of the solution of each local Riemann problem. On the other hand, the added equations governing ψ,

ηρ, µ have the effect of introducing new waves propagating at speed û used in the updating of q, and,

moreover, they play a role in the determination of the average quantities that define ÂL.

In summary, our method leads to the construction of an approximate Riemann solver that uses six

waves W p ∈ R
3 and corresponding speeds sp given by:

W p = αp{r̂p}1≤i≤3 , sp = λ̂p , p = 1, . . . , 6 . (6.45)

In the implementation of this solver we can then sum together the waves propagating with the same

speed λ̂2 = λ̂3 = λ̂4 = λ̂5 = û to define a single wave
∑5
p=2 W p associated to û, thus reducing the total

number of waves to three.

We observe that if a Riemann problem for the original system (6.33) consists of a single contact

discontinuity, that is, u` = ur = u and p` = pr = p, we have α1 = α6 = 0. Hence, the solution of the

corresponding linear problem (6.34) involves a single jump across a discontinuity propagating at speed

û = u, so that, by conservation, we recover the exact solution. However, except in the case the original

EOS is linear (as for the ideal polytropic gas or the stiffened gas EOS), with our method we lose the

well known property of the classical Roe solver of exactly capturing single shock waves. Nevertheless,

due to the compressive nature of the shocks, the discrete shock profiles result sharply resolved, as we

can observe from the numerical experimentation.

To conclude, we recall that a Roe’s linearization is not uniquely determined when a general equation

of state is considered. Several formulations of Roe’s method for real gases [71, 128, 143, 201] can be

described as linearizations in quasi-Jacobian form [146], where the original average state (û, Ĥ) of Roe

is augmented by additional unknowns, namely the thermodynamic pressure derivatives (with respect to

a pair of independent thermodynamic variables). Our approach shares some similarity with this class

of methods, since we determine an extended average state (û, Ĥ, η̂, ψ̂, ζ̂) that involves quantities related

to the pressure derivatives. Note that we can regard 1/ψ̂ and η̂/ψ̂ as the averages corresponding to the

thermodynamic derivatives κ(E , ρ) = ∂p(E,ρ)
∂E and χ(E , ρ) = ∂p(E,ρ)

∂ρ , respectively.
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6.4.1 Average Quantities

We look for average values û, Ĥ, η̂, ψ̂ and ζ̂ such that the matrix ÂL = AL(û, Ĥ, η̂, ψ̂, ζ̂) satisfies the

property (6.37).

First, let us introduce some identities that we will use in the following. If for a given quantity a we

define

ã ≡
√
ρ` a` +

√
ρr ar√

ρ` +
√
ρr

and a
˜
≡

√
ρr a` +

√
ρ` ar√

ρ` +
√
ρr

, (6.46)

it is straightforward to prove the equalities:

∆(ab) = ã ∆b+ b
˜
∆a , (6.47a)

∆

(
1

a

)
= − ∆a

a` ar
, (6.47b)

˜(
1

a

)
=

1

a` ar
a
˜
, (6.47c)

for any choice of a, b ∈ R. We also rewrite here the form of the EOS of our problem, as given in (6.9f),

pL(E , ψ, ηρ, µ) =
1

ψ
(E + ηρ+ µ) , (6.48)

and we note that, since the consistency condition (6.3) holds in each cell, we have pL

` = p` and pL
r = pr,

hence ∆pL = ∆p. Consider now the equations given by the condition (6.37). We immediately see that

the first one reduces to the identity ∆m = ∆m. The second relation reads, after a rearrangement of

the terms:

∆p+
ζ̂

ψ̂2
− 1

ψ̂
[∆E +∆(ηρ) +∆µ] =

(
1

2 ψ̂
− 1

)[
∆(ρu2) + û2∆ρ− 2û∆(ρu)

]
. (6.49)

In order to satisfy the above equation, a natural choice is to impose that both the left and right member

vanishes, therefore we obtain:

∆p = − ζ̂

ψ̂2
∆ψ +

1

ψ̂
∆ζ , (6.50)

where we have used ζ = E + ηρ+ µ, and

∆ρu2 + û2∆ρ = 2û∆(ρu) . (6.51)

Assume that we can define ψ̂ and ζ̂ such that the equality (6.50) holds. Through the relation (6.47a),

an easy computation shows that we can satisfy (6.51) by defining û as we anticipated in (6.38a), that

is û = ũ. Let us now consider the third equation of (6.37), that can be written, rearranging properly

the terms,

∆(ρuH) =
û

2ψ̂

[
û2∆ρ− 2û∆(ρu) +∆(ρu2)

]
(6.52)

+ û

{
− ζ̂

ψ̂2
∆ψ +

1

ψ
[∆E +∆(ηρ) +∆µ]

}

+ û∆E + Ĥ∆(ρu) − ûĤ∆ρ . (6.53)

Using (6.50) and (6.51), together with the relation ρH = E + p, we obtain

∆(ρuH) = −ûĤ∆ρ+ Ĥ∆(ρu) + û∆(ρH) , (6.54)
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which is satisfied if Ĥ is defined as in (6.38b), Ĥ = H̃, as it is easily proved by using (6.47a). Then,

the fourth equation of (6.37) gives:

∆(ηρu) = −η̂û∆ρ+ η̂∆(ρu) + û∆(ρη) , (6.55)

so that we determine η̂ as given in (6.38c), η̂ = η̃. The final step consists in finding average quantities

ψ̂ and ζ̂ such that the relation (6.50) is satisfied. From the EOS (6.48) we have, by using the equality

(6.47a),

∆p =
[
Ẽ + ˜(ηρ) + µ̃

]
∆

(
1

ψ

)
+

(
1

ψ

)

˜

∆(E + ηρ+ µ) . (6.56)

Then, employing (6.47b) and (6.47c), together with ζ = E + ηρ+ µ, we obtain

∆p = − ζ̃

ψ` ψr
∆ψ +

ψ̃

ψ` ψr
∆ζ . (6.57)

The comparison of the relation above with (6.50) leads to set

1

ψ̂
=

ψ̃

ψ` ψr
and

ζ̂

ψ̂2
=

ζ̃

ψ` ψr
, (6.58)

so that we get

ψ̂ =
ψ` ψr

ψ̃
and ζ̂ =

ψ` ψr

ψ̃2
ζ̃ , (6.59)

as previously reported in (6.38).

6.4.2 Two Dimensions

The PLM-Roe is extended to two dimensions by first rewriting the two-dimensional system (6.12) in the

fully quasi-linear form ∂z
∂t +AL(z) ∂z∂x +BL(z) ∂z∂y = 0, and then considering Roe linearizations ÂL and B̂L

for the matrices AL(z) and BL(z), respectively. With an analogous procedure as in the one-dimensional

case, we define:

ÂL = AL(û, v̂, Ĥ, η̂, ψ̂, ζ̂) and B̂L = BL(û, v̂, Ĥ, η̂, ψ̂, ζ̂) , (6.60)

and the average state (û, v̂, Ĥ, η̂, ψ̂, ζ̂) is determined as in (6.38), together with the average for v:

v̂ =

√
ρ` v` +

√
ρr vr√

ρ` +
√
ρr

. (6.61)

The average sound speed is then given by

ĉ =

√
1

ψ̂

(
Ĥ − û2 + v̂2

2

)
+
η̂

ψ̂
. (6.62)
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6.5 Numerical Experiments

We present a selection of numerical results obtained with the PLM-Roe scheme developed in the previous

section. Moreover, an entropy fix [76, 77] has been added in the implementation of the method in the

form described in [118].

We report below some equations of state that we have used in our experiments.

Ideal Polytropic Gas

An ideal polytropic gas (thermally and calorically perfect gas) is defined by the thermodynamic relations:

p = ρRT , and ε = cvT , cv = const. , (6.63)

where R is the gas constant and cv the heat coefficient at constant volume. The gas constant R is given

by R
Mw

, where R is the universal gas constant, and Mw the molecular weight of the gas.

The pressure as a function of the thermodynamic variables E and ρ takes the form

p(E , ρ) = (γ − 1) E , (6.64)

where γ > 1 is the adiabatic exponent [138] of the gas, and is related to R and cv through γ − 1 = R
cv

.

Stiffened gas EOS

The stiffened gas EOS is often used to model liquids and solids at high pressure, and it has the form

p(E , ρ) = (γ − 1) E − γ π , (6.65)

where the parameters γ and π depend on the considered material (e.g. γ = 4.4, π = 6×108 Pa to model

water under high pressure). This pressure law is sometimes called Tammann EOS [31].

Van der Waals EOS

The van der Waals equation of state [200] can be written as

p(E , ρ) =
R

cv

(E + a ρ2

1 − ρ b

)
− aρ2 , (6.66)

where R is the gas constant, cv the specific heat at constant volume, and the coefficients a and b

take into account the effects of the intermolecular cohesive forces and the finite size of the molecules,

respectively. The internal energy is related to the temperature through ε = cvT .

Two-Molecular Vibrating Gas

We consider an equation of state modeling a thermally perfect, calorically imperfect two-molecular

vibrating gas,

p(E , ρ) = ρRT

(E
ρ

)
, (6.67a)

where the temperature is given by the implicit equation

E
ρ

= ctrv T +
αΘvib

e
Θvib

T −1
. (6.67b)

The parameters in the relations above will be set in our numerical experiments asR = 287.086 J kg−1K−1

(specific gas constant), cv = R/(γtr − 1) with γtr = 1.4, Θvib = 103K, and α = R. These values are

chosen to model air.

We employ Newton’s iterative method to compute the temperature by means of (6.67b), for given

values of E and ρ.
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Osborne EOS

A quite general equation of state has been developed by R. K. Osborne at the Los Alamos Scientific

Laboratory [167], and can be written in the form

p(E , ρ) =
1

E0 + φ0
{ξ(a1 + a2ξ) + E0[b0 + ξ(b1 + b2ξ) + E0(c0 + c1ξ)]} , (6.68)

where E0 = ρ0ε and ξ = (ρ/ρ0 − 1). We choose the parameters in (6.68) as the typical values for water,

ρ0 = 10−2kgm−3, a1 = 3.84 × 10−4J−2m−6, a2 = 1.756 × 10−3J−2m−6, b0 = 1.312 × 10−2J m−3,

b1 = 6.265 × 10−2J m−3, b2 = 0.2133 J m−3, c0 = 0.5132, c1 = 0.6761, and φ0 = 2 × 10−2J m−3.

6.5.1 One-dimensional Tests

All the numerical examples presented here involve the solution of Riemann shock tube problems, in

which the initial data consist of two constant states separated by a diaphragm.

In all the experiments second order corrections have been applied, employing the van Leer limiter

function (4.29).

For each test we use the results computed on a fine grid of 2000 cells as a reference solution. This

will be marked by a solid line in all the figures.

Experiment 6.2. Stiffened Gas EOS.

We compute the solution for a shock-tube problem considered in [86, 61] for the stiffened gas EOS.

The computational domain is the interval [0, 1] m, and the initial interface is located at x = 0.5 m. The

density, velocity and pressure of the left and right state are given in Table 6.1. The parameters in the

EOS (6.65) are defined as γ = 7.15 and π = 3 × 108 Pa.

The exact solution for this test consists of a sonic rarefaction wave, a contact discontinuity, and a

right-going shock wave with Mach number Ms = 2.6.

Although for this EOS, that is linear in E , our method reduces to the classical Roe scheme, we present

this test to validate our approach. The results obtained with 100 grid cells are shown in Figure 6.1.

The implementation of an entropy fix (as in [164]) allows us to compute correctly the sonic rarefaction

wave.

Table 6.1: Initial data for Experiment 6.2.

state ρ [kgm−3] u [ms−1] p [Pa]

left 1.0 × 103 2.0 × 103 5.0 × 108

right 1.0 × 103 2.0 × 103 1.0 × 106
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Figure 6.1: Experiment 6.2. Stiffened gas EOS. Density, velocity, pressure and specific internal energy
at time t = 8.0 × 10−5s. Number of grid cells = 100. CFL = 0.9.

Experiment 6.3. Van der Waals Gas.

We solve a shock tube problem taken from [114]. We employ the van der Waals EOS (6.66) with pa-

rameters modeling water given by R = 461.5 J/(kg K), cv = 1401.88 J/(kg K), a = 1684.54m6Pa/kg2,

and b = 0.001692m3/kg. The computational domain is the interval [0, 1] m, and the initial interface is

located at x = 0.5 m, as in the previous experiment. The left and right states, expressed in terms of

density, velocity, and pressure, are specified in Table 6.2.

The exact solution of this problem consists of a rarefaction wave moving to the left, a contact

discontinuity and a shock wave moving to the right. Figure 6.2 shows the results for this test with 100

grid cells.

Table 6.2: Initial data for Experiment 6.3.

state ρ [kgm−3] u [ms−1] p [Pa]

left 200.0 0.0 3.5 × 107

right 117.0 0.0 1.95 × 107
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Figure 6.2: Experiment 6.3. Van der Waals gas. Density, velocity, pressure and specific internal energy
at time t = 0.6 × 10−3 s. Number of grid cells = 100. CFL = 0.9.

Experiment 6.4. Two-molecular Vibrating Gas and Osborne model.

We consider a shock-tube problem proposed in [144] for both the two-molecular vibrating gas model

and the Osborne model. The computational domain is the interval [−10, 10] m, and the initial interface

is located at x = 0. The values for the left and right state expressed in terms of density, velocity and

internal energy are given in Table 6.3.

This experiment represents a version of the experiment by Lax [110], and its exact solution involves

a left-going rarefaction wave, a contact discontinuity, and a right-going shock wave. Figure 6.3 and

6.4 show the results for this test with the two-molecular vibrating gas EOS and the Osborne EOS,

respectively. The number of grid cells used is 200.

Table 6.3: Initial data for Experiment 6.4.

state ρ [kgm−3] u [ms−1] ε [J kg−1]

left 0.066 0.0 7.22 × 106

right 0.030 0.0 1.44 × 106
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Figure 6.3: Experiment 6.4. Two-molecular vibrating gas. Density, velocity, pressure and specific
internal energy at time t = 0.0034 s. Number of grid cells = 200. CFL = 0.9.

6.5.2 Two-Dimensional test

Experiment 6.5. Double-Mach Reflection.

We consider the reflection of a planar shock wave by an oblique surface. This problem is well known

in the literature, and has generated a large amount of analytical, computational and experimental work.

We refer the reader especially to [36, 37] for a detailed description of the test, and to [47, 66] for some

experimental results.

The problem involves a Mach 10 shock in air that initially makes a 60◦ angle with a reflecting wall.

The undisturbed air ahead of the shock has density ρ = 1.4 kgm−3 and pressure p = 1.0× 105Pa. The

computational domain is defined by 0 ≤ x ≤ 4 and 0 ≤ y ≤ 1, and the reflecting wall lies along its

bottom, beginning at x = 1/6. The shock makes a 60◦ angle with the x-axis and extends to the top

of the domain at y = 1. On the left-hand boundary and on the short region from x = 0 to x = 1/6

along the bottom boundary, we impose the exact post-shock condition. The flow values along the

top boundary, at y = 1, are set to describe the exact motion of the Mach 10 shock. Finally, on the

right-hand boundary, at x = 4, we assign zero gradients.

Following [144], we compute the solution for this test with both the ideal polytropic gas EOS (6.64),

with γ = 1.4, and the two-vibrating gas model (6.67). We use the two-dimensional wave propagation

algorithms described in Section 4.3 of Chapter 4, including the transverse fluctuations terms. Moreover,

second order corrections have been applied by using the van Leer limiter function (4.29).
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Figure 6.4: Experiment 6.4. Osborne model. Density, velocity, pressure and specific internal energy at
time t = 0.0034 s. Number of grid cells = 200. CFL = 0.9.

The results obtained with a 480 × 120 mesh are displayed in Figure 6.5. The comparison with the

experimental work of [66] shows that our scheme is able to capture the distinguishing features related

to the different form of the equation of state. In particular, we observe that in the calculation with

the two-vibrating molecular gas the main shock is less curved at the compression corner, and that the

Mach stem near the wall is pushed forward by the jet.
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Figure 6.5: Experiment 6.5: Double-Mach Reflection. Above: Ideal Polytropic Gas. Below: Two-
molecular vibrating gas. Density contours at t = 0.7 × 10−3 s. Number of grid cells in the x direction:
480 ; in the y direction: 120. CFL = 0.9.
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6.6 Intrinsic Difficulties of the Flow Description based on Cell Discretization

When in a finite volume method we derive quantities from the selected primary variables, some in-

consistencies with the correct physical behaviour may arise as a consequence of the discrete cell-based

description of the solution. In particular, when we solve the flow equations by using an Eulerian con-

servative formulation, the pressure updated through the conserved variables may develop oscillations

at contact interfaces. We remark that this difficulty not only appears in multicomponent problems, but

also in the case of single-component flows for a general pressure law. However, in the special case of

the ideal polytropic gas equation of state (6.64) or the stiffened gas EOS (6.65) the equilibrium of the

pressure for single fluids is maintained, as we will discuss in the following.

Let us consider a cell-based discretization of a one-dimensional single-component fluid flow. For any

physical quantity ζ(x, t), at fixed time t we assign to each cell C a value ζ
C
(t). A natural choice for cell

values, in particular for quantities that are conserved, is the average over the cell:

ζ̄
C
(t) =

1

|C|

∫

C

ζ(x, t) dx . (6.69)

We select the vector q = [ρ,m,E]T as the primary variables that describe the flow, so that we charac-

terize the flow conditions in each cell at time t with the averages ρ̄
C
, m̄

C
, Ē

C
. Assume now we wish to

derive another physical quantity α which is related to the the primary variables through a function ϕ,

i.e. α = ϕ(q). It is clear that only if ϕ is linear in q the evaluation of ϕ in the average state q̄
C

will

produce the average of α over the cell, that is ᾱ
C
. In general, we will instead have ϕ(q̄

C
) = α̃

C
6= ᾱ

C
.

This simple mathematical observation is basilar in understanding the problem of pressure oscillations

generated at contact interfaces in numerical computations.

6.6.1 Contact Discontinuities

We focus on the situation in which a contact discontinuity is present in the flow. We assume uniform flow

conditions on each side of this discontinuity, denoting the corresponding quantities with the subscripts

` and r , for the left and right state, respectively. Across the contact discontinuity, the flow velocity u

and the pressure p remain constant,

u` = ur ≡ uc and p` = pr ≡ p c , (6.70)

while the other quantities in general will have a jump. In particular, we consider the description of the

flow conditions for the cell inside which the contact discontinuity is located. We denote with C` and

Cr the portions of the cell C on the left and on the right of the discontinuity, and we introduce the

corresponding cell fractions

ξ` ≡
|C`|
|C| , and ξr ≡

|Cr|
|C| = 1 − ξ` . (6.71)

The average q in the cell with the discontinuity can be written:

q̄
C

=
1

|C|

∫

C`

q` dx+
1

|C|

∫

Cr

qr dx (6.72)

= q`ξ` + qrξr .

Note that m̄
C

= m`ξ` + mrξr = ρ̄
C
uc. Let us now derive some quantity α = ϕ(q) by evaluating

the average state q̄
C

that describes the flow conditions in the cell, and use this to define a cell value

α̃ = ϕ(q̄
C
) for α. If we wish to compute the velocity, α = u, then we have

ũ
C

=
m̄

C

ρ̄
C

=
ρ̄

C
uc

ρ̄
C

= uc . (6.73)
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Thus, when deriving the velocity from the conserved variables, we are able to obtain the correct constant

value of the physical velocity across the contact discontinuity.

For the internal energy per unit volume E , we then have:

Ẽ
C

= Ē
C
− 1

2

(m̄
C
)2

ρ̄
C

= Ē
C
− 1

2
ρ̄

C
(uc)2 (6.74)

=

[
E` −

1

2
ρ`(u

c)2
]
ξ` +

[
Er −

1

2
ρr(u

c)2
]
ξr = Ē

C
.

This result could also have been deduced directly by noticing that if u is constant then E is a linear

function of ρ and E.

We now consider the pressure p, expressed by the equation of state

p(E , ρ) = p

(
E − m2

ρ
, ρ

)
≡ Π(q) . (6.75)

Let us define p̃
C
≡ Π(q̄

C
). By the above derivation (6.74) for E , we have

p̃
C

= p(Ē
C
, ρ̄

C
) . (6.76)

For a general function p(E , ρ), we will have p(Ē
C
, ρ̄

C
) 6= p c, therefore the cell value p̃

C
= Π(q̄

C
) does not

provide a consistent description of the pressure in correspondence of the contact discontinuity. However,

in the special case of p linear in E and ρ, as for an ideal polytropic gas or a stiffened gas, we correctly

obtain p(Ē
C
, ρ̄

C
) = p̄

C
= p c so that the constant value of the pressure across the contact discontinuity

is preserved in the discrete representation.

As an example of a nonlinear equation of state, we consider here the van der Waals law (6.66) (the

nonlinearity is in ρ only):

p(E , ρ) =
R

cv

(E + a ρ2

1 − ρ b

)
− aρ2 . (6.77)

It is useful to plot the isobaric curves for a given EOS in the plane (ρ, E) to observe the difference

between the case of a linear pressure law and a nonlinear one in the presence of a contact discontinuity

within a cell. Let ρ`, E` and ρr, Er be the left and right values of the density and the internal energy

per unit volume across the discontinuity. By assumption, they satisfy p(E`, ρ`) = p(Er, ρr) ≡ p c, this

meaning that the points (ρ`, E`) and (ρr, Er) lie on the same isobaric curve with value p c.

The pressure cell value p̃
C
≡ Π(q̄

C
) = p(Ē

C
, ρ̄

C
) will be equal to p c only if the point (ρ̄

C
, Ē

C
) lies

on the same isobaric curve of (ρ`, E`) and (ρr, Er). By virtue of (6.72) and (6.74) this point (ρ̄
C
, Ē

C
) is

located on the straight line connecting (ρ`, E`) and (ρr, Er). If the pressure law is linear in E , ρ, then

the isobaric curves are straight lines, hence we will always have p̃
C

= p(Ē
C
, ρ̄

C
) = p c. See Figure 6.6 for

a graphical description of this situation.

On the other hand, for a general EOS, the isobaric lines have varying curvature, and the point

(ρ̄
C
, Ē

C
) in general will not lie on the curve p = p c, that is p(Ē

C
, ρ̄

C
) 6= p c. Figure 6.7 shows the

occurrence of this situation for the van der Waals equation of state (6.77), with the values for R, cv,

a, b used in Experiment 6.3. Note also that the point (ρ̄
C
, Ē

C
) could lie below the critical isobaric line

and below the critical isothermal line (dotted lines in the figure), that is, this point may not represent

a physical state for the gas.

From this discussion we conclude that the definition of the pressure cell value based on q̄
C

in general

does not provide an appropriate description of the flow in the presence of a contact discontinuity. In

the continuous description case, under the hypothesis of local thermodynamic equilibrium, the equation

of state gives the value of the pressure as a function of E and ρ everywhere except at the point of the

discontinuity itself. In the discrete cell-based representation, the definition p̃
C

= Π(q̄
C
) relies on the
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implicit assumption that each cell can be treated as a system in thermodynamic equilibrium at the

average values Ē
C
, ρ̄

C
. This hypothesis is appropriate for cells corresponding to smoothly-varying flow

conditions, but not for cells containing contact discontinuities. Thus, inconsistencies with the real

physical situation may arise.
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Figure 6.6: Isobaric curves for a linear EOS in the plane (ρ, E). The circles represent two possible states
across a contact discontinuity.
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Multifluid Flows

If we consider multifluid flows, then the pressure is also expressed as a function of additional variables

that describe the flow composition.

Let us consider a mixture equation of state linear in E and ρ, in the form (3.4):

p = κ̄E + χ̄ρ+ β , (6.78)

where κ̄, χ̄, β are the material-dependent parameters. To be able to recover the correct constant value

of the pressure across contact interfaces in the discrete cell-based representation, we need to select

properly the material quantities that augment the vector of the primary variables q with which we

describe the flow conditions. We can easily see that if we select (q, ψ, (ηρ), µ) as the extended vector of

the primary variables, where

ψ =
1

κ̄
, η =

χ̄

κ̄
, and µ =

β

κ̄
, (6.79)

then we can properly compute the physical pressure p c. To demonstrate this, first, let us rewrite the

pressure law (6.78) in terms of (6.79):

p =
1

ψ
(E + (ηρ) + µ) ≡ Π(q, ψ, ηρ, µ) . (6.80)

The pressure cell value defined as p̃
C

= Π(q̄
C
, ψ̄

C
, ¯(ηρ)

C
, µ̄

C
) gives:

p̃
C

=
1

ψ̄
C

(Ē
C

+ ¯(ηρ)
C

+ µ̄
C
) (6.81)

=
(E` + (ηρ)` + µ`)ξ` + (Er + (ηρ)r + µr)ξr

ψ`ξ` + ψrξr

=
p cψ`ξ` + p cψrξr
ψ`ξ` + ψrξr

= p c .

The result above explains further the formulation (3.12), (3.17) of the Shyue-type multifluid model

described in Section 3.2.3.

6.6.2 Two-Dimensional Case

In two dimensions, in which case q = [ρ, ρu, ρv,E]T, we encounter further difficulties since the tangential

velocity may vary across contact discontinuities (slip lines). Let us consider again u` = ur ≡ uc,

p` = pr ≡ p c, but v` 6= vr. Since here the kinetic energy K consists of the contributions of both u and

v, K = 1
2ρ(u

2 + v2), the derivation of the cell value of E from the conserved variables does not produce

in general Ē
C
, differently from the result in (6.74). Therefore the equality (6.76) and the consequent

discussion do not hold anymore. Note that if we consider Kt = 1
2ρv

2 as an additional primary variable,

then the computation of Ẽ
C

from [ρ̄
C
, ¯(ρu)

C
, Ē

C
, K̄t

C
]T, still gives:

Ẽ
C

= Ē
C
− 1

2
ρ̄

C
(uc)2 − K̄t

C
(6.82)

=

[
E` −

1

2
ρ`(u

c)2 −Kt`
]
ξ` +

[
Er −

1

2
ρr(u

c)2 −Ktr
]
ξr = Ē

C
.

6.7 Pressure Oscillations in Conservative Finite Volume Methods

The difficulties in the discrete cell-based description of a fluid flow described in the previous section will

inevitably reflect on the numerical solution of the flow equations by finite volume methods, which are
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based on a cell discretization. A conservative method for the Euler equations that updates the pressure

by using the vector q of the conserved quantities, that is through p(E , ρ) = p
(
E − 1

2
m2

ρ

)
≡ Π(q),

may fail to preserve the invariance of the pressure across contact discontinuities. Clearly, the Pressure

Linearization Method will suffer from these difficulties.

As expected from the previous discussion, in the case of an ideal polytropic gas, and more generally

for any equation of state linear in E and ρ, no oscillations appear in the numerical solution. However,

the numerical experimentation shows that spurious oscillations may arise for pressure laws with nonlin-

earities in E or ρ. Note that the erroneous fluctuations of the pressure contaminate the entire solution

field (e.g. density and velocity). We show this problem by presenting some numerical tests.

6.7.1 Numerical Experiments

We present some numerical results for a gas governed by the van der Waals equation of state (6.77)

with the parameters R, cv, a and b used for the Experiment 6.3.

The computations have been performed both by the PLM-Roe and by the method of Roe extended

to real gases by using the approach of Glaister [64] (see also [201]). These two methods give the same

type of numerical solution, hence just the results obtained with the latter approach will be plotted. In

each experiment we have used a grid of 100 cells, and no second order corrections have been applied.

Experiment 6.6. Moving contact discontinuity.

We consider an experiment proposed in [61], consisting of a moving contact discontinuity. The

density, velocity, and pressure of the left and right state are given in Table 6.4.

As we can see from Figure 6.8, oscillations arise around the contact discontinuity.

Table 6.4: Initial data for Experiment 6.6.

state ρ [kgm−3] u [ms−1] p [Pa]

left 1.0 100.0 1.0 × 105

right 10.0 100.0 1.0 × 105

Experiment 6.7. Shock Tube Problem.

We solve a Riemann shock tube problem tested in [114, 61, 21], with the left and right state specified

in Table 6.5. The computational domain is the interval [0, 1] m, and the initial interface is located at

x = 0.5 m.

The exact solution of this problem consists of a rarefaction wave moving to the left, a contact

discontinuity and a shock wave moving to the right. The results are displayed in Figure 6.9, where we

use as a reference solution (solid line) the results obtained on a fine grid with a modified version of the

PLM that will be introduced in Section 6.8.

We can see from the plots that two methods used for the computation, both based on the standard

updating of the pressure through the vector of the conserved variables, are not able to preserve the

invariance of the pressure and the velocity across the contact discontinuity.

We recall that in the Experiment 6.2 with the van der Waals EOS, performed by the PLM-Roe, no

oscillations were observed around the contact discontinuity (Fig. 6.2).

This difference can be explained by observing in the plane (ρ, E) the location of the points charac-

terizing the exact solution of the two examples. In Figure 6.10 we denote the left and right states of

the Riemann problem with the lowercase letters l and r, and the left and right states across the contact
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Table 6.5: Initial data for Experiment 6.7.

state ρ [kgm−3] u [ms−1] p [Pa]

left 333.0 0.0 3.7311358 × 107

right 111.0 0.0 2.1770768 × 107
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Figure 6.8: Experiment 6.5. Van der Waals gas. Density, velocity, and pressure at time t = 0.5×10−3 s.
Number of grid cells = 100. CFL = 0.9. Results obtained by a Roe-type method with standard updating
of the pressure. Solid line: exact solution.
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Figure 6.9: Experiment 6.6. Van der Waals gas. Density, velocity, and pressure at time t = 0.4×10−3 s.
Number of grid cells = 100. CFL = 0.9. Results obtained by a Roe-type method with standard updating
of the pressure.

discontinuity with the uppercase letters L and R. Moreover, circles ◦ refers to Experiment 6.2, while

stars ∗ to Experiment 6.6.

Observing the location of the states across the contact discontinuity, we can see that for test 6.2

the isobaric curve through these states is well approximated by the straight line connecting the two

points. Therefore, in view of the analysis of Section 6.6, the pressure computed from the cell values of

ρ and E will be a good approximation of the physical constant value of the pressure across the contact

discontinuity. On the other hand, the isobaric curve through the states across the discontinuity for test

6.6 departs noticeably from the straight line connecting the two points. Hence, we expect difficulties in

the computation of the pressure.
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Figure 6.10: Points corresponding in the plane (ρ, E) to the exact solution of Experiment 6.3 (◦) and
Experiment 6.7 (∗).

6.8 Modified PLM

The numerical results reported in the previous section confirm that to avoid pressure oscillations we

need to abandon the updating of the pressure through p = Π(q) around contact discontinuities. Still,

we would like to maintain the conservative form of the Euler system, without turning to either primitive

formulations or hybrid ones (see for instance the approaches of Karni [96, 97] for multifluid flows).

We propose here a natural modification (in one dimension) of the Pressure Linearization Method

that allows to preserve pressure equilibrium at contact interfaces.

In the evolution step we maintain the system (6.9) of the original PLM. The formulation is then

augmented by an advection equation for a tracer variable ϑ that locates the contact discontinuity:

∂ϑ

∂t
+ u

∂ϑ

∂x
= 0 . (6.83)

The variable ϑ is initialized to zero and one on opposite sides of a known initial discontinuity (either

shock or contact wave) in the flow field.

As the solution evolves, far from the contact discontinuity (ϑ = 0 or ϑ = 1, up to a tolerance) we still

update the pressure through p(E , ρ), as in the original PLM. Otherwise, in the cells where the contact

discontinuity is spread (0 < ϑ < 1), we update the pressure by exploiting the linear EOS (6.9f),

pL = pL(E , ψ, ηρ, µ) =
1

ψ
(E + ηρ+ µ) , (6.84)

which corresponds to the mixture equation of state of the Shyue-type multifluid model (3.17) on which

we have built our method.

Everywhere in the computational domain, both away from the contact interface and around it, the

variables η, ψ, µ are defined locally every time step through the same relations of the standard approach:

ψn0
i =

1

κ̄ni
, ηn0

i =
χ̄ni
κ̄ni

, (6.85)
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where

κ̄ni = κ(Eni , ρni ) , χ̄ni = χ(Eni , ρni ) , (6.86)

and µ is reset locally to µn0
i by using the following generalized form of the consistency condition (6.3):

pni =
1

ψn0
(Eni + ηn0

i ρn + µn0
i ) . (6.87)

which must hold independently of the updating procedure used to define pni . Note that in the above

relations we have added a subscript 0 to the superscript n in the notation for the re-initialized quantities

η, ψ, µ at time tn, to underline that these quantities have been reset before performing the evolution

step, and to avoid confusion in the description of the algorithm in the following.

Each time step the local values (6.85) give the initial data at time tn that we use to evolve the

transport equations (6.9b), (6.9c) (6.9d) for η, ψ, µ, which we rewrite here for clearness:

∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 , (6.88a)

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (6.88b)

∂µ

∂t
+ u

∂µ

∂x
= 0 . (6.88c)

The values of (ηρ), ψ, µ that we compute at time tn+1 by solving these equations will be then used

only in those cells where the pressure is updated through (6.84).

Here the idea is to exploit the following property of the formulation of the Shyue-type model (3.17),

when it is solved by a Godunov-type scheme that is exact on isolated contact discontinuities (like the

PLM-Roe):

Pressure Equilibrium Preservation Property

If for an interface-only problem at time tn we satisfy in each cell of the computational domain

p c = pni =
1

ψni
(Eni + (ηρ)ni + µni ) , (6.89)

then, the updating of the pressure through

pn+1
i =

1

ψn+1
i

(En+1
i + (ηρ)n+1

i + µn+1
i ) , (6.90)

where ψn+1
i , (ηρ)n+1

i , µn+1
i come from the solution of the transport equations (6.88), guarantees pressure

equilibrium at time tn+1, that is pn+1
i = p c, ∀i.

To prove the result above, let us consider the solution of an interface-only problem by means of a

Godunov-type scheme that is exact on isolated contact discontinuities. By hypothesis, at the initial

time tn we have uni = uc = constant, and pni = p c = constant, ∀i. We will assume without loss of

generality that uc > 0.

The updating of the density ρ gives:

ρn+1
i = ρni +

∆t

∆x
uc(ρni−1 − ρni ) = ξρni−1 + (1 − ξ) ρni , (6.91)

where we have defined ξ ≡ ∆t
∆xu

c. Similarly, for the momentum m we obtain:

mn+1
i = mn

i +
∆t

∆x
(uc)2(ρni−1 − ρni ) = uc[ξρni−1 + (1 − ξ) ρni ] . (6.92)



74

Thus, we derive the velocity as

un+1
i =

mn+1
i

ρn+1
i

= uc , (6.93)

which shows that the method preserves the invariance of u. Computing now the updated value of the

total energy E,

En+1
i = ξEni−1 + (1 − ξ)Eni , (6.94)

we find that the internal energy E is updated as:

En+1
i = En+1

i − 1

2

(mn+1
i )2

ρn+1
i

= ξEni−1 + (1 − ξ) Eni . (6.95)

It is then easy to see that the variables (ηρ), ψ, and µ are all updated by the same formula that we

have obtained for ρ and E , i.e. αn+1
i = ξαni−1 + (1 − ξ)αni , for α = (ηρ) , ψ , µ. Hence, the updating of

the pressure through (6.84) gives:

pn+1 =
1

ψn+1
i

(En+1
i + (ηρ)n+1

i + µn+1
i ) (6.96)

=
ξ(Eni−1 + (ηρ)ni−1 + µni−1) + (1 − ξ)(Eni + (ηρ)ni + µni )

ξψni−1 + (1 − ξ)ψni

=
ξp cψni−1 + (1 − ξ)p cψni
ξψni−1 + (1 − ξ)ψni

= p c .

Therefore, pressure equilibrium is maintained.
2

Note the similarity of (6.96) with the result (6.81) of Section 6.6.1.

The equations (6.88a), (6.88b) express the advection of the thermodynamic derivatives κ(E , ρ) and

χ(E , ρ) in each local Riemann problem. In an interface-only problem this exactly describes the actual

dynamics of the pressure derivatives, since the internal energy E and the density ρ are advected with the

flow. However, in the general case, when also acoustic waves may be present, κ(E , ρ) and χ(E , ρ) are no

longer simply governed by advection equations. Our approach, based on (6.88a), (6.88b), considers the

pressure derivatives frozen across shocks and rarefactions. Despite this approximation, the numerical

experimentation performed shows that the method is effective also when acoustic waves are present.

See also related discussion in Section 6.9 for possible improvements.

We summarize here the modified algorithm:

Algorithm 6.3 (modified PLM)

(i) Given qn, pn, we compute ψn0 , (ηρ)n0 = ηn0ρn and µn0 as in (6.85), (6.86), (6.87). With these

initial values at time tn we solve the system (6.9) and, moreover, the additional advection equation

(6.83) by a given Godunov-type method that is exact on isolated contact discontinuities. We thus

obtain the updated vector of the conserved variables qn+1 and the updated quantities ψn+1,

(ηρ)n+1, µn+1, ϑn+1.

(ii) Updating of the pressure:

◦ If ϑn+1 = 0 or ϑn+1 = 1 (up to a tolerance) then we update the pressure through the original

EOS:

pn+1 = p(En+1, ρn+1) . (6.97)
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◦ If instead 0 < ϑn+1 < 1 then we update the pressure through (6.84):

pn+1 = pL(En+1, (ηρ)n+1, ψn+1, µn+1) =
1

ψn+1
(En+1 + (ηρ)n+1 + µn+1) . (6.98)

Differently from Algorithm 6.1, note that in this case we need the updated values of ηρ, ψ, µ to be used

in (6.98), though these quantities are re-initialized every time step.

6.8.1 Modified PLM-Roe

In the evolution step the modified version of the PLM-Roe uses the same formulation of the original

method, that is the Roe linearization ÂL defined in (6.33c), (6.35), and the corresponding eigenstructure.

However, differently from the standard scheme, we now employ the full structure of the matrix R̂ of the

eigenvectors (see (6.41)), since we need the updated values of ηρ, ψ, µ. Moreover, we add the equation

(6.83) for the tracer, which is linearized as ∂ϑ/∂t + û ∂ϑ/∂x = 0, where û is the Roe average velocity

defined in (6.38a).

6.8.2 Numerical Results

We now perform the Experiments 6.6 and 6.7 of Section 6.7.1 by using the modified PLM-Roe. As we

can observe from Figures 6.11 and 6.12, the scheme is able to preserve the invariance of u, p across

contact discontinuities.
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Figure 6.11: Experiment 6.6. Density, velocity, and pressure at t = 0.5 × 10−3 s. Number of grid cells
= 100. CFL = 0.9. Results obtained by the modified PLM-Roe.
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Figure 6.12: Experiment 6.7. Density, velocity, and pressure at t = 0.4 × 10−3 s. Number of grid cells
= 100; CFL = 0.9. Results obtained by the modified PLM-Roe. Solid line: solution computed with the
same method on a grid of 2000 cells.
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6.9 Multifluid Pressure Linearization Method

We now describe how our Pressure Linearization Method can be extended to genuine multifluid flows.

Let us consider two pure fluids k = 1, 2 separated by some interface. We will denote the corresponding

quantities with the subscripts 1 and 2. In the evolution step we employ again the formulation (6.9)

of the PLM. As in the modified PLM, we then add an advection equation for a quantity that locates

the material interface, which in this context is chosen to be the volume fraction of one component.

Considering here the volume fraction ϑ1 of fluid 1, we add:

∂ϑ1

∂t
+ u

∂ϑ1

∂x
= 0 . (6.99)

Given ϑ1, we can then compute ϑ2 = 1 − ϑ1.

Far from material interfaces we still update the pressure by using the equation of state of the species

that occupies the considered region, while around contact interfaces we update the pressure by using

the linear EOS (6.84). Again, we would like to exploit the pressure equilibrium preservation property

of the Shyue-type multifluid model (3.17) discussed in Section 6.8.

Let us now describe how we can define in the multifluid case the quantities (ηρ)n0
i , ψn0

i , µn0
i that

represent the initial data at time tn of the equations (6.88).

We need to introduce a mixture model for the region where the material interface is numerically

spread, which should recover the single-component case in the regions where a single fluid is present.

Following a standard approach, the mixture density ρ and the mixture energy E are defined by the

volume averages

ρ =

2∑

k=1

ϑkρk and E =

2∑

k=1

ϑkEk . (6.100)

For coherence with the equations (6.88a), (6.88b), we then define (ρη) and ψ for the mixture as follows:

(ηρ) =

2∑

k=1

ηk(ϑρ)k , ψ =

2∑

k=1

ψkϑk , (6.101a)

with

ηk =
χk
κk

ψk =
1

κk
, k = 1, 2 , (6.101b)

where

κk = κk(Ek, ρk) and χk = χk(Ek, ρk) , k = 1, 2 , (6.101c)

are the thermodynamic derivatives corresponding to each component. The relations above require the

knowledge of the partial densities (ϑρ)k and the individual densities and energies ρk, Ek. Therefore,

we need additional relations to complete the description of the mixture. Our approach consists in

augmenting the formulation with:

(1) Conservation equation for the partial density (ϑρ)1:

∂

∂t
((ϑρ)1) +

∂

∂x
((ϑρ)1u) = 0 . (6.102)

Through this we obtain the values of (ϑρ)1 and (ϑρ)2 = ρ−(ϑρ)1 to be used in (6.101a). Moreover,

the equation (6.102) allows us to estimate the individual densities of the two fluids as

ρ1 =
(ϑρ)1
ϑ1

and ρ2 =
ρ− (ϑρ)1
1 − ϑ1

. (6.103)
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The relations above are used for the fluid k only when ϑk 6= 0. Practically, in the implementation

of the numerical scheme, we use them for a ≤ ϑk < 1, a = 0.5. For 0 ≤ ϑk < a, ρk is set equal

to the value found in correspondence of ϑk = 0.5. Alternatively, a fixed constant value can be

assigned (for instance the initial value of ρk in the region where ϑk = 1 in a shock-tube problem).

(2) Isobaric condition:

p1 = p2 = p . (6.104)

Having obtained the densities ρk, k = 1, 2 as in (6.103), this isobaric condition allows us to

determine the individual energies:

Ek = Ek(p, ρk) , k = 1, 2 . (6.105)

Hence, the individual thermodynamic derivatives in (6.101c) are evaluated as

κk = κk(Ek(p, ρk), ρk) and χk = χk(Ek(p, ρk), ρk) , k = 1, 2 . (6.106)

Though these relations are valid in general for ϑk ∈ [0, 1], in the implementation of the method if ϑ1 = 0

or 1 (pure fluid) we use (6.101c) for convenience.

At each initial time tn we know the cell value of the pressure pni , so we can define (ηρ)n0 = ηn0ρn and

ψn0 through (6.101), (6.106). We then determine µn0 through the generalized consistency condition:

pni =
1

ψn0
(Eni + (ηρ)n0

i + µn0
i ) . (6.107)

Let us write here the complete system of equations that is used in the evolution step of the method:

∂q

∂t
+

∂

∂x
fL(q, ψ, ηρ, µ) = 0 , (6.108a)

∂

∂t
(ηρ) +

∂

∂x
(ηρu) = 0 , (6.108b)

∂ψ

∂t
+ u

∂ψ

∂x
= 0 , (6.108c)

∂µ

∂t
+ u

∂µ

∂x
= 0 , (6.108d)

∂ϑ1

∂t
+ u

∂ϑ1

∂x
= 0 , (6.108e)

∂

∂t
((ϑρ)1) +

∂

∂x
((ϑρ)1u) = 0 , (6.108f)

where

q =




ρ

m

E


 , fL(q, ψ, ηρ, µ) =




m

m2

ρ
+ pL

m

ρ
(E + pL)



, (6.108g)
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and pL is expressed again as

pL = pL(E , ψ, ηρ, µ) =
1

ψ
(E + ηρ+ µ) . (6.108h)

The speed of sound is given by the same formula as in the original PLM:

cL =

√
hL

ψ
+
η

ψ
, (6.109)

where now ψ and η = (ηρ)
ρ are defined by (6.101a).

To summarize, the algorithm of the multifluid Pressure Linearization Method is:

Algorithm 6.4 (Multifluid PLM)

(i) Given qn, pn, ϑn1 , (ϑρ)n1 , we compute ψn0 , (ηρ)n0 = ηn0ρn and µn0 as in (6.101), (6.106), (6.107).

With these initial values at time tn, we solve the system (6.108) by a Godunov-type method that

is exact on isolated contact discontinuities. We thus obtain the updated vector of the conserved

variables qn+1 and the updated quantities ψn+1, (ηρ)n+1, µn+1, ϑn+1
1 , (ϑρ)n+1

1 .

(ii) Updating of the pressure:

◦ If ϑn+1
1 = 0 or ϑn+1

1 = 1 (up to a tolerance ε), then we update the pressure through the EOS

of the fluid whose volume fraction is 1:

pn+1 = pk(En+1, ρn+1) , k =

{
1 if ϑn+1

2 = 1 − ϑn+1
1 = 0 ,

2 if ϑn+1
1 = 0 .

(6.110)

◦ If instead 0 < ϑn+1
1 < 1, then we update the pressure through (6.108h):

pn+1 = pL(En+1, (ηρ)n+1, ψn+1, µn+1) =
1

ψn+1
(En+1 + (ηρ)n+1 + µn+1) . (6.111)

In our implementation we have used a tolerance ε = 10−7.

As already noted for the modified PLM, the employment of the transport equations (6.108b), (6.108c)

amounts to simply advect the pressure derivatives. This models the exact physical evolution of κ and

χ just for interface-only problems, in which both the density ρ and the internal energy per unit volume

E are convected by the flow. However, the thermodynamic derivatives in the more general case vary

through the acoustic waves, and their dynamics is not simply governed by advection equations. As a

first version of the method we let this approximation, which we expect nonetheless to produce reliable

results at least when the thermodynamic derivatives have not large variations with E and ρ, as it is

often the case in many practical problems. Let us mention that in [177] an analogous approximation

is considered in problems involving fluids governed by the Cochran–Chan EOS. Possible improvements

of the method are under study. One possibility is to replace the advection equations by more complex

equations that better approximate the true dynamics of the pressure derivatives in the general case,

and that reduce to advection equations in interface-only problems. An approach of this type has been

specialized by Shyue to fluids governed by the van der Waals [183] and by the Mie–Grüneisen equations

of state [184].

6.9.1 Multifluid PLM-Roe

The fully quasi-linear form of the augmented PLM system (6.108) is

∂za
∂t

+AL

a (za)
∂za
∂x

= 0 , (6.112a)
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where

za = [ρ,m,E, ηρ, ψ, µ, ϑ1, (ϑρ)1]
T
, (6.112b)

and the matrix AL
a (za) is given by:

AL

a (za) =




0 1 0 0 0 0 0 0

1

ψ

u2

2
− u2

(
2 − 1

ψ

)
u

1

ψ

1

ψ
− ζ

ψ2

1

ψ
0 0

u

(
1

ψ

u2

2
−H

)
H − 1

ψ
u2

(
1 +

1

ψ

)
u

1

ψ
u − ζ

ψ2
u

1

ψ
u 0 0

−ηu η 0 u 0 0 0 0

0 0 0 0 u 0 0 0

0 0 0 0 0 u 0 0

0 0 0 0 0 0 u 0

−φu φ 0 0 0 0 0 u




, (6.112c)

where ζ = E + ηρ + µ, and φ = (ϑρ)1
ρ . Following an analogous procedure as in Section 6.4 for the

PLM-Roe, we define the Roe linearization ÂL
a as

ÂL
a = AL

a(û, Ĥ, η̂, ψ̂, ζ̂, φ̂) , (6.113)

where the average quantities (û, Ĥ, η̂, ψ̂, ζ̂) are obtained as in (6.38) by imposing the conservation

condition for the first four conservative equations of the system, and the average φ̂ is then determined

as

φ̂ =

√
ρ` φ` +

√
ρr φr√

ρ` +
√
ρr

, (6.114)

through the conservation condition for the equation for (ϑρ)1 . The eigenvalues of ÂL
a are

λ̂1 = û− ĉ , λ̂2 = λ̂3 = λ̂4 = λ̂5 = λ̂6 = λ̂7 = û , λ̂8 = û+ ĉ , (6.115)

and the matrix of the corresponding right eigenvectors takes the form:

R̂ =
[
r̂1, · · · , r̂8

]
=




1 1 0 0 0 0 0 1

û− ĉ û 0 0 0 0 0 û+ ĉ

Ĥ − ûĉ Ĥ − ψ̂ĉ2 −1 ζ̂

ψ̂
−1 0 0 Ĥ + ûĉ

η̂ η̂ 1 0 0 0 0 η̂

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

φ̂ φ̂ 0 0 0 0 1 φ̂




. (6.116)
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The coefficients αp, p = 1, · · · , 8, of the projection of the jump of za,r− za,` onto the set of eigenvectors

r̂p, i.e. za,r − za,` =
∑8
p=1 α

p r̂p, are:

α2 =
1

ψ̂ ĉ2

[
(Ĥ − û2 + η̂)∆z1 + û∆z2 −∆z3 −∆z4 +

ζ̂

ψ̂
∆z5 −∆z6

]
, (6.117a)

α8 =
1

2 ĉ

[
∆z2 + (ĉ− û)∆z1 − ĉ α2

]
, (6.117b)

α1 = ∆z1 − α2 − α8 , (6.117c)

α3 = −η̂ ∆z1 +∆z4 , (6.117d)

α4 = ∆z5 , (6.117e)

α5 = ∆z6 , (6.117f)

α6 = ∆z7 , (6.117g)

α7 = −φ̂∆z1 +∆z8 , (6.117h)

where the average sound speed ĉ has the same expression as in (6.39), and zp denotes the p-th component

of za, p = 1, · · · , 8. The coefficients above can also be expressed as:

α1 =
∆p− ρ̂ ĉ ∆u

2 ĉ2
, (6.118a)

α2 = ∆ρ− ∆p

ĉ2
, (6.118b)

α3 = ρ̂ ∆η , (6.118c)

α4 = ∆ψ , (6.118d)

α5 = ∆µ , (6.118e)

α6 = ∆ϑ1 , (6.118f)

α7 = ρ̂ ∆(ϑρ)1 , (6.118g)

α8 =
∆p+ ρ̂ ĉ ∆u

2 ĉ2
, (6.118h)

where ρ̂ ≡ √
ρ`

√
ρr.

The structure of the solver consists of the eight waves and speeds

W p = αpr̂p , sp = λ̂p , p = 1, . . . , 8 . (6.119)

As in the PLM-Roe, we can then sum together waves propagating at the same speed û.

Modification of the Average Advection Velocity

Difficulties may arise with the structure above of the multifluid solver in relation to the employment of

the nonconservative advection equations for ψ, µ, ϑ1, linearized by using the Roe average û. In fact,



81

these quantities do not travel at a correct speed in presence of acoustic waves, and they are not in

phase with the conservative variables. Inaccuracies then may appear in the solution, as for instance

overshoots in the density. This is particularly evident for example in a Riemann problem for which the

initial states have the same velocity u` = ur = 0, but different pressures and densities. Then the Roe

average velocity is û = 0, so that the quantities ψ, µ, ϑ1 remain steady, though in reality a contact

wave is starting moving with a nonzero speed.

These difficulties suggested us to linearize the nonconservative advection equations by adopting an

average velocity ũ in general different from û, which could better approximate the interface speed. We

remark that this does not affect the conservation property of the scheme.

In particular, we propose to adopt the following definition, which corresponds to the contact wave

velocity computed for the acoustic solver described for instance in [194]:

ũ =
ρ`c`u` + ρrcrur
ρ`c` + ρrcr

− pr − p`
ρ`c` + ρrcr

, (6.120)

where c`, cr are the sound speeds corresponding to the left and right state, respectively:

c`,r =

√
h`,r
ψ`,r

+
η`,r
ψ`,r

. (6.121)

Note that for interface-only problems we have v̂ = û. Formula (6.120) in particular gives a nonzero

speed when the initial states have the same zero velocity but different pressures, so that the interface

speed is modeled more appropriately. An ideal definition of ũ is still subject of investigation, but the

one proposed here improved the results of our numerical experiments.

The form of the waves for this modified solver is still the one given in (6.119), but now the corre-

sponding speeds are

s1 = û− ĉ , s2 = s3 = s4 = û , s5 = s6 = s7 = ũ , s8 = û+ ĉ . (6.122)

Here we can then define a single wave
∑4
p=2 W p corresponding to û and a single wave

∑7
p=5 W p for ũ,

thus reducing the total number of waves to four.

6.9.2 Note on Two-Dimensional Problems

In two-dimensional interface problems (slip line problems) strong pressure oscillations can be generated

even by schemes that preserve pressure equilibrium in the one-dimensional case.

Approaches to overcome this difficulty have been suggested for instance in [178, 183]. The idea is

to add a transport equation for the tangential kinetic energy Kt = 1
2ρv

2 with the form:

∂Kt
∂t

+
∂

∂x

(
Ktu

)
= 0 . (6.123)

The value of Kt computed through this equation is used to update the internal energy that then updates

the pressure as

E = E − 1

2

m2

ρ
−Kt . (6.124)

In this connection we refer to the brief discussion in Section 6.6.2.

Here we didn’t implement a modification of this type, since in problems where there are not strong

shear flows moving along the interfaces we can still obtain results with no spurious pressure oscillations

without using this correction.
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6.10 Numerical Experiments

We consider a selection of numerical tests taken from the literature and present results obtained with

the multifluid PLM approach.

Second order corrections have been applied for these tests limiting the waves componentwise by

means of the minmod limiter function (4.27).

6.10.1 One-Dimensional Tests

Experiment 6.8. Gas-Liquid Shock Tube.

We consider a shock tube problem originally proposed in [183], and tested also in [5]. It involves a

liquid phase modeled by the stiffened gas EOS on the left of the domain, and a van der Waals gas on

the right. The parameters of the stiffened gas EOS (6.65) are here γ = 4.4 and π = 6 × 108 Pa, while

the parameters of the van der Waals law (6.66) are set as: R
cv

= γ − 1, γ = 1.4, a = 5m6Pa/kg2, and

b = 10−3m3/kg.

The computational domain is the interval [0, 1] m and the initial diaphragm is located at x = 0.7 m.

The initial data in terms of the density, velocity, and pressure are reported in Table 6.6.

The solution of this problem consists of a left-going rarefaction, a right-going contact discontinuity,

and a shock wave. Figure 6.13 shows the results obtained with a grid of 300 cells. These results are

similar to those reported in [183, 5].

Table 6.6: Initial data for Experiment 6.8.

state EOS ρ [kgm−3] u [ms−1] p [Pa]

left stiffened gas 103 0 109

right van der Waals 50 0 105

Experiment 6.9. Interface-Shock Interaction.

We consider a problem, again taken from [183], which consists of a left-going Mach 1.422 shock

wave interacting with a stationary material interface. The computational domain is the interval [0, 1]

m, and the shock wave is initially located at x = 0.5 m in a region of pure stiffened gas that extends

in the interval (0.4, 1] m. At x = 0.4 m there is initially an interface between the stiffened gas and a

van der Waals gas. The parameters used for the equations of state of the two materials are the same of

Experiment 6.8. The initial conditions for the problem are described in Table 6.7.

After the interaction, the structure of the solution consists of a transmitted shock wave, an interface,

and a reflected rarefaction wave. Results with 500 grid cells are shown in Figure 6.14. Again there is

good agreement with the results in [183, 5].

Table 6.7: Initial data for Experiment 6.9.

domain state EOS ρ [kgm−3] u [ms−1] p [Pa]

0 < x < 0.4 left Van der Waals 1.2 0 105

0.4 < x < 0.5 middle (pre-shock) Stiffened Gas 103 0 105

0.5 < x < 1. right (post-shock) Stiffened Gas 1.23 × 103 −432.69 109
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Figure 6.13: Experiment 6.8. Density, velocity, pressure and volume fraction at time t = 0.24× 10−3 s.
Number of grid cells = 300. CFL = 0.5. Solid line: Reference solution computed with 3000 grid cells.

Mie–Grüneisen EOS

The Mie–Grüneisen equation of state can be written as:

p(E , ρ) = Γ (ρ)(E + ρεref(ρ)) + pref(ρ) , (6.125)

where Γ (ρ) is the so-called Grüneisen coefficient and pref(ρ), εref(ρ) express a reference pressure and

specific internal energy, respectively.

Many pressure laws can be written in this form, as for instance the stiffened gas EOS (6.65), with

Γ = γ − 1, εref = 0 and pref = −γπ.

Here we consider two particular equations of state with the form (6.125), which have been extensively

used to model gaseous or solid explosives and solid metals under high pressure: the Jones–Wilkins–Lee

(JWL) EOS [112], and the Cochran–Chan EOS [35]. Below we write the expression of Γ (ρ), εref(ρ),

pref(ρ) for these two examples and we report the values of the parameters used in the numerical tests

presented in the following.
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Figure 6.14: Experiment 6.9. Density, velocity, pressure and volume fraction at time t = 0.27× 10−3 s.
Number of grid cells = 500. CFL = 0.5. Solid line: Reference solution computed with 3000 grid cells.

Jones–Wilkins–Lee Equation of State

Γ (ρ) = Γ0 , (6.126a)

εref(ρ) =
a

r1ρ0
e−r1

ρ0
ρ +

b

r2ρ0
e−r2

ρ0
ρ − ε0 (6.126b)

pref(ρ) = ae−r1
ρ0
ρ + be−r2

ρ0
ρ . (6.126c)

Cochran–Chan Equation of State

Γ (ρ) = Γ0 , (6.127a)

εref(ρ) = − a

(1 − w1)ρ0

[(
ρ0

ρ

)1−w1

− 1

]
+

b

(1 − w2)ρ0

[(
ρ0

ρ

)1−w2

− 1

]
− cvT0 (6.127b)

pref(ρ) = a

(
ρ0

ρ

)−w1

− b

(
ρ0

ρ

)−w2

. (6.127c)
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Table 6.8: Material properties for the JWL equation of state modeling explosive.

Parameter Value (Explosive) Units

ρ0 1840 [kg/m3]

Γ0 0.25

a 854.5 × 109 [Pa]

b 20.5 × 109 [Pa]

r1 4.6

r2 1.35

ε0 0 [J/kg]

Table 6.9: Material properties for the Cochran–Chan EOS modeling copper and explosive.

Parameter Copper Explosive Units

ρ0 8900 1840 [kg/m3]

Γ0 2 0.93

a 1.4567 × 1011 1.287 × 1010 [Pa]

b 1.4775 × 1011 1.342 × 1010 [Pa]

w1 2.994 1.994

w2 4.1 3.1

cv 393 1087 [J/(kg K)]

T0 300 300 [K]

Experiment 6.10. Impact Problem.

We solve a problem originally proposed in [177], consisting of a copper plate impacting under

atmospheric conditions on a solid explosive considered as an inert material. The copper (on the left)

has an initial velocity of 1500 m/s, while the explosive (on the right) is at rest.

The two materials are both modeled by the Cochran–Chan EOS (6.127), but with different values

of the material-dependent parameters, which we report in Table 6.9. In Table 6.10 we summarize the

initial conditions of the experiment. The computational domain is the interval [0, 1] m, and the initial

interface is at x = 0.5 m.

The exact solution of this problem consists of two shocks moving in opposite directions, and a

material interface in between. The numerical solution obtained with our method on a grid of 100 cells

is displayed in Figure 6.15. We can notice that no spurious pressure oscillations appear at the material

interface, and moreover, by comparison with the exact solution shown in [177], we observe that the

waves move at the correct speed.

Table 6.10: Initial data for Experiment 6.10.

state EOS ρ [kgm−3] u [ms−1] p [Pa]

left Cochran–Chan (copper) 8.9 × 103 1.5 × 103 105

right Cochran–Chan (explosive) 1.84 × 103 0.0 105
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Figure 6.15: Experiment 6.10. Density, velocity, pressure and volume fraction at time t = 0.85×10−6 s.
Number of grid cells = 100. CFL = 0.5. Solid line: Reference solution computed with 2000 grid cells.

Experiment 6.11.

We consider another example taken from [177], involving the interaction of gaseous detonation

products with a copper plate. Copper is modeled by the Cochran–Chan equation of state, as in the

previous example, while the detonation products are governed by the JWL EOS (6.126) with the

parameters reported in Table 6.8. The domain is again [0, 1] m with an initial interface located at

x = 0.5 m. The initial conditions in terms of the density, velocity, pressure are given in Table 6.11.

Table 6.11: Initial data for Experiment 6.11.

state EOS ρ [kgm−3] u [ms−1] p [Pa]

left JWL (detonation products) 2.48537 × 103 0.0 3.7 × 1010

right Cochran–Chan (copper) 8.9 × 103 0.0 105

The solution of this problem consists of a left-going rarefaction, an interface, and a right-going shock.

Results obtained with 100 grid cells are shown in Figure 6.16. Good agreement can be observed with

the results reported in [177, 184].
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Figure 6.16: Experiment 6.11. Density, velocity, pressure and volume fraction at time t = 0.73×10−6 s.
Number of grid cells = 100. CFL = 0.5. Solid line: Reference solution computed with 2000 grid cells.

6.10.2 Two-Dimensional Test

We perform a test with the two-dimensional version of our multifluid Pressure Linearization Method.

We use the wave-propagation formulation described in 4.3 of Chapter 4, including transverse fluctuations

terms and high-resolution corrections (componentwise minmod limiter).

Experiment 6.12. Shock-Bubble Interaction

We simulate the interaction of a shock wave with a gas bubble. This is a classical problem in

the literature, which has been extensively studied both experimentally [73, 87] and numerically, e.g.

[165, 74, 183]. It is also of practical importance in many applications, as for instance the study of

shock-induced enhancement of mixing [137].

Following the work of Shyue [183], here we consider a two-dimensional version of the previous

Experiment 6.9. A left-going Mach 1.422 planar shock wave traveling initially in a liquid, modeled

by the stiffened gas EOS, interacts with a van der Waals gas bubble. The computational domain is

the rectangle [0, 1.2] × [−0.5, 0.5] m2, and the shock wave is initially located at xs = 0.95 m. The

bubble initially has center in (x0, y0) = (0.7 m, 0) and it has radius r = 0.2 m. The parameters used

for the equations of state of the two materials are the same of Experiment 6.9. On the upper and

lower boundary we impose reflecting conditions, while on the left and right side we use zeroth-order

extrapolation. Figure 6.17 and Table 6.12 describe the initial conditions of the problem.

Results obtained with a 240 × 200 mesh and CFL = 0.9 are displayed in Figures 6.18 and 6.19. In

Figure 6.18 the solution for the density (left) and the pressure (middle) is illustrated by showing the



88

0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PSfrag replacements

Shock

x

y
r

I

II

III

xs = 0.95

(x0, y0)

Figure 6.17: Experiment 6.12. Shock-bubble interaction.

Table 6.12: Initial data for Experiment 6.12.

domain EOS ρ [kgm−3] u [ms−1] p [Pa]

I Stiffened Gas (pre-shock) 103 0 105

II Van der Waals (Bubble) 1.2 0 105

III Stiffened Gas (post-shock) 1.23 × 103 −432.69 109

gradient of these quantities. For the density, this corresponds to the Schlieren visualization technique

used in physical experiments. In the same figure we also show (on the left) the volumetric fraction of

the gas component together with the velocity field. In Figure 6.19 cross-sectional plots of the solution

at y = 0 are reported. Comparing our results with the work of [183, 5] we find very good agreement.

6.10.3 Conclusions

The numerical experimentation demonstrates the efficiency of our method, and in particular its property

of guaranteeing pressure equilibrium at material interfaces.

The main advantage of our approach with respect to some of the existing work on multifluid flows,

e.g. Saurel and Abgrall [178], Abgrall and Karni [4], Shyue [182, 183, 184], is its general and flexible

structure that allows the application of the method to arbitrary equations of state. The method of

Allaire et al. [5] can also be applied to general pressure laws. However, for general equations of state it

requires the solution by some type of iterative method of a nonlinear algebraic equation, expressing an

isobaric condition between the two considered fluids.

Instead, the procedure of our approach is very general, and the specific information needed for each

species are the governing pressure law and the expressions of the thermodynamic derivatives. This

information could be possibly given in a tabulated form, instead of in an analytical form.

Work is still in progress to improve the robustness of the method in the case of large density and

energy ratios.

Note finally that the multifluid algorithm recovers the modified PLM algorithm 6.3, hence it rep-

resents a flexible tool for the computation of both single-component and multi-component real fluids

with the ability of avoiding the occurrence of spurious pressure oscillations.
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Figure 6.18: Experiment 6.12. Density, pressure, volume fraction at t = 1, 2, 3, 4, 5 × 10−4 s.
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Figure 6.19: Experiment 6.12. Density and pressure along y = 0 at t = 0, 1, 2, 3, 4 × 10−4 s.
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Chapter 7

PHYSICAL AND NUMERICAL MODELING OF DUSTY GAS FLOWS

7.1 Physical Model

We consider a two-phase flow composed of solid particles suspended in a gaseous phase. Particle-

laden gas flows, also called dusty gas flows, arise in many applications, from industrial processes to

geophysical flows. One particular application, which was the original motivation for our work, is the

study of volcanic ash plumes and pyroclastic flows. Chapter 8 will be dedicated to the description of

applications of the dusty flow model presented here to volcanic phenomena.

We describe the thermo-fluid dynamics of the dusty gas by the physical model introduced in Section

3.3, assuming ϕ ≡ 0 (pressureless particulate phase), and neglecting the coupling terms related to

the gas pressure gradient, in virtue of the assumption ϑd � 1. The model is extended here to three

dimensions, and gravity effects are taken into account. Subscripts g and d refer to the gas and dust

phase, respectively, and the nomenclature used is summarized in Table 7.1. The equations expressing

the conservation of mass, momentum and total energy for the two phases are:

∂ρ

∂t
+ ∇ · (ρVg) = 0 , (7.1a)

∂

∂t
(ρVg) + ∇ · (ρVg ⊗ Vg + pI) = ρg −D(Vg − Vd) , (7.1b)

∂E

∂t
+ ∇ · ((E + p)Vg) = ρVg · g −D(Vg − Vd) · Vd −Q(Tg − Td) , (7.1c)

∂β

∂t
+ ∇ · (βVd) = 0 , (7.1d)

∂

∂t
(βVd) + ∇ · (βVd ⊗ Vd) = βg +D(Vg − Vd) , (7.1e)

∂Ω

∂t
+ ∇ · (ΩVd) = βVd · g +D(Vg − Vd) · Vd + Q(Tg − Td) . (7.1f)

Coupling between the conservation laws of gas and dust occurs through the source terms modeling

inter-phase drag and heat transfer.

7.1.1 Closure Relations

We summarize here the closure relations of system (7.1), already written in Section 3.3. Moreover we

give specific expressions for the drag function D and heat transfer function Q taken from [150, 155],

[102].

Gas Thermodynamic Relations

pg = (γ − 1)ρgεg , εg = cvgTg , γ, cvg = constant . (7.2)

Dust energy relation

εd = cvdTd , cvd = constant . (7.3)
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Table 7.1: Nomenclature.

ϑg, ϑd = volume fractions, ϑg + ϑd = 1, ϑd � 1;

ρg, ρd = material microscopic mass densities (ρd = constant);

ρ = ϑgρg = gas macroscopic density;

β = ϑdρd = dust macroscopic density (concentration);

pg = gas pressure, p = ϑgpg;

Vg = (ug, vg, wg)
T, Vd = (ud, vd, wd)

T = vectorial velocities;

εg, εd = specific internal energies;

eg = εg + 1
2 |Vg|2, ed = εd + 1

2 |Vd|2 = specific total energies;

E = ϑgρgeg, Ω = ϑdρded = total energies per unit volume;

Tg, Td = temperatures;

R = gas constant;

γ = cpg/cvg = gas specific heats ratio;

cvd = dust specific heat;

µ = gas dynamic viscosity;

κg = gas thermal conductivity;

g = (0, 0,−g) = gravity acceleration (z direction);

D = drag function;

d = dust particle diameter;

Cd = drag coefficient;

Q = heat transfer function;

Re = Reynolds number;

Nu = Nusselt number;

Pr = Prandtl number.

Drag Function

D =
3

4
Cd

βρ

ρdd
|ug − ud| , (7.4)

where d is the dust particle diameter, and Cd the drag coefficient, which we express as

Cd =

{
24
Re

(
1 + 0.15Re0.687

)
if Re < 1000 ,

0.44 if Re ≥ 1000 .
(7.5)

Above

Re =
ρ d|Vg − Vd|

µ
, (7.6)

is the Reynolds number, with µ denoting the dynamic viscosity of the gas.

Heat Transfer Function

Q =
Nu 6κgβ

ρdd2
, (7.7)

where Nu is the Nusselt number, which we take in the form

Nu = 2 + 0.65Re1/2Pr1/3 . (7.8)

Here

Pr =
cpgµ

κg
(7.9)
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is the Prandtl number, κg denotes the gas thermal conductivity, and cpg the gas specific heat at constant

pressure.

7.2 Numerical Method

We neglect for the moment the gravity source terms whose numerical treatment will be illustrated in

Section 7.3. System (7.1) can be written in compact form without gravity as:

∂q

∂t
+ ∇ · F(q) = ψ(q) , (7.10a)

where

q =




ρ

ρVg
E

β

ρVd
Ω




, F(q) =




ρVg
ρVg ⊗ Vg + pI

(E + p)Vg
ρVd

ρVd ⊗ Vd
ΩVd




, ψ(q) =




0

−D(Vg − Vd)
−D(Vg − Vd)Vd −Q(Tg − Td)

0

D(Vg − Vd)
D(Vg − Vd)Vd + Q(Tg − Td)




. (7.10b)

Numerically, we solve the system above by using a fractional step technique, in which we alternate

between solving the homogeneous hyperbolic system

∂q

∂t
+ ∇ · F(q) = 0 (7.11)

and the system of ordinary differential equations

∂q

∂t
= ψ(q) . (7.12)

7.2.1 Hyperbolic Portion

To solve the homogeneous hyperbolic portion of system (7.10), we use the wave propagation algorithms

based on Riemann solvers presented in Chapter 4, adopting in particular the

f-wave formulation described in Section 4.2.2. The use of the f-wave approach is advantageous for

the gas phase when we add gravity (see Section 7.3), and for the dust phase it helps to simplify the

treatment of the nonstrictly hyperbolic Riemann solution.

We describe here the numerical scheme used in the one-dimensional case. The method is extended

to two and three space dimensions by employing the algorithms illustrated in Section 4.3. System (7.11)

in one space dimension along the x coordinate takes the form ∂q
∂t + ∂f(q)

∂x = 0, and partitioning q and f

in quantities corresponding to gas and dust we can write these equations as

∂

∂t

[
qg

qd

]
+

∂

∂x

[
fg(qg)

fd(qd)

]
=

[
0

0

]
, (7.13a)

with

qg =




ρ

ρug

E


 , fg(qg) =




ρug

ρu2
g + p

(E + p)ug


 , qd =




β

βud

Ω


 , fd(qd) =



βud

βu2
d

Ωud


 , (7.13b)

where E = ρεg + 1
2ρu

2
g, Ω = βεd + 1

2ρu
2
d, and p = (γ− 1)ρεg. As already discussed in Section 3.3.1, the

homogeneous hyperbolic equations decouple into two separate systems for the gas phase and the dust

phase, thus we can treat the two sets of equations independently.
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7.2.2 Gas Phase

For the gas phase we have the set of equations

∂qg
∂t

+
∂fg(qg)

∂x
= 0 , (7.14)

which is the standard Euler system of gas dynamics for an ideal polytropic gas. Numerically, we solve

these equations by employing the Roe solver [169] presented in Section 4.1.3. The Roe linearization

Â(qg,`, qg,r) is given by the matrix (3.30) evaluated in the Roe average state (ûg, Ĥ), defined by (see

(4.18))

ûg =

√
ρ` ug,` +

√
ρr ug,r√

ρ` +
√
ρr

and Ĥ =

√
ρ`H` +

√
ρrHr√

ρ` +
√
ρr

. (7.15)

The approximate Riemann solution is based on the eigenvectors of the Roe matrix

r̂1g =




1

ûg − ĉg
Ĥ − ûg ĉg


 , r̂2g =




1

ûg
û2

g

2


 , r̂3g =




1

ûg + ĉg
H + ûg ĉg


 , (7.16)

and its eigenvalues

λ̂1
g = ûg − ĉg , λ̂2

g = ûg , λ̂3
g = ûg + ĉg . (7.17)

Here, the average sound speed is given, as standard, by

ĉg =

√
(γ − 1)

(
Ĥ −

û2
g

2

)
. (7.18)

In the f-wave approach, for the Riemann problem at xi−1/2 between states Qg,i−1, Qg,i we decompose

fg(Qg,i) − fg(Qg,i−1) =
3∑

p=1

Z p
g,i−1/2 , (7.19)

where each f-wave Z p
g,i−1/2 is taken as a scalar multiple of r̂pg,i−1/2,

Z p
g,i−1/2 = ξpi−1/2r̂

p
g,i−1/2 , p = 1, · · · , 3 . (7.20)

The coefficients ξpi−1/2 are found to be (omitting here all the grid indexes)

ξ2 =
γ − 1

ĉ2g

[
(Ĥ − û2

g)∆fg,1 + û∆fg,2 −∆fg,3

]
, (7.21a)

ξ3 =
1

2 ĉ

[
∆fg,2 + (ĉ− û)∆fg,1 − ĉ ξ2

]
, (7.21b)

ξ1 = ∆fg,1 − ξ2 − ξ3 , (7.21c)

where we have used the notation ∆fg = (∆fg,1,∆fg,2,∆fg,3)
T = fg(Qg,i) − fg(Qg,i−1). The f-waves

Z p
g,i−1/2 in (7.20) together with corresponding speeds spi−1/2 = λ̂pg,i−1/2, p = 1, · · · , 3 are the quanti-

ties we use to define the fluctuations (4.32) and the correction fluxes (4.33) which enter in the wave

propagation updating formula (4.19).
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7.2.3 Dust Phase

For the dust phase we have the non strictly hyperbolic pressureless equations

∂qd
∂t

+
∂fd(qd)

∂x
= 0 . (7.22)

One numerical approach to solve this system is to replace it by the strictly hyperbolic system (3.34),

(3.26b) with a small pressure perturbation ϕ(β). Let us assume for instance the isothermal law (3.23),

ϕ = a2β, with a small. Similarly to the scheme described for the gas phase, we can determine a Roe

linearization Âd of the diagonalizable Jacobian matrix Ad in (3.35) (with X, Y1, Y2, cd as in (3.38))

and define an algorithm based on the the flux decomposition

fd(Qd,i) − fg(Qd,i−1) =
3∑

p=1

Z p
d,i−1/2 , (7.23)

where Z p
d,i−1/2 is taken as a scalar multiple of the Roe eigenvector r̂d,i−1/2,

Z p
d,i−1/2 = ζpi−1/2r̂

p
d,i−1/2 , p = 1, · · · , 3 . (7.24)

For ϕ = a2β the Roe matrix Âd has eigenvectors

r̂1d =




1

ûd − a

êd − a(ûd − a)


 , r̂2d =




0

0

1


 , r̂3d =




1

ûd + a

êd + a(ûd + a)


 , (7.25)

with eigenvalues

λ̂1
d = ûd − a , λ̂2

d = ûd , λ̂3
d = ûd + a , (7.26)

where ûd is the Roe average as in (3.42), and

êd =

√
β`ed,` +

√
βred,r√

β` +
√
βr

. (7.27)

The coefficients ζp of the projection of the flux jump ∆fd onto r̂pd are

ζ1 =
1

2a
[(ûd + a)∆fd,1 −∆fd,2] , (7.28a)

ζ2 = [−êd + (û2
d − a2)]∆fd,1 − ûd∆fd,2 +∆fd,3 , (7.28b)

ζ3 =
1

2a
[(−ûd + a)∆fd,1 +∆fd,2] . (7.28c)

A drawback of such a solver is that it may suffer from the appearance of nonphysical states, e.g.

states with negative densities. Moreover, poor results are typically obtained when applying second

order corrections when the common value of the density of the two intermediate states of the Riemann

problem is large in comparison to the values of the left and right states .

We adopt instead the more efficient method for the pressureless equations proposed in [123]. This

approach allows to model robustly vacuum states and to perform efficiently high resolution corrections.

The structure of the scheme is based on the features of the Riemann solution of the pressureless system.

Recalling the discussion in Section 3.3.1, the solution to a Riemann problem at xi−1/2 between states

Qd,i−1 and Qd,i can consists of either a pair of waves with vacuum between if ud,i−1 < ud,i, or a single

delta-shock if ud,i−1 > ud,i, which propagates at speed

ûd,i−1/2 =

√
βi−1ud,i−1 +

√
βiud,i√

βi−1 +
√
βi

. (7.29)
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In the wave propagation framework a single wave is generally used in either case with magnitude

Wdi−1/2 = Qd,i −Qd,i−1 and speed ûd,i−1/2. The only time two waves are used is if ud,i−1 < 0 < ud,i,

in which case they are propagating in opposite directions at speeds ud,i−1, ud,i with vacuum state

between. Then we take W1
di−1/2 = −Qd,i−1 and W2

di−1/2 = Qd,i. We note in passing that the same

wave structure in this case would be obtained by applying the HLL solver of Section 4.1.2 with a` = ud,`,

ar = ud,r. In fact we can see that the intermediate state in (4.14) results to be qm = 0.

The solver is ultimately developed in the f-wave form. With this approach we consider the flux

decomposition

fd(Qd,i) − fd(Qd,i−1) = Z1
d,i−1/2 + Z2

d,i−1/2 , (7.30)

and define the f-waves through the following algorithm:

If ud,i−1 < 0 < ud,i , set

Z1
d,i−1/2 = −fd(Qd,i−1) , s1d,i−1/2 = ud,i−1 ,

Z2
d,i−1/2 = fd(Qd,i) , s2d,i−1/2 = ud,i .

(7.31)

Otherwise, compute speed ûd,i−1/2 by (7.29), and set:

if ud,i−1/2 < 0 : Z1
d,i−1/2 = fd(Qd,i) − fd(Qd,i−1) , s1d,i−1/2 = ûd,i−1/2 ,

Z2
d,i−1/2 = 0 , s2d,i−1/2 = ûd,i−1/2 ,

if ud,i−1/2 ≥ 0 : Z1
d,i−1/2 = 0 , s1d,i−1/2 = ûd,i−1/2 ,

Z2
d,i−1/2 = fd(Qd,i) − fd(Qd,i−1) , s2d,i−1/2 = ûd,i−1/2 .

(7.32)

Limiters are applied to these waves as explained in Sections (4.2.1), (4.2.2). The f-wave formulation

of the solver is more robust and accurate in general than would be a standard wave propagation

implementation based on waves W p, and in particular f-waves work better in high resolution correction

terms.

7.2.4 Drag and Heat Transfer Source Terms

As already mentioned, we use a fractional step technique to treat the drag and heat transfer source

terms. We thus consider the numerical solution of the system of ordinary differential equations (7.12):

∂ρ

∂t
= 0 , (7.33a)

∂

∂t
(ρVg) = −A|Vg − Vd|(Vg − Vd) , (7.33b)

∂E

∂t
= −A|Vg − Vd|(Vg − Vd) · Vd −Q(Tg − Td) , (7.33c)

∂β

∂t
= 0 , (7.33d)

∂

∂t
(βVd) = A|Vg − Vd|(Vg − Vd) , (7.33e)

∂Ω

∂t
= A|Vg − Vd|(Vg − Vd) · Vd + Q(Tg − Td) , (7.33f)

where we have defined

A =
3

4
Cd

βρ

ρdd
. (7.34)
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In many problems of interest mechanical and thermal equilibrium is reached quickly, and the time scale

for the processes related to the drag and to the heat transfer is much smaller than the time scale of

the wave-propagation behaviour determined by the (homogeneous) hyperbolic part of the system. In

particular, the fastest time scale corresponds to the heat transfer processes. Therefore, the system

with the source terms (7.1) is typically stiff, and an explicit solver is not appropriate to treat the

corresponding system of ODEs (7.33). In fact, it would be necessary to use a very small time step to

resolve the fast processes, and it would be practically impossible to simulate the propagation of waves

over distances of physical interest. Trying to use for instance a simple explicit Euler scheme can lead

to negative energies, if the time step is not small enough to resolve the fastest time scale.

Here we propose a semi-analytical solver, which exploits the exact solution of the system of ODEs

with the drag and heat transfer contributions considered separately. First we solve the ODEs arising

from the drag terms over a time step ∆t, and then we solve the ODEs for heat transfer.

7.2.5 Drag

For the drag terms we have the system of ordinary differential equations

∂ρ

∂t
= 0 , (7.35a)

∂

∂t
(ρVg) = −A|Vg − Vd|(Vg − Vd) , (7.35b)

∂E

∂t
= −A|Vg − Vd|(Vg − Vd) · Vd , (7.35c)

∂β

∂t
= 0 , (7.35d)

∂

∂t
(βVd) = A|Vg − Vd|(Vg − Vd) , (7.35e)

∂Ω

∂t
= A|Vg − Vd|(Vg − Vd) · Vd , (7.35f)

with initial data ρ0, (ρVg)0, E0, β0, (βVd)0, Ω0 at time t0 coming from the hyperbolic solver. We look

for the solution of the system above over a time step ∆t. Equations (7.35a), (7.35d) clearly have the

solution

ρ(t0 +∆t) = ρ0 and β(t0 +∆t) = β0 . (7.36)

We assume that the Reynolds number is constant in time, so that the drag coefficient is equal to its

initial value, Cd = C0
d. From this and through (7.36), it follows that A is constant in time and equal to

A0 =
3

4
C0

d

β0ρ0

ρdd
. (7.37)

Then, we can write the equations (7.35b), (7.35e) for the momentum of the two phases as

∂ρ0Vg
∂t

= −A0|Vg − Vd|(Vg − Vd) , (7.38a)

∂β0Vd
∂t

= A0|Vg − Vd|(Vg − Vd) . (7.38b)

Subtracting these equations divided by the corresponding densities, gives:

∂

∂t
(Vg − Vd) = −A0

(
1

ρ0
+

1

β0

)
|Vg − Vd|(Vg − Vd) . (7.39)
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Let us now define

S = |Vg − Vd| . (7.40)

Differentiating this relation with respect to the time, we obtain:

∂S
∂t

=
1

S (Vg − Vd) ·
∂

∂t
(Vg − Vd) . (7.41)

Then, using (7.39),
∂S
∂t

= −A0ξ0DS2 , (7.42)

where we have introduced

ξD =
1

ρ
+

1

β
. (7.43)

The solution of the ordinary differential equation (7.42) with the initial data S 0 is:

S(t0 +∆t) =
S0

A0 ξ0D S 0∆t+ 1
. (7.44)

Using this result in (7.39) we find the solution for (Vg − Vd) as

(Vg − Vd)(t0 +∆t) =
V 0
g − V 0

d

A0ξ0D|V 0
d − V 0

d |∆t+ 1
. (7.45)

Introducing (7.44), (7.45) in the momentum equations (7.35b, (7.35e) and integrating, we finally obtain:

(ρVg)(t0 +∆t) = (ρVg)0 +
V 0
g − V 0

d

ξ0D

[
1

A0ξ0D|V 0
g − V 0

d |∆t+ 1
− 1

]
, (7.46a)

(βVd)(t0 +∆t) = (βVd)0 −
V 0
g − V 0

d

ξ0D

[
1

A0ξ0D|V 0
g − V 0

d |∆t+ 1
− 1

]
. (7.46b)

Once the momentum equations have been solved, we can use the form of the energy equations to

calculate the corresponding changes in energy of each phase. The right hand side of (7.35f) corresponds

exactly to the change in kinetic energy of the dust corresponding to the change in momentum, and hence

the internal energy of the dust remains constant in this step. The dust energy Ω is simply updated by

the change in kinetic energy ∆Kd resulting from the momentum update:

Ω(t0 +∆t) = Ω 0 +∆Kd , (7.47a)

where ∆Kd = Kd(t0 +∆t) −K 0
d , and Kd = 1

2β|Vd|2 denotes the dust kinetic energy per unit volume.

The right hand side of the gas energy equation (7.35c) is just the negative of the right hand side of

(7.35f), as required by conservation of total energy. Hence the gas energy E is updated by the negative

of the update to Ω calculated above, in order to leave the total energy unchanged:

E(t0 +∆t) = E 0 −∆Kd . (7.47b)

This energy change models both the the change in kinetic energy in the gas and also a change in internal

energy due to drag dissipation and the resulting heating of the gas.

To conclude this section, it is interesting to write the expression of the solution for the velocities,

which can be obtained from (7.46) dividing by the corresponding macroscopic densities, and rearranging

the terms:

Vg(t0 +∆t) = Veq +
V 0
g − Veq

A0ξ0D|V 0
g − V 0

d |∆t+ 1
, (7.48a)

Vd(t0 +∆t) = Veq +
V 0
d − Veq

A0ξ0D|V 0
g − V 0

d |∆t+ 1
, (7.48b)



99

where

Veq =
ρ0V 0

g + V 0
d β

0

ρ0 + β0
(7.49)

is the equilibrium velocity. If the drag relaxation time is small compared to ∆t, the velocities Vg and

Vd approach Veq within the time step.

7.2.6 Heat Transfer

We now look for the solution of the system of ODEs for heat transfer:

∂ρ

∂t
= 0 , (7.50a)

∂

∂t
(ρVg) = 0 , (7.50b)

∂E

∂t
= −Q(Tg − Td) , (7.50c)

∂β

∂t
= 0 , (7.50d)

∂

∂t
(βVd) = 0 , (7.50e)

∂Ω

∂t
= Q(Tg − Td) , (7.50f)

with initial data ρ0, β0, (ρVg)0, (ρVd)0, E0, Ω0 coming from the result of applying drag terms, as

described above. Clearly, the solution of (7.50a), (7.50b), (7.50d), (7.50e) is

ρ(t0 +∆t) = ρ0 , β(t0 +∆t) = β0 , (ρVg)(t0 +∆t) = (ρVg)0 , (βVd)(t0 +∆t) = (βVd)0 . (7.51)

It follows that the Reynolds and Nusselt number are constant, hence Q is constant and equal to its

initial value Q0:

Q0 =
Nu0 6κgβ

0

ρdd2
. (7.52)

Then we can write the energy equations (7.50c), (7.50f) as:

∂ρ0εg
∂t

= −Q0(Tg − Td) , (7.53a)

∂β0εd
∂t

= Q0(Tg − Td) . (7.53b)

By using εg = cvgTg, εd = cvdTd, where cvg, cvd are the specific heats at constant volume, we obtain:

∂Tg
∂t

= − 1

ρ0cvg
Q0(Tg − Td) , (7.54a)

∂Td
∂t

=
1

β0cvd
Q0(Tg − Td) . (7.54b)

Subtracting the two equations above gives:

∂

∂t
(Tg − Td) = −Q0

(
1

ρ0cvg
+

1

β0cvd

)
(Tg − Td) . (7.55)
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The solution of this ordinary differential equation is:

(Tg − Td)(t
0 +∆t) = (T 0

g − T 0
d )e−Q0ξ0Q∆t , (7.56)

where

ξQ =
1

ρcvg
+

1

βcvd
. (7.57)

Introducing the above result in the equations for the total energy, we obtain

∂E

∂t
= −Q0(T 0

g − T 0
d )e−Q0ξ0Q∆t , (7.58a)

∂Ω

∂t
= Q0(T 0

g − T 0
d )e−Q0ξ0Q∆t , (7.58b)

and the integration of these equations finally gives:

E(t0 +∆t) = E 0 +
T 0
g − T 0

d

ξ0
Q

[
e−Q0ξ0Q∆t − 1

]
, (7.59a)

Ω(t0 +∆t) = Ω 0 −
T 0
g − T 0

d

ξ0
Q

[
e−Q0ξ0Q∆t − 1

]
. (7.59b)

Let us also report here the expression of the solution for the temperature for each phase:

Tg(t
0 +∆t) = Teq + (T 0

g − Teq)e
−Q0ξ0Q∆t , (7.60a)

Td(t
0 +∆t) = Teq + (T 0

d − Teq)e
−Q0ξ0Q∆t , (7.60b)

where

Teq =
ρ0cvgT

0
g + β0cvdT

0
d

ρ0cvg + β0cvd
(7.61)

is the equilibrium temperature. In the numerical solution of many problems of interest the thermal

relaxation time is very small compared to ∆t, and the temperatures approach the equilibrium value Teq

within a time step.

7.2.7 Time Scales

As already noticed, time scales for mechanical and thermal relaxation are very small compared to

the time scales of the wave-propagation behaviour of interest, and especially thermal equilibrium is

approached very fast.

Let us focus first on characteristic times for mechanical equilibrium. Based on (7.45), the time tcD
that would be necessary to reach equilibrium if the process would occur at a constant rate given by its

value at t0 is

tcD =
1

Aξ0D|V 0
d − V 0

d |
. (7.62)

The time t̄D needed to reduce the velocity difference to 1/100 of the initial value, i.e. such that |Vg−Vd| =
1

100 |V0
g − V0

d | is then:

t̄D = KtcD , K = 99 . (7.63)

Considering now the heat transfer processes, in view of equation (7.56), the characteristic time for

thermal equilibrium is

tc
Q

=
1

QξQ
. (7.64)
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The time t̄Q needed to reduce the temperature difference to 1/100 of the initial value, i.e. such that

(Tg − Td) = 1
100 (T 0

g − T 0
d ) is then

t̄Q = B
1

QξQ
= Btc

Q
, B = ln (100) = 4.6 . (7.65)

We quantify these time scale by considering some example values for the quantities involved that are

in the typical ranges of the applications of interest (see Chapter 8 on volcanic applications). Here we

assume ρ0 = 1.225 kgm−3, p0 = 105 Pa, T 0
g = p0

ρ0 R = 284.43K, T 0
d = 1200K, ρd = 2300 kgm−3,

ϑd = 0.01, and |V0
g − V0

d | = 70m/s. The physical parameters used are those in Table 8.1 in Chapter 8.

Table 7.2 shows the corresponding values of t̄D and t̄Q for two values of the particle diameter,

d = 10µm, and d = 200µm. The diameter d affects noticeably the time scales as can be understood

examining (7.37) and (7.52).

These relaxation time scales are small compared to the time period needed in our applications to

study propagation of waves over distances of physical interest. For instance, in problems of pyroclastic

dispersion dynamics phenomena are studied over spatial domains of the order of kilometers during

periods of the order of minutes.

In the numerical simulation of these phenomena we do not want to take a time step ∆t of the order of

the mechanical or thermal relaxation time scale. Rather, we want to use a time step based on the CFL

restriction for the hyperbolic problem, that is ∆t = O(∆x/smax), where smax is the maximum speed

in absolute value related to the hyperbolic portion of the model equations. As a rough approximation,

let us assume smax equal to the gas sound speed at the temperature T 0
g assumed above, which is

cg ≈ 338m/s. Space intervals in our computations are typically in the range 10 to 30m. Taking for

instance ∆x = 15m we obtain ∆t ≈ 0.04 s. If drag and heat transfer processes are characterized by the

time scales in Table 7.2, then thermal relaxation occurs within ∆t, and also mechanical relaxation for

the smaller value of the particle diameter d.

However, let us remark that, although it is true that in great part of the spatial domain where we

numerically study these phenomena velocities and temperatures of the two phases relax towards the

equilibrium value very fast, the situation is different in regions around shocks. Due to the large inertia

of solid particles, this solid phase keeps a higher velocity than the gaseous phase across shocks, and a

nonequilibrium region forms. In this case relaxation does not occur in a time step, so it is important

to use an ODE solver such as the one presented that allows to model both fast and slow interphase

processes.

Table 7.2: Example of time scales for mechanical and thermal relaxation.

d [µm] t̄D [s] t̄Q [s]

10 1.5255 × 10−3 4.5704 × 10−5

200 8.1379 × 10−2 8.9151 × 10−3

7.3 Gravity Source Terms

We now consider the two-phase system (7.1) including also the gravity source terms. The gravity term

for the dust equations is handled in the fractional step procedure along with the source terms for drag

and heat transfer. Since the mass is constant over a time step in solving the corresponding system
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Figure 7.1: A two dimensional mapped grid fitted to surface topography.

of ODEs, the momentum equations are easily solved by modifying βVd by gβ∆t, which corresponds

to a modification of the vertical momentum component only, since g = (0, 0,−g)T acts in the vertical

direction. The energy is then adjusted to reflect the change in kinetic energy ∆Kd (as in (7.47a)).

A special numerical treatment is adopted for the gravity term of the gas phase, based on the approach

described in section 5.9, which incorporates the effect of the source term into the solution of the Riemann

problem. As already noted, this method is more accurate than the fractional step splitting technique

in modeling perturbations from a steady state. This approach is used here for the gas gravity since in

the application problems we are interested in the dusty gas fluid motion is relative to an atmosphere in

hydrostatic balance.

Therefore, accounting for gravity, in place of (7.19), for each Riemann problem at the interface

(i− 1/2) we decompose into f-waves the sum of the gas flux jump and the gravity contribution −Ψi−1/2

as

fg(Qg,i) − fg(Qg,i−1) − Ψi−1/2 =

3∑

p=1

Z p
g,i−1/2 . (7.66)

The contribution Ψi−1/2 arising from the gas gravity source term

ψg(qg) = (0,−gρg,−gρgug)T , (7.67)

where here in general ug represents the gas velocity normal to the interface of the Riemann problem we

are solving, is defined as

Ψi−1/2 =
1

2
(ψg(Qg,i−1) + ψg(Qg,i))∆zi−1/2 , (7.68)

where ∆zi−1/2 = zi − zi−1 is the difference in the vertical coordinate of the centroids of the two cells

adjacent to this interface (i−1/2). In the hydrostatic case ug,i = ug,i−1 = 0 and ∆fg = (0,∆p, 0)T. We

expect the jump in pressure between the cell averages to approximately equal − 1
2g(ρg,i−1+ρg,i)∆zi−1/2,

and this cancellation occurs before the waves are generated for use in the hyperbolic solver, so that

hydrostatic balance is maintained.

For applications to volcanic flows we will use a mapped grid that conforms to the ground surface, of

the type shown in Figure 7.1 in two dimensions (blown up near the surface). A quadrilateral logically

rectangular grid is used in which the horizontal grid lines are interpolated between the surface topogra-

phy and a fixed upper elevation, while the vertical grid lines are still vertical. Riemann problems arising
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from the hyperbolic portion of the equations are solved in directions normal to physical cell interfaces

using the algorithms described so far. It is important to note that the gravitational source term will

generally come into every Riemann problem on the grid, even those in the x-direction that are normal

to a vertical cell interface (e.g., between the two cells whose centroids are marked by dots in the figure).

Since gravity does not act normal to this interface, one might be tempted to drop the source term in

this normal Riemann solver. However, the difference in elevation ∆z of the cell centroids means that

there will be a pressure difference in the steady state solution that must be cancelled by the source

term, and this is effectively taken into account by means of (7.68).

7.4 One-dimensional Experiments

We present results of two numerical experiments in one spatial dimension with no gravity, obtained by

applying the numerical method described in the previous sections for the dusty gas model (7.1). Second

order corrections are performed in the solution of the hyperbolic portion of the system by using the MC

limiter (4.30) for the gas equations, and the minmod limiter (4.27) for the dust equations.

Results of multidimensional computations including gravity effects will be presented in Chapter 8,

in the context of simulation of volcanic processes.

7.4.1 Sound Speed Test

We perform a test to show that our numerical model is able to simulate the propagation of acoustic

waves at the expected sound speed of the mixture, assuming here that the drag and heat transfer

equilibrate velocities and temperatures of gas and dust on a much faster time scale than the acoustic

wave propagation. Note that we will not assume in general equilibrium between the two phases in our

numerical method, but we now show that solving the coupled system handling the source terms by a

fractional step approach is successful even in this limit.

We recall that under the equilibrium assumption the mixture sound speed, as derived in Section

3.3.3, is given by

cm = cg,isot

√
ρg
ϑgρm

, (7.69)

where cg,isot =
√
RTg and the mixture density is ρm = ϑgρg + ϑdρd = ρ+ β.

We model the propagation of a small amplitude pressure waves in a (one dimensional) steady region

containing a mixture of gas and dust with constant flow variables, denoted in the following with the

subscript 0. We consider an initial pressure perturbation described by the Gaussian function

p(x) = p0 + p̃ e−0.0001x2

, p̃ =
1

100
p0 . (7.70)

The data of the steady background state are set as p0 = 105 Pa, ug0 = ud0 = 0, Tg,0 = Td,0 = 1200 K,

ρ0 = 1 Kg/m3, ϑd,0 = 0.01, and physical parameters of the two phases are those reported in table 8.1

(Chapter 8). For these data equation (7.69) gives cm = 65.2 m/s.

In Figure 7.2 we display the result of the computation performed in the spatial domain

[−5000, 5000] m with 2000 cells and CFL = 0.9. The figure shows the evolution of the pressure profile

from t = 0 to 60 s, with plots at intervals of 10 s. The initial perturbation (7.70) breaks into two waves

propagating symmetrically in opposite directions. As time evolves, each of the two pulses decays to

an acoustic wave propagating at the sound speed corresponding to the background state of the fluid

mixture. We estimate the velocity of each pulse simply considering two positions (corresponding to

the pressure pulse peak) at two different times. For instance, referring to Figure 7.2, we consider the

positions xA = 3250 m and xB = 3900 m reached at times tA = 50 s and tB = 60 s, respectively.

We then evaluate the numerical sound speed as cnum
m ≈ (xB − xA)/(tB − tA) = 65 m/s. This agrees
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approximately with the expected value of cm reported above. Note that the isothermal and isentropic

sound speed of the pure gas would be cg,isot = 316.2 m/s and cg = 374.1 m/s, respectively, which are

much greater than cm.
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Figure 7.2: Sound speed experiment. Pressure perturbation as time evolves from t = 0 to t = 60 s
(plots every 10 s).

7.4.2 Shock Tube Experiment

We simulate a shock tube experiment that has been studied numerically by Saito in [176], and was

originally considered in [142]. It involves high-pressure and high-density pure air (γ = 1.4) in the

driver section, and air laden with solid particles at room conditions in the driven section. As in

[176], an extremely small amount of dust is assumed here in the driver section for numerical reasons.

Dimensionless initial data are reported in Table 7.3. Flow variables are normalized by using as reference

density ρref, reference pressure pref, and reference temperature Tref the values for air at room conditions.

Moreover, the reference velocity is defined as uref =
√

pref
ρref

.

Table 7.3: Initial data for Saito’s experiment.

variable driver section driven section

p/pref 10.0 1.0

ρ/ρref 10.0 1.0

β/ρref 0.0001 1.0

ug/uref 0.0 0.0

ud/uref 0.0 0.0

Tg/Tref 1.0 1.0

Td/Tref 1.0 1.0

Only for this experiment we adopt the definitions of the drag coefficient, Prandtl number, and gas

viscosity that are used in [176]. These differ from the relations we typically employ, and which have

been reported in Section (7.1.1). Here:

Cd = 0.46 + 28Re−0.85 , (7.71)
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and the Prandtl number is assumed to be a constant, Pr = 0.75. The gas dynamic viscosity µ varies

with the temperature T based on (see [28])

µ = 1.71 × 10−5

(
T

273

)0.77

. (7.72)

Moreover, the dust particle diameter needed to compute the Reynolds number is d = 10µm, and the

dust and gas heat coefficients at constant volume are assumed to be equal, with a dimensionless value

given by 1/(γ − 1).

Following [176], we solve dimensionless equations, which are normalized by using ` = 4ρdd
3ρref

as a

characteristic length, and τ = `
uref

as a characteristic time. The computational domain is the interval

[0, 100], and the diaphragm is located at x = 50 units. We use 1000 cells (as in [176]) and CFL = 0.9.

Results of the computations at normalized time units = 5, 10, and 30 are displayed in figures 7.3,

7.4, 7.5, respectively, together with results corresponding to the case of pure gas in both the driver and

driven sections for comparison.

The structure of the solution of this shock tube problem involves a left-going rarefaction wave, a

contact discontinuity, and a right-going shock wave. In particular, the presence of the particulate phase

leads to the development of a partially dispersed shock wave, characterized by a frozen shock in the gas

followed by a relaxation region. This is formed since dust particles cannot follow any abrupt change

in the gas due to their large inertia. As described in [176], the gas loses energy due to the interaction

with particles, and the shock front decelerates, as we can observe by comparing the shock position of

the dusty gas solution with the one of the pure gas case. Moreover, the deceleration of the shock wave

induces a compression behind the shock front that leads to a higher value of the pressure with respect

to that of the pure gas [176].

As time progresses, the structure of the solution tends to a stationary configuration characterized

by an equilibrium region around the contact surface, and relaxation regions of constant width behind

the rarefaction and shock wave. This stationary state can be observed in Figure 7.5, where in particular

we can notice the equilibrium zones from the velocity and temperature profiles.

The results presented here agree well with those reported by Saito in [176], which are validated by

the author by comparison with pseudo-stationary solutions obtained through numerical integration of

the steady conservation equations. The numerical method of Saito is based on an operator splitting

technique that uses the Harten [76] and Yee [212] scheme for the gas phase and a semi-analytical

approach for the dust phase. An inaccuracy in our results, not observed in [176], is the appearance of

oscillations in the computed dust temperature in correspondence of the contact surface. These arise

only when second order corrections are performed, and they decrease with mesh refinement. We remark

that oscillations are generated in the process of deriving the dust temperature from the internal energy

per unit volume, dividing this by the computed dust density. No oscillations appear in the dust energy

(and in all the conserved variables), as shown in Figure 7.6. Note also that this inaccuracy does not

affect the computation process. In fact, in the updating of the energies through (7.59) we actually don’t

need the dust temperature itself, but the product βTd, as we can see by rewriting the term
T 0

g −T 0
d

ξ0
Q

as
ρcvgcvd

ρcvg+βcvd
(βT 0

g − βT 0
d ). This is also consistent with the form of the heat transfer source term, which

can be rewritten as Q(Tg − Td) = Q′(βTg − βTd), where Q′ =
Nu 6κg

ρdd2
. The fact that in the results of

Saito this difficulty does not arise can be explained by considering that his algorithm for the dust phase

uses the dust temperature as a primary variable, whereas in our case the dust temperature is derived

from the conserved variables.
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Figure 7.3: Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 5.
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Figure 7.4: Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 10.
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Figure 7.5: Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 30.
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Figure 7.6: Saito’s experiment. Dust internal energy per unit volume at t = 5, 10, 30.
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Chapter 8

SIMULATION OF EXPLOSIVE VOLCANIC ERUPTIONS

8.1 Theoretical and Numerical Models of Explosive Volcanic Eruptions

Explosive volcanic events are characterized by the injection in the atmosphere of a mixture of gas and

pyroclastic material at high velocity and high temperature. The eruptive mixture is the result of gas

exsolution and magma fragmentation processes occurring during the magma ascent along the conduit.

Steam can also be released as a consequence of the interaction of magma with underground aquifers.

When the eruptive mixture enters into the atmosphere, it can evolve into a buoyant plume called Plinian

column, or collapse and form pyroclastic flows on the ground surface, depending on the heating and

the entrainment of air.

Since the mid-1970s, notable work has been dedicated to the physical description of these volcanic

processes. The first theoretical studies on the dynamics of eruption columns were made in 1976 by

Sparks and Wilson [185] and in 1978 by Sparks et al. [186], who presented models of generation and

emplacement of pyroclastic flows caused by column collapse. The development in the following years of

many one-dimensional steady state and homogeneous flow theoretical models [181, 205, 208, 46, 210, 23],

accompanied by analogue laboratory experimentation [203, 83, 25, 100, 211], allowed the explanation

of important aspects of the physical behaviour of volcanic plumes and pyroclastic flows. Among the

various works, for instance Denlinger in 1984 presented a model for the generation of ash clouds from

pyroclastic flows by employing the boundary layer theory [46], and applied this model to the 1980

eruption at Mount St. Helens (USA). In the context of Plinian eruptions, steady state and single-phase

plume theory models such as those of Wilson and Walker [205] of 1987 and the one of Woods [208]

of 1988 have been formulated to study in particular the conditions that lead to the generation of a

buoyant plume through air entrainment, in an attempt to predict the buoyant or collapsing nature of

the eruption column.

Although important, theoretical formulations are based on very simplified assumptions, and in

particular they are unable to describe time-dependent processes, nonequilibrium effects and multidi-

mensional phenomena.

A fundamental progress in the analysis of explosive volcanism has been achieved with the develop-

ment of numerical multi-phase models. Early numerical studies of volcanic processes were made in 1984

by researchers at the Los Alamos Laboratory (Wohletz et al. [206]), who employed a two-dimensional

transient two-phase flow model to simulate caldera-forming eruptions. The simulations modeled both

processes in the magma chamber and the eruption dynamics in the atmospheric domain. Further work

was performed at Los Alamos in the following years, beginning with the contributions of Valentine and

Wohletz in 1989 [197, 196] and 1990 [207]. In these works the processes occurring in the magma cham-

ber were not considered, and steady state conditions were assumed at the volcanic vent. The approach

used by these researchers was based on the physical and numerical two-phase model of Harlow and

Amsden [75] (1975). The flow dynamics here is described by the equations of mass, momentum and

internal energy for the two phases (gas and pyroclastic particles in these volcanic applications). Drag,

heat transfer, gravity, and exchange of momentum and energy related to the gas pressure gradient are

taken into account, as well as gas viscous effects that are modeled by a stress tensor in the momentum

and energy equations. The numerical algorithm used to solve the governing equations is based on a

technique known as Implicit MultiField method (IMF). Main features of this method are the implicit
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treatment of the momentum exchange term, and the employment of an iterative procedure for pressure,

which is corrected until mass conservation is satisfied up to a residual. First codes that implemented

this IMF approach were the KACHINA program [6] (Amsden and Harlow, 1974), and the KACHINA

with Fully Implicit Exchange (K-FIX), the latter developed at Los Alamos in 1977 by Rivard and Tor-

rey [168] to model the interaction of water and steam in a nuclear reactor. These codes and following

versions (e.g. DASH code) were then used by Wohletz and co-workers in volcanology.

Important aspects of the thermo-fluid dynamics of eruption columns were demonstrated by the

numerical simulations obtained by two-phase modeling, and especially the transient behaviour of the

gas-pyroclasts mixture. Valentine and Wohletz in [197] studied in particular the physical conditions at

the volcanic vent that generate Plinian or collapsing columns. The numerical experiments involved a

hot mixture of gas (treated as a single-component ideal gas) and solid particles entering an atmosphere

stratified in pressure and temperature. The domain adopted was two-dimensional with an axisymmetric

configuration. Additional results were obtained by Valentine et al. in [198] and [199]. In the latter work

these authors studied in particular the effects of the presence of a caldera rim.

Further progress in the numerical modeling of volcanic plumes and pyroclastic flows was realized

by Dobran et al. [51] in 1993 and Neri and Dobran [150] in 1994. The previous model by Valentine

and Wohletz [207] was extended to consider a two-component gas phase, made of water vapor and

atmospheric air, and to model the dense gas particle regime (granular flow) according to a kinetic

theory description. The numerical method used was again based on the model of Harlow and Amsden

[75], and the implementing program belonged to the family of “FIX” codes developed from the K-FIX

code of [168]. Several numerical experiments were performed on a two-dimensional axisymmetric domain

with different steady state vent conditions to study in particular the influence of eruption parameters

on the dynamics of eruption columns [150]. These simulations provided further insights in the study

of volcanic processes, highlighting once more the unsteady behaviour that may characterize collapsing

columns. In particular the results of the simulations showed columns exhibiting sustained oscillations

of fountain heights and flow properties, flow instabilities producing the so-called phoenix clouds, which

rise on the top of the pyroclastic flow, columns of transitional type between Plinian and collapsing

(suspended flows).

Many other studies of volcanic phenomena based on the first multiphase model of Dobran, Neri and

Macedonio [51] were developed by the same authors or co-workers. For instance the companion papers

[162, 156] focus on the role of magma composition and water content in pyroclastic dispersion dynamics.

The initial model of [51] has also been extended to account for particles of different sizes. In [151] a

first extension to two particulate phases was introduced. This model was then used for example in [154]

to study the mass partition between convective and collapsing transport systems, which is important

especially in the interpretation of field deposits. The most recent version (2001) of this model and

its implementing code (PDAC, Pyroclastic Dispersion Analysis Code) is described by Neri et al. in

[153, 155]. Here a mixture of generic N different particulate phases is considered. Accounting for

particles of various size and microscopic density is important in order to be able to describe elutriation

processes, that is the separation of particles of different size and density under the concurrent action of

convective fluid motion and gravity forces. Recent applications of this model to existing active volcanoes

include a study for pyroclastic flow hazard assessment of Vesuvius (Italy) [160, 192], and modeling of

the transient dynamics of the Volcanian explosions occurred at Soufrière Hills Volcano, Montserrat,

in 1997 [32] (all works of 2002). An original aspect of the latter work is the attempt to combine the

simulation of explosive conduit evacuation and pyroclastic dispersal.

Other recent work (2004) on the simulation of Plinian clouds and pyroclastic flows and surges

has been performed by Dartevelle [43] and Dartevelle et al. [44], by using a numerical code, MFIX,

Multiphase Flow with Interphase Exchange [190], that was developed at the National Energy Technology

Laboratory and Oak Ridge National Laboratory for studying fluid-solid systems, on the basis of the
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Table 8.1: Physical parameters for the two phases.

Quantity Value Unit

R 287.0 J/(kg K)

γ 1.4

cvd 1.3 · 103 J/(kg K)

µ µ = 10−5 Pa s

κg 0.05 W/(m K)

K-FIX code of [168]. The MFIX code has been modified and extended over the years [189], and recently

adapted by Dartevelle and co-workers to geophysical applications ((G)MFIX). The MFIX program is

currently used also by J. Dufek and G. W. Bergantz in the context of rhyolitic conduit eruptions [56].

There is an extensive literature on volcanic processes and the brief list of works presented here is

by no means exhaustive. Our aim was to introduce the subject of explosive volcanic eruptions and

describe some of the contributions that have given us the guidelines for our work. Some additional

literature specifically related to overpressured volcanic jets and decompression phase will be discussed

in Section 8.5. Good reviews on volcanologic modeling, which have helped us in writing part of this

introductory section, can be found for instance in [152, 50, 209]. Let us mention to conclude some work

on volcanic ash tracking [180] and simulation of volcanic plumes on the large scale [158, 79], and other

recent studies on pyroclastic flows [22].

8.2 Application of the Dusty Gas Flow Model

We apply the dusty gas flow model presented in Chapter 7 with the aim of simulating some of the

processes that characterize explosive volcanic events. Indeed, the original motivation for the develop-

ment of the two-phase flow model (7.1) was the numerical study of volcanic phenomena. The eruption

mixture in this framework is described as a two-phase flow made of gas and solid particles of a single

size. In particular, the gas phase is assumed to be dry air (no water vapor content). Some of the the

physical parameters adopted for the two phases are reported in Table 8.1.

As we have seen, our model accounts for inter-phase drag, heat transfer, and gravity. To start our

work in this application area, our aim was to keep the model as simple as possible while still allowing

the simulation of some important features of volcanic columns. In particular, we neglect viscosity within

the gas phase and effects of turbulence. As noted in [100, 197], viscosity plays essentially no role in the

eruption dynamics. The Reynolds number of these flows is very large, Re ∼ 1010 to 1012, showing that

viscous forces are negligible with respect to inertial forces. In [197] it is also shown that viscous forces

are negligible with respect to buoyancy forces and thermodynamic (pressure) forces. However, the fact

that the Reynolds number is very large indicates that turbulence is likely in these flows. In modeling

the first stages of explosive volcanic eruptions (as considered here) when compressibility effects are the

predominant ones we consider the omission of this contribution a reasonable approximation.

8.2.1 Software

We solve the system of equations (7.1) by employing the numerical techniques detailed in Chapter 7.

As already discussed, for the hyperbolic portion of the system we use the wave propagation methods as

implemented in the clawpack software. The basic Fortran routines of this package have been adapted

and extended to our model.
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In particular, I implemented the two-phase model on quadrilateral grids with adaptive mesh re-

finement, and on three-dimensional Cartesian grids. Computations have been mainly performed in

two space dimensions with an axisymmetric configuration. Results of some preliminary work in three

dimensions are also reported.

8.3 Numerical Simulations

We present results of two sets of simulations on which we have focused our computational work. In

the first set we test the performance of our model in describing the dynamics of pyroclastic dispersion

in the atmosphere and the sensitivity to the variation of some eruption parameters that influence such

processes. In the second set of experiments we study the fluid-dynamic structures of overpressured

volcanic jets and in particular the different wave patterns that may develop depending on the crater

geometry. For all the simulations the general set-up of the problem is the same and described below.

8.3.1 Initial and Boundary Conditions

We consider the injection of a hot supersonic particle-laden gas from a volcanic vent into a cooler

atmosphere (e.g. [207, 51, 150, 151, 154, 156, 155]). Initially, a standard atmosphere vertically stratified

in pressure and temperature is set all over the domain. At the vent, the gas pressure, the velocities and

temperatures of the two phases, and the dust volumetric fraction are assumed to be fixed and constant.

The ground boundary is modeled as a free-slip reflector. For two-dimensional experiments, an

axisymmetric configuration of the flow is used, and system (7.1) is rewritten in cylindrical coordinates.

Analogously to the result shown for the standard Euler equations in Section 2.4.3, we obtain a new

set of equations with the same form of (7.1) on the left-hand side, but with an additional geometric

source term on the right-hand side. This additional source term is treated numerically with an operator

splitting technique and by employing a Runge–Kutta solver for the corresponding system of ODEs to

be solved in time. In this two-dimensional axisymmetric configuration, half of the volcanic vent, of

diameter Dv, is located in the lower left-hand corner of the computational domain, the symmetry axis

is modeled as a free-slip reflector, while the upper and right-hand edges of the domain are free flow

boundaries and all the variables gradients are set to zero.

For three-dimensional experiments we have performed our simulations in an octant, collocating a

quarter of the vent in a corner. The sides of the octant adjacent to the vent location are modeled again

as free-slip reflectors and the other two lateral sides and the upper edge of the computational domain

are free-flow boundaries.

8.4 Pyroclastic Dispersion Dynamics

As observed in Section 8.1, volcanic columns produced by explosive events can exhibit a different pyro-

clastic dispersal behaviour. The interaction between the hot particulate-laden jet and the atmosphere

may produce a buoyant plume (Plinian column) or a collapsing column, depending on the heating and

entrainment of air. Collapsing columns present the general behaviour illustrated in Figure 8.1 [150],

consisting of the generation of a fountain above the vent, a recirculation region of pyroclastic material,

and pyroclastic flows spreading laterally. Moreover, plumes buoyantly rise above the flow. There are

several parameters that control the behaviour of the column and in particular material ejected with low

density, high temperature and velocity, and small ratio of jet area to jet volume favor the development

of a buoyant column (Dobran [49]).

As already mentioned, Neri and Dobran in [150] investigated numerically the influence of eruption

parameters on the thermofluid dynamics of volcanic columns by adopting a two-phase model based

on [75]. The results obtained by these authors on the different behaviour of eruption columns as
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a function of vent diameter Dv and exit velocity vv of the erupting mixture are shown in Figure

8.2. These results correspond to a particle diameter d = 10µm, a microscopic particle density ρd =

2300 kg/m3, a vent pressure pv = 0.1MPa, a vent temperature Tv = 1200K, and a water vapor content

of 0.8 wt %. The circles in this figure represent collapsing columns that display steady or quasi-steady

state conditions after a few minutes of transient fountain building; the triangles refer to collapsing

columns with oscillatory behaviour of flow properties in the fountain and pyroclastic flow even after a

period of fountain building; squares represent columns at the transition between collapsing and Plinian

(suspended flows) that may change their behaviour during the eruption. Moreover, the region between

the short dashed lines indicates the presence of sustained oscillations, and the cross-hatched zones

indicate the gradual transition between the various regions. An important conclusion of the study in

[150] is that there is no clear separation boundary between the buoyant and collapsing columns.

Here we report a selection of results from a set of simulations that we have performed with data taken

from this work of Neri and Dobran. The aim is to observe how sensitive our model is to parameters

that influence pyroclastic dispersion processes and to see how it compares with the results in [150].

The physical model assumed in this work is more complex than ours, and takes into account several

effects that we neglect. Among these, viscosity of the gas, turbulence, water vapor content, exchange

of momentum and energy between the two phases related to the gas pressure gradient, and the dense

regime for the particulate phase. Despite the simplifications of our model, we will see that we are able

to capture some of the relevant features of the various eruption styles that have been described in [150].

Figure 8.1: Characteristic features of a collapsing column. (From Neri and Dobran [150], reproduced
with the courteous permission of AGU).

8.4.1 Numerical Simulations

Vent Conditions

The gas and dust phase are assumed to be in thermal and mechanical equilibrium at the vent, that is,

they have the same temperature Tv and the same exit velocity vv. Different values of vent diameters

Dv and velocities vv are considered, while the other variables describing the vent conditions are kept

fixed, and are assumed equal to those corresponding to the results of Figure 8.2. The only difference

with that set of data is that we do not consider the water vapor content. In [150] the authors observe
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Figure 8.2: Regions characterized by different types of eruption columns as a function of vent diameter
Dv and exit velocity vv. (From Neri and Dobran [150], reproduced with the courteous permission of
AGU).

that the effect of an increase of the water content is a shifting to the left of the divided cross-hatched

region in Figure 8.2 between the Plinian and oscillating collapsing columns.

Data are summarized in Table 8.2 (subscript v refers to the vent), together with the physical prop-

erties assumed for the dust. We maintain the same nomenclature as in [150] for the simulations.

Simulations with the same letter are characterized by the same diameter. Note that for this set of ex-

periments the vent pressure is balanced with the atmospheric pressure at the vent exit. Moreover, vent

conditions are supersonic relative to the eruptive mixture, and they are representative of jet conditions

after its decompression in the volcanic crater (see related discussion in Section 8.5).

Table 8.2: Vent conditions for the set of simulations used to study pyroclastic dispersion dynamics.

Simulation Dv vv pg,v Tv ϑd,v d ρd
[m] [m/s] [MPa] [K] [µm] [kg/m3]

A2 100 80 0.1 1200 0.01 10 2300

A6 100 200 0.1 1200 0.01 10 2300

B3 300 200 0.1 1200 0.01 10 2300

B5 300 300 0.1 1200 0.01 10 2300
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Simulation A2: Stationary Collapsing Column.

Figure 8.3 shows the evolution of the eruptive mixture as computed for simulation A2, characterized

by Dv = 100m and vv = 80m/s. In agreement with [150], we can recognize the typical features of

a collapsing volcanic column, that is, fountain building above the volcanic vent, radially spreading

pyroclastic flow, material recycling from the collapsed column back into the fountain, and rising of ash

plumes from the pyroclastic flow. At about 10 s and 400m above the vent the two-phase flow jet loses

its vertical thrust, and begins to form a collapsing column. After the collapsed column has hit the

ground, material starts being recycled into the fountain. As the time evolves the impact distance from

the vent decreases and the column tends to stabilize with a steady narrow shape (as already observed

in [150]).

In Figure 8.4 we display results computed on two different grid resolutions (cell size = 10 m on the

left, and cell size = 5 m on the right). We can see that a smaller cell size produces a longer run-out

of the pyroclastic flow and a smaller thickness, but there is no notable difference in the fountain height

and in the dynamics of the collapse. The significant difference in the location of the flow head on the

ground can be in part related to the type of free-slip boundary condition used, though the same effect

of the grid resolution has been observed also in [51], where a no slip boundary condition is employed.

In Figure 8.5 we highlight the features of the recirculation region displaying a contour plot of the

dust density together with the gas velocity vector field, as computed on the finest grid.

Figure 8.6 shows three-dimensional results for the same eruption. Though the mesh used is very

coarse, and in particular anisotropic effects are produced as a consequence of the poor discretization of

the circular vent on the Cartesian grid, there is qualitative agreement with the two-dimensional results

with axisymmetry.

Relating our results with those in [150], first of all we have seen that the type of stationary collapsing

column we observe is consistent with the data in Figure 8.2. Moreover, our plots of physical quantities

are in agreement with those reported in [150]. In particular, the column height and the column impact

distance are comparable. There is a difference in the length of the run-out of the pyroclastic flow, which

is larger in our computations. This is not surprising, since we use a free slip boundary condition on

the ground, whereas in [150] a no slip condition is used (consistently with their model that has viscous

terms).

Simulation A6: Transitional/Plinian Column.

Figure 8.7 shows the results for Simulation A6, which has the same vent diameter Dv = 100m as A2, but

a greater exit velocity, vv = 200m/s. The increase in the jet velocity, keeping Dv fixed, produces a much

more buoyant column, which in this case appears of transitional/Plinian type. This column reaches a

height of about 2200m, and then begins to form a radially suspended flow from which some material

rises buoyantly. Later, the suspended flow is reduced and the eruptive mixture develops as a buoyant

column. Again, our results are consistent with the data in Figure 8.2, which indicate an eruption on

the right edge of the transition region between collapsing and Plinian regimes for the considered values

of diameter and exit velocity. In this case, omitting the water vapor content does not seem to influence

the column style, at least in the the first minutes of the process. Moreover, our plots show qualitative

agreement with those displayed in [150] for the same simulation, and in particular the column height is

about the same.
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Figure 8.3: Simulation A2. Collapsing column. Dust density at time t = 10, 25, 30, 35, 45, 55, 70, 115
s. Computational domain: 3000 m × 3000 m. Cell size = 10 m (300 × 300 cells). Contour values =
10[−4:1:0] [kg/m3].
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Figure 8.4: Simulation A2. Comparison between two different grid resolutions. Dust density at time
t = 10, 30, 40, 50 s. Left: ∆x = 10m, Right: ∆x = 5m. Contour values = 10[−5:.5:2] [kg/m3].
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Figure 8.5: Simulation A2. Dust density contours and gas velocity vector field at t = 30 s. Contour
values = 10[−5:.4:2] [kg/m3]. Computational domain: 2000 m × 1000 m. Cell size = 5 m (400 × 200
cells).
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Figure 8.6: Simulation A2. Dust density at time t = 30 s. Right: x-slice.
Computational domain: octant with 80 × 80 × 64 cells (uniform grid). Cell size = 15.7 m. CFL = 0.9.
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Figure 8.7: Simulation A6. Dust density at time t = 50, 70, 100, 125, 150, 170 s. Contour values =
10[−5:1:0] [kg/m3]. Computational domain: 5000 m × 9000 m. Cell size = 25 m (200 × 360 cells).
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Simulation B3: Oscillating Collapsing Column.

In Figure 8.8 we display some results for Simulation B3. Here the exit velocity is the same as in

Simulation A6, vv = 200m/s, but the vent diameter is increased to 300m. Differently from A6, we

observe a collapse of the column, with some of the typical features already noted for A2: recirculation

region, pyroclastic flow spreading on the ground, and plumes rising above it. However, differently from

A2, in this case the eruption mixture exhibits a strongly unsteady character, with oscillations of the

collapse height (also at later times, here not shown). This behaviour agrees with Figure 8.2, where the

point corresponding to this simulation is located in the middle of the region of oscillating collapsing

columns, and with other observations in [150].

Figure 8.8: Simulation B3. Dust density at time t = 80, 100, 110, 135 s. Contour values = 10[−5:1:0]

[kg/m3]. Computational domain: 7800 m × 9000 m. Uniform grid with cell size = 30 m (260 × 300
cells).
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Simulation B5: Transitional Column.

Results for simulation B5 are displayed in Figure 8.9. Here the vent diameter is the same as for B3,

Dv = 300m, but the exit velocity is higher: vv = 300m. This eruption exhibits transitional features.

After the building of the fountain, which reaches a height of about 5000 m, material is spread radially

generating a suspended flow. Then, a portion of the column collapses, forming a pyroclastic flow on

the ground, while some other material ascends buoyantly. Comparing our plots with those in [150], we

observe qualitative agreement in the first stages of the column evolution (about the first two minutes).

Specifically, analogous features are the radially suspended flow and the collapsing portion of material.

However, while in our case the column mainly collapses, in [150] instead it develops into a Plinian

column. Presumably, this discrepancy is related to the omission of the water vapor content in our

model. Thus, referring to Figure 8.2, we can still collocate this eruption in the transitional region

because of the development of the suspended flow and buoyancy of a part of the column, however our

results should be considered closer to the edge with the collapsing regime. As already mentioned, the

authors in [150] observe that a shift of this type of the transitional suspended flow region occurs varying

the water content.

8.4.2 Conclusions

The computed results show that our model is able to capture the characteristic features of different

styles of eruptions. In particular, we observe columns exhibiting an unsteady character and a transitional

behaviour for some choices of the parameters. Moreover, the sensitiveness of our model to the eruption

parameters Dv and vv is consistent with the trend indicated by the results obtained by Neri and Dobran

in [150], which also agree with laboratory studies, e.g. [25], and previous two-phase flow modeling

approaches [207, 198].

Thus, despite the simplifications of our model with respect to the one of [150], we observe overall

qualitative agreement, at least in the first few minutes of simulation. This confirms that the mechanisms

that govern the column building and the dynamics in the first stages of the eruption are not significantly

influenced by gas viscosity and turbulence.

Following again Neri and Dobran, we finally remark that the columns heights Zc obtained in our

numerical experiments (which as already noted are about the same as in [150]) are comparable with

the values that can be reasonably predicted through the simple formula [51]

Zc =
v2
v

2g
, (8.1)

obtained by applying Bernoulli’s equation along a stagnation streamline. For the simulations presented

(8.1) gives Zc = 326, 2040, 4591 m for vv = 80, 200, 300 m/s.
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Figure 8.9: Simulation B5. Dust density at time t = 50, 100, 155, 175, 200, 250 s. Contour values =
10[−5:1:0] [kg/m3]. Computational domain: 10000 m × 20000 m. Uniform grid with cell size = 30 m
(200 × 400 cells).
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8.5 Overpressured Volcanic Jets

The dynamic and thermodynamic conditions at the volcanic vent that produce explosive volcanic erup-

tions are determined by complex processes occurring along the conduit, which lead to the emission

of a mixture of fragmented magma and exsolved volatiles at high pressure, temperature and velocity.

Theoretical work [210], laboratory experiments [100] and modeling of processes along the conduit [162],

give evidence that the eruptive flow at the vent exit can be largely overpressured with respect to am-

bient, and develop a supersonic flow in the crater and atmosphere above it. The speed of sound of gas

containing particulate material can be very low [100, 136, 171] (see also Sections 3.3.3 and 7.4.1), hence

particle-laden volcanic flows are often supersonic. When the overpressure of these volcanic jets is large,

the flow may develop wave patterns of the type illustrated in Figure 8.10 [88].

The mechanisms of the decompression phase control the transition between the conditions of the

flow in the conduit and the subsequent development of the column in the atmosphere, and this phase

plays a crucial role in determining the behaviour of the eruption material in its evolution through the

atmosphere [210].

The features of the expansion process are not susceptible to direct observation. In particular, as

pointed out in [100], the internal shock structure of underexpanded jets is very difficult to document,

because of the opacity of volcanic fluids, and because such phenomena often occur deep within the

crater.

Various studies have been dedicated to the analysis of the mechanisms of the decompression process.

Most experimental studies and most models assume that the multi-phase flow in the jet thrust region

behaves as a single-gas or a pseudogas1. This approximation relies on the hypothesis that the momentum

and energy exchange between the phases occurs rapidly enough so that they are in mechanical and

thermal equilibrium. Under these conditions the mixture can be described as a perfect gas whose

density is equal to that of the mixture and whose pressure is equal to that of the gaseous phase. The

gas constant R and the isentropic exponent γ of the pseudogas are average values that take into account

the relative mass of the solid phase (see [202]).

Kieffer and Sturtevant [100] (1984) studied volcanic overpressured jets by performing analogue lab-

oratory experiments. Pure gases were discharged from reservoirs having pressures and geometries such

that the fluid velocity in the jets was initially supersonic (and later decayed to subsonic). They used

Freon 12 and Freon 22, two gases of high molecular weight and high density which are good analogs of

volcanic gases carrying particulate material, and Helium, a low-molecular weight and low-density gas

that was used for comparison with heavier gases. They highlighted the compressibility effects of the

erupted jets, detecting atmospheric shock waves and observing, immediately after the passage of the

flow head, the typical shock structures of steady underexpanded supersonic jets, such as barrel shocks

and Mach disks (see again Figure 8.10). Together with the pure gas approximation, a limit of this

experimental work is the lack of a scaling relation for gravity, so gravitational forces are not modeled.

Woods and Bower [210] (1995) studied the decompression process of volcanic jets by adopting a

steady one-dimensional single-gas model, which also neglected gravitational forces. The one-dimensional

approximation limited their analysis to very narrow craters (opening angle < 30◦) and forced them to

consider separately free decompression and decompression within a crater, while in reality there is

continuous transition between these two cases.

The pseudogas approximation was adopted also by Lagmay et al. [104] (1999), who used two-

dimensional computational fluid-dynamic simulations of compressible single-gas flows to investigate the

role of crater asymmetry on the production of directed pyroclastic flows in small-scale (Soufrière type)

1Sometimes in the geophysical literature the pseudogas or homogeneous gas flow model is called dusty gas model. Here
instead we intend as dusty gas model a two-phase flow model that accounts for mechanical and thermal disequilibrium
between the two phases, as for instance in [176].
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explosive eruptions. They showed that crater morphology affects the orientation of the volcanic jet,

which can become tilted, and hence the flow path direction of pyroclastic flows produced by fountain

collapse. In particular, they applied their model to the eruption of Mayon volcano in 1984.

In the framework of multiphase flows models, Neri et al. [156] (1998) performed two-dimensional

axisymmetric simulations of overpressured eruptions on a fixed-geometry crater, with the objective of

studying the influence of magma composition and water content in the pyroclastic dispersion dynamics.

The flow conditions at the vent were computed by simulation of magma ascent in the conduit in a

companion paper [162]. The work of [156] highlighted the important role played by the exit overpressure

of the eruptive material, since the large expansion energy of the mixture at the conduit exit leads to high

velocities in the crater region above the vent, thus affecting the column behaviour. Moreover, the authors

observed that the radial component of the velocity at the crater rim due to overpressure generates a

column with a diameter much greater than that of the crater (consistently with the experimental work

[100]).

Numerical multiphase modeling has been extensively used in the last twenty years to study pyroclas-

tic dispersion dynamics processes, but little work has been dedicated in this context to the details of the

decompression phase and to the jet internal structure. Here our purpose is to investigate more deeply

the mechanisms of the expansion of overpressured volcanic jets by applying our two-phase dusty gas

flow model. In particular, we study the decompression dynamics and the wave patterns characterizing

the jet structure with different exit pressures and crater geometry. This is also joint work with A. Neri

and T. Esposti Ongaro at INGV (Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy), with the

aim of comparing the results of our model implemented on clawpack with their Pyroclastic Disper-

sion Analysis Code (PDAC) [155]. Some preliminary comparative results, reported in the following,

are encouraging. Let us acknowledge that the above authors already made preliminary studies on this

subject [159] (1999) and suggested to us the guidelines of our work.

We focus on the very first stages of the eruptions, until the thrust region has reached its maximum

height. In this phase compressibility effects are predominant, and it is reasonable to omit viscosity,

turbulence and water vapor content. Also, some tests performed on the same simulations by Neri and

Ongaro turning on and off these terms in their more complex model have shown their negligible influence

on the small time scale.

8.5.1 Single-Gas Underexpanded Jets

We describe in this section some well known features of underexpanded supersonic jets on two-dimensional

plane geometry, based on classical analytical studies [40, 127, 105], under the assumption of single-phase

perfect gas and steady irrotational and isentropic (except across shocks) flow. First, we recall that the

Mach number M of a flow is given by M = u/c, where u is the flow velocity, and c the speed of sound.

Supersonic flow means M > 1.

Let us consider a supersonic plane jet exiting from a nozzle with a Mach number Me ≥ 1 and

pressure pe ≥ pa , where pa is the (receiver) atmospheric pressure. At each edge of the nozzle rim a

centered expansion fan develops, whose local properties are described by the Prandtl–Meyer function

ν(M) =

√
γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1) − arctan

√
M2 − 1 , (8.2)

where M and ν are the local Mach number and the deflection angle, respectively. In (8.2) an additive

constant would in general appear, which is usually set to zero such that ν(1) = 0. Denoting with Mf

the Mach number of the flow at the outer edge of the fan, the total deflection of the flow through the
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Figure 8.10: Overpressured jet (reproduced from JANNAF Publication [88] (1975), with courteous
permission of CPIA).

expansion is given by ν(Mf ) − ν(Me). Moreover, Mf is related to the pressure ratio through:

pe
pa

=




1 +
γ − 1

2
M2
f

1 +
γ − 1

2
M2
e




γ
γ−1

. (8.3)

For M → ∞ the Prandtl–Meyer angle tends to
√

γ+1
γ−1

π
2 − π

2 , and, assuming initial sonic conditions, this

represents the maximum angle of deflection of the flow, if vacuum does not occur before it is reached.

Note that if γ is close to 1 (nearly isothermal flow) this angle of deflection becomes very large.

The two rarefaction waves at the two edges of the nozzle reflect on the jet boundary as compression

waves, and due to the inward curvature on the jet boundary (caused by the pressure gradient), each of

them soon coalesces into an intercepting shock, as required to prevent an envelope singularity. These
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two shocks then connect and reflect onto the symmetry axis of the jet. Note that the configuration

is symmetric with respect to the axis. Two possible patterns of reflection can be observed, depending

on Me, pe/pa, and the degree of divergence of the exhaust flow. In one case, the two inward-going

intercepting shocks meet each other at the symmetry axis and reflect in a configuration called regular

reflection. This type of reflection is not possible for arbitrary values of the parameters of the incident

shock, the angle of incidence α1 and the pressure ratio p2/p1 (pressure after the shock over pressure

ahead of it). For a given shock intensity p2/p1 there is a maximum possible angle α∗, and for α1 > α∗

regular reflection is impossible. As p2/p1 → ∞, the maximum angle tends to a value which depends on

γ (= 40◦ for air) [105]. As p2/p1 → 1, α∗ tends to 90◦, i.e. regular reflection is possible for any angle

of incidence. For α1 > α∗ regular reflection cannot occur, and the incident shock wave must break up

at a distance from the surface of reflection (here the symmetry axis), forming a pattern consisting of

three shock waves and a tangential discontinuity leaving the point where the shock waves divide. This

is called Mach reflection. The wave pattern developed in this case in the jet is the one displayed in

Figure 8.10. Here a normal shock, called Mach disk forms in the jet, connecting the two intercepting

shocks (barrel shocks). From each of the two points of intersection (Mach disk triple point) another

shock forms which radiates outward, together with a surface carrying a discontinuity in the tangential

velocity.

In both the case of regular and Mach reflection, the reflected outward-going shocks intersect the

outer boundary of the flow, and all the pattern repeats periodically (diamond-shaped jets). However,

the Mach reflection structure is subject to hydrodynamic instability of Kelvin–Helmholtz type along

the slip line that destroys this sequence [140, 60].

These features of underexpanded jets that can be studied analytically on plane geometry also char-

acterize axisymmetric jets, as it has been observed experimentally, e.g. [133, 1].

All the above information for single-gas jet flows can be useful, in combination with a pseudogas

approximation, to obtain qualitative indications of the wave patterns that we can expect in the two-

phase axisymmetric jets that we model, and of which parameters can affect them. First, let us remark

that the isentropic exponent of the pseudogas modeling the particle-gas mixture (see [202]),

γpg =
cpg +md cvd
cvg +md cvd

, (8.4)

where md is the relative mass of the solid phase, has a value close to one (this also indicates a flow in

nearly-isothermal conditions). Therefore, based on the Prandtl–Meyer function, we expect a very large

lateral deflection of the flow at the edges of the vent, and thus a rapid growth in the jet diameter.

With regard to shock patterns, we expect that Mach reflection will be favored by larger overpressures

at the vent, since this implies a greater intensity of the intercepting shocks, and by larger crater opening

angles, since this increases the angle of incidence.

Although the single gas approximation could be useful to explain some effects, the particle-laden

flow can be properly described only by a two-phase model, since relaxation phenomena occur during

stages of rapid acceleration and heating.

8.5.2 Numerical Simulations

Vent Conditions and Crater Morphology

We consider two sets of vent conditions taken from [156] (neglecting water vapor), and, as already

mentioned, obtained by numerical modeling of the magma ascent process in the conduit in [162]. We

also recall that the work [156] was dedicated to the analysis of aspects of pyroclastic dispersion dynamics

on a fixed topography, while here we focus on the decompression phase varying the crater morphology.

Data at the vent, together with physical parameters for the particulate phase, are summarized in Table

8.3. The simulations nomenclature is the same as in [156].
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Table 8.3: Vent conditions for the simulation of overpressured jets.

Simulation Dv vg,v vd,v pg,v Tv ϑd,v d ρd
[m] [m/s] [m/s] [MPa] [K] [µm] [kg/m3]

A 127 211.0 201.0 4.6 1100 0.063 200 2360

E 127 167.0 144.0 0.49 1100 0.018 200 2380

Note that here there is disequilibrium in the exit velocities of the two phases, vg,v and vd,v, while

thermal equilibrium is considered. Also note that the two sets of data are characterized by two very

different exit pressures (but both greater than atmospheric).

Computations have been performed on two-dimensional axisymmetric configurations by using dif-

ferent crater geometries. The crater is simply modeled as a wedge. Here the vent diameter Dv, where

the boundary conditions are imposed, corresponds to the inner diameter of the crater. We will denote

with R the crater outer radius and with α its opening angle relative to the vertical. The value α = 90◦

corresponds to the case of no crater (free decompression). The results that we will show pertain to

simulations performed with the following configurations:

• Simulation A: R = 254 m, α = 90◦, 45◦, 30◦. R = 508 m, α = 45◦.

• Simulation E: α = 90◦.

Moreover, unless otherwise specified, computations with data A have been performed on a uniform grid

of 300 × 600 cells and cell size = 12.7 m, while computations with data E have been performed on a

uniform grid of 350× 440 cells and cell size = 7.9375 m. In all cases, CFL = 0.9 (Courant number). In

three-dimensions, results have been obtained for Simulation A for the case of free decompression only

(no crater).

To highlight normal discontinuities, we will use the normal Mach number of the mixture (following

[51]), defined as

Mm =
Vm · ∇pg
cm|∇pg|

, (8.5)

where the mixture sound speed is (see Section 3.3.3)

cm =

√
ρg c2g,isot
ϑgρm

, cg,isoth =
√
RTg , (8.6)

and the mixture density ρm and mixture velocity Vm are

ρm = ρ+ β and Vm =
ρVg + βVd

ρm
. (8.7)

Although these formulas rely on the pseudogas approximation, which is based on the assumption of

mechanical and thermal equilibrium between the two phases, and relaxation zones arise within the

flow, the quantity Mm is still useful to put in evidence discontinuity patterns and give an indication of

supersonic regions. However, care must be taken in interpreting the results, and plots of Mm should

be evaluated together with plots of the gas pressure gradient, and plots of velocity and temperature

differences between gas and dust.
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Simulation A: α = 90◦, 45◦, 30◦.

Figures 8.11, 8.13, 8.15 show contour plots of the dust density at time t = 4, 10, 20, 30 s as computed for

Simulation A with crater radius R = 254 m and opening angle α = 90◦, 45◦, 30◦, respectively. Figures

8.12, 8.14, 8.16 show the gas density, the dust density, the gas temperature, and the gas velocity at

time t = 30 s for the same cases. Moreover, we compare the internal jet structures corresponding to the

three different geometries by displaying in Figure 8.17 both the Mach number and the normal Mach

number at t = 30 s, and in Figure 8.18 the pressure gradient at time t = 4 and 30 s.

A common feature to the three simulations, as expected, are the large radial velocities above the

vent, and hence a jet diameter growing rapidly. For α = 45◦ and 30◦ the crater constraints the path of

the lateral expansion, while in the case with no crater the jet decompresses freely in the radial direction

with a strong expansion that follows the horizontal wall (see the gas velocity in Fig. 8.12), and which

leads to the formation of a barrel shock starting on the ground.

Another common feature to all the simulations is the unsteady vortical structure that characterizes

the jet head, and which is caused by the initial rapid acceleration of the fluid. The growth in time of

this vortex can be observed in Figures 8.11, 8.13, 8.15.

As we can see from Figures 8.17 and 8.18, shock patterns develop inside the jets, and after a transition

time of few seconds, they assume a steady configuration. In the case α = 30◦ regular reflection occurs,

while for α = 90◦ and α = 45◦ a Mach disk is formed.

In Figure 8.19 we highlight the Mach disk shock structure, together with the gas velocity vector

field, for the free decompression case. The results in the top part of the figure have been computed on a

very fine uniform grid, while the results below have been obtained by employing a three-level adaptive

mesh refinement, set as to have the same resolution near the shocks (to validate our AMR code, and

to show how useful it is, since we typically do not use such a fine uniform grid for our computations).

We can clearly recognize the type of pattern of Figure 8.10. Here the Mach disk shock assume a steady

position at a height of about 870 m. The weaker shock radiating outward from the point of intersection

of the Mach disk with the barrel shock is also partly visible. Preliminary results in three dimensions for

the same simulation (data A with free decompression) are displayed in Figure 8.20. As already noted for

the three-dimensional results of Figure 8.6, anisotropic effects can be seen caused by the discretization

of the circular vent on the coarse rectangular mesh. However, there is qualitative agreement with the

two-dimensional axisymmetric computation, and in particular the position of the shocks (including the

atmospheric shock) is comparable during the time evolution.

The jet obtained with α = 45◦ also exhibits a Mach disk, at about y = 960 m, but smaller than

the one that forms with no crater, and slightly less intense (the computed pressure gradient across the

disk is 2.75 × 103 Pa/m for the case with no crater and 2.48 × 103 Pa/m for α = 45◦). The Mach disk

branches from a barrel shock that begins at the crater rim, and which is much weaker than the barrel

shock observed for α = 90◦ (about 534 Pa/m at y = 635 m vs. 1.18 × 103 Pa/m for the case with no

crater.)

In these two cases in which Mach reflection occurs, α = 90◦ and 45◦, a shear flow develops from the

Mach disk triple point, as it can be observed from the plots of the gas velocity in Figures 8.12, 8.14,

and the plots of Mach number in Figure 8.17.

The regular reflection structure of the case α = 30◦ and its gradual formation in time is illustrated in

Figure 8.21, where we display contour plots of the pressure. We can see that in this situation there is a

repeated pattern of reflections, with discontinuities of decreasing intensity. Results have been computed

with adaptive mesh refinement, so as to obtain a better resolution on shock patterns without the need

of using a fine grid in the whole computational domain. In particular, in the bottom part of Figure

8.21 we put in evidence the refinement grid patches generated in the computation. Moreover, Figure

8.22 shows the type of mapped grid used for these experiments with a crater at the ground surface.
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In Figures 8.23 and 8.24 we highlight relaxation regions corresponding to areas where spatial or

temporal variations of the flow are too rapid for the velocity and temperature of gas and solid particles

to follow. In particular, in correspondence of shocks the phenomenon of shock thickening can be

observed, that is the presence of a stationary nonequilibrium region behind a frozen shock. Figure 8.23

shows the vertical velocity difference vg − vd and the temperature difference Tg −Td along the y axis at

t = 30 s for the simulation with no crater. We can clearly notice a large disequilibrium between the two

phases where the Mach disk is located, at about y = 870 m. Differences in velocity and temperatures

characterize also the strong expansion region going from the vent exit, at y = 0, to the Mach disk

position. Since the solid phase has much larger inertia than the gas, in this accelerating region vg > vd
(and Tg < Td). Then, in correspondence of the Mach disk the gaseous phase decelerates abruptly,

while the solid particles continue to move at higher velocity than the gas, hence in the relaxation region

behind the shock vd > vg (and Tg > Td). The vertical velocity difference and the temperature difference

along y = 0 and at t = 30 s for the case α = 30◦ are shown in Figure 8.24, together with a plot of

vg − vd in the whole domain, and a zoomed view on the region close to the crater. We can recognize

several nonequilibrium zones. In particular, we notice the relaxation region with (vg − vd) ≤ −20 m/s

behind the first reflected shock close to the symmetry axis, which has a fairly large spatial size (note

also that the presence of this nonequilibrium region affects the plot of the normal Mach number).

Moreover, it is interesting to observe from the zoomed view on the top-right part of Figure 8.24 the

nonequilibrium region with vg < vd that arises at the crater rim, where the oblique shock begins to

develop. As discussed in [202], p. 218, near the tip of the wedge there is no space for equilibrium to be

established, and the shock angle is determined by the gas alone. Farther away the equilibrium shock

angle is approached. Let us note that a part from relaxation regions behind shocks, velocity differences

are are fairly small compared to the average velocity of the fluid, as it can be deduced by looking in

Figure 8.16 at the large values of the gas velocity in the jet thrust region.

In Figure 8.26 we display dust density contours still obtained with α = 45◦, but with a larger

crater radius: R = 508 m. The increase in R here does not cause significant changes in the type of

shock structure, which is again characterized by a Mach disk. However, differences can be seen in the

distortion of the jet boundaries.

Finally, in Figure 8.27, we show preliminary results obtained by T. E. Ongaro with PDAC for this

Simulation A with α = 90◦ and 30◦. Here R = 241.3 m. For these computations, some of the effects

that can be modeled by PDAC, and specifically the gas viscous terms, turbulence, and water vapor

content, have not been included in order to make a closer comparison with our results. Overall, there

is qualitative agreement. There are some differences in the unstable vortical region of the columns, but

this is not surprising since this zone is very sensitive to small numerical perturbations, as we also noted

in the experimentation with our code.

Simulation E: α = 90◦.

Figure 8.28 shows contour plots of the dust density at time t = 4, 10, 20, 30 s as computed for Simulation

E with no crater, and in Figure 8.29 the gas density, the dust density, the gas temperature, and the gas

velocity at t = 30 s for the same simulation are displayed.

The most significant difference in the set of data E with respect to A is in the value of the pressure,

much smaller for E. This lower pressure leads to a different internal structure with respect to Simulation

A with no crater. In fact here regular reflection occurs, as we can see from the plot of the Mach number

in Figure 8.30, and plots of the pressure gradient in Figure 8.31. The internal shock pattern is thus

similar to the one of case A with α = 30◦, though here the strength of the shocks is much less intense.

As for the other jets, a circulating region growing in time can be seen.
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Atmospheric Shock Waves

As we can observe from Figures 8.18, 8.21, 8.31, atmospheric pressure waves propagate radially from

the vent in every simulation. In Figure 8.25 we show plots of the so called pressure signature (pressure

recorded in time) at (x, y) = (1000, 1500) m for the atmospheric waves corresponding to Simulation A,

R = 254 m, α = 90◦, 45◦, 30◦, and Simulation E (no crater).

The steepening clearly visible in the pressure history, which is caused by fluid-dynamic nonlinearities,

indicates that the pressure perturbations at this point of recording are shocks (and not simply acoustic

waves). After the wave propagates some distance, the pressure behind the front decreases below the

atmospheric value, and then it increases again. This gives to the pressure trace the shape of the letter

N, and these airwaves are known as N waves. It is well recognized that explosive volcanic eruptions

may produce atmospheric shock waves characterized by these N-shaped signals. Examples include the

explosion of Krakatoa back in 1883 [188] and the explosion at Mt. St. Helens, Wahington, on 1980

May 18 [166, 11, 139]. Analysis of infrasonic pressure waves generated by volcanic explosions is useful

to obtain information about explosion overpressures and dust concentration, and many studies have

been dedicated to this subject, e.g. [145, 94].

Shock waves caused by explosions propagate at a speed that exceeds the atmospheric sound speed as

a function of shock excess pressure [94]. As the wave expands radially the excess pressure drops and the

wave decays to acoustic wave. Note from Figure 8.25 that the atmospheric shock for simulations with

different crater geometries but same vent conditions A passes through the point (x, y) = (1000, 1500)

m at the same time, t = 4 s, which gives an average velocity on this period of time of 450.69 m/s.

The atmospheric sound speed at the same height y = 1500 m is 334.46 m/s. Due to the much smaller

overpressure at the vent, in the case of Simulation E the pressure wave is weaker, and its propagation

speed is lower. Here the shock wave passes through (x, y) = (1000, 1500) m at t = 5 s, which gives an

average speed of 360.55 m/s.

8.5.3 Conclusions

The proposed wave propagation numerical approach has proved to be effective in the description of

wave patterns that develop in underexpanded supersonic volcanic jets. In particular, the adaptive mesh

refinement technique applicable to the method is advantageous in the numerical investigation of the jet

thrust region, since we are interested in resolving fluid structures in localized spatial areas, which are

small compared with the computational domain needed for the simulation.

Our numerical study on overpressure jets has shown results consistent with experimental work, e.g.

Kieffer and Sturtevant [100], and in particular with the computational work of Neri and Ongaro, both

previous work [159] (1999), and current work pursued in the context of a joint project with us.

We summarize here the most relevant observations inferred from our numerical experiments on

overpressured volcanic jets, which agree with the discussion of Neri and Ongaro in [159].

1. As expected from the considerations on the Prandtl–Meyer angle, the jets exhibit great radial

velocities above the vent, and the diameter of the developing jet is much larger than the vent

diameter. This is also consistent with direct observation of volcanic eruptions (e.g. Mt. St. Helens

[129] and Mt. Pinatubo [191]), with experimental work [100], and numerical modeling [156].

2. We observe familiar wave patterns of steady underexpanded jets, also consistently with the ex-

perimental work [100]. In particular, as expected from considerations on features of polar shock

curves of single-phase perfect gases, transition from regular to Mach reflection is induced by in-

creasing crater opening angle and pressure at the vent. With regard to crater morphology, an

important parameter that controls the decompression process and consequent jet structure is the
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opening angle, according to both our results, and results of Neri and Ongaro [159]. The crater

radius seems to be of minor importance.

3. Shock pressure waves with the typical N-shape signal that characterizes explosive volcanic erup-

tions are numerically described.

4. We highlighted nonequilibrium effects (relaxation zones), which are significant in the internal jet

structure, and shock thickening phenomena.

5. Jets are characterized by unsteady phenomena that cause distortion of jet boundaries. In partic-

ular, a vortical structure growing in time is developed at the flow head.

All the observations above suggest the importance of studying the decompression process by a

model that accounts for multi-dimensional topography effects, as well as nonequilibrium and unsteady

phenomena.
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Figure 8.11: Simulation A. α = 90◦ (no crater). Dust density at t = 4, 10, 20, 30 s. Contour values =
10[−4.8:.4:2.4] [kg/m3].
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Figure 8.12: Simulation A. α = 90◦ (no crater). Gas density, dust density, gas temperature, and gas
velocity at time t = 30 s.
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Figure 8.13: Simulation A. R = 254 m, α = 45◦. Dust density at t = 4, 10, 20, 30 s. Contour values =
10[−4.8:.4:2.4] [kg/m3].
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Figure 8.14: Simulation A. R = 254 m, α = 45◦. Gas density, dust density, gas temperature, and gas
velocity at time t = 30.
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Figure 8.15: Simulation A. R = 254 m, α = 30◦. Dust density at t = 4, 10, 20, 30 s. Contour values =
10[−4.8:.4:2.4] [kg/m3].
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Figure 8.16: Simulation A. R = 254 m, α = 30◦. Gas density, dust density, gas temperature, and gas
velocity at time t = 30.
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Figure 8.17: Simulation A. R = 254 m. Above: Mach number, contour values = [0 : .2 : 4.4]. Below:
normal Mach number, contour values = [−4.4 : .2 : 4.4]. From left to right: α = 90◦, 45◦, 30◦.
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Figure 8.18: Simulation A. R = 254 m. Pressure gradient at t = 4 s (above) and t = 30 s (below) for
α = 90◦, 45◦, 30◦, from left to right. (Black intensity scale is differently set in each plot.)
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Figure 8.19: Simulation A. α = 90◦ (no crater). Pressure gradient at t = 2 and 20 s, highlighting the
Mach disk shock structure. Above: Computation on a fine uniform grid with 368 × 736 cells of size =
7.9375 m. Below: Computation with adaptive mesh refinement. Coarsest grid: rectangle with 92× 184
cells of size = 31.75 m. Grid levels = 3, refinement ratio = 2. CFL = 0.9.
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Figure 8.20: Simulation A. Three-dimensional results (no crater). Pressure gradient at t = 2 and 8 s.
Below: x-slices. Computational domain: octant with 58× 58× 95 cells (uniform grid). Cell size = 19.9
m. CFL = 0.5.
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Figure 8.21: Simulation A. R = 254 m, α = 30◦. Above: Pressure at t = 4, 10, 20, 30 s. Contour values
= 104[1 : 0.5 : 440] Pa. Computation with adaptive mesh refinement. Coarsest grid: rectangle with
92 × 184 cells of size = 31.75 m. Grid levels = 3, refinement ratio = 2. CFL = 0.9. Cell size on the
finest grid = 7.9375 m. Below: Refinement grid patches.
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Figure 8.22: Type of mapped grid used for experiments with a crater at the ground surface. A quadri-
lateral logically rectangular grid is employed in which the horizontal grid lines are interpolated between
the surface topography and a fixed upper elevation, while the vertical grid lines are still vertical.
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Figure 8.23: Simulation A. α = 90◦ (no crater). Vertical velocity difference (left) and temperature
difference (right) between gas and solid phase along the y axis at t = 30 s.
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Figure 8.24: Simulation A. R = 254 m. α = 30◦. Above: Vertical velocity difference at t = 30 s between
the gas and solid phase, highlighting disequilibrium zones. The figure on the right focuses on the region
near the crater. Contour values = [−22 : 2 : 22] m/s (left), and = [−22 : 1 : 22] m/s (right). Note that
the colour scale [−20, 15] and the contour values have been chosen to give contast to nonequilibrium
regions, but (vg − vd) reaches about −47 m/s in the region behind the first reflected shock. Below:
Vertical velocity difference and temperature difference between the two phases along the y axis.
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Figure 8.25: Simulation A. R = 254 m. Pressure wave signature at the point (x, y) = (1000, 1500) m,
in terms of the pressure and the time pressure gradient. Top, left: Simulation A, no crater. Top, right:
Simulation A, α = 30◦. Bottom, left: Simulation A, α = 45◦. Bottom, right: Simulation E, no crater.
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Figure 8.26: Simulation A. R = 508 m, α = 45◦. Dust density at t = 4, 10, 20, 30 s. Contour values =
10[−4.8:.4:2.4] [kg/m3].
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Figure 8.27: Simulation A. R = 241.3 m. Comparison between the results obtained with the presented
model based on clawpack (right) and those obtained by using PDAC by T. Esposti Ongaro at INGV
(left). Above: α = 90◦ (no crater). Below: α = 30◦. Dust density contours at t = 10 and 20 s. (Results
with PDAC reported here with courteous permission of the author.)
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Figure 8.28: Simulation E. α = 90◦ (no crater). Dust density at t = 4, 10, 20, 30 s. Contours values =
10[−4.8:.4:2.4] [kg/m3].
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Figure 8.29: Simulation E. α = 90◦ (no crater). Gas density, dust density, gas temperature, and gas
velocity at time t = 30 s.
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Figure 8.30: Simulation E. α = 90◦ (no crater). Left: Mach number, contour values = [0 : .2 : 3]. Right:
normal Mach number, contour values = [−3 : .2 : 3].

Figure 8.31: Simulation E. α = 90◦ (no crater). Pressure gradient at t = 4 and 30 s.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

This thesis has been devoted to the numerical modeling of compressible multicomponent flows by

means of wave propagation algorithms based on approximate Riemann solvers. This work collects

different but related studies, and in this chapter I summarize the results achieved and outline some

future directions of research.

9.1 Relaxation Riemann Solvers

In an effort of contributing to the analysis and development of new and more efficient numerical schemes,

I have explored the connection between a simple relaxation scheme of the kind proposed by Jin and

Xin [93] and a type of approximate Riemann solvers for the original system of conservation laws. This

has led to the introduction of a general class of solvers [124], called relaxation Riemann solvers, which

for a system of m conservation laws use 2m waves, and are based on splitting both the jump in q

and the jump in the flux simultaneously. Relations with classical solvers such as HLL and Roe’s, as

well as with standard entropy fixes of the type of Harten and Hyman [77], have been analyzed and

illustrated. The added flexibility of these more general approximate Riemann solvers is advantageous

in several problems, such as systems where a Roe matrix is unavailable, systems with source terms, and

conservation laws with spatially varying flux functions.

In the framework of this class of solvers enters the so-called f-wave formulation of wave propagation

algorithms. This f-wave technique has been employed in our work on particle-laden flows modeling

to design a numerical algorithm that treats efficiently gravity source terms, and helps in solving the

non-strictly hyperbolic equations governing the pressureless particulate phase.

9.2 Real Compressible Multifluid Flows

A novel Godunov-type method for compressible multifluid flows governed by a general equation of state

has been proposed, based on the idea of a local linearization of the pressure law p(E , ρ). This method

is able to prevent the appearance of spurious pressure oscillations at contact interfaces, which is a well

known numerical difficulty in multifluid problems [2, 108, 96, 193]. I have analyzed the reasons of the

origin of this problem, recognizing that it is related to the nonlinearity of a generic law p(E , ρ) through

which the cell value of the pressure is computed from the conserved variables in the framework of

Eulerian conservative schemes. In particular, I have remarked that this difficulty affects also single-gas

flows for an arbitrary equation of state, and not only multifluid flows, an aspect that usually is not

stressed adequately in the literature.

A first step in the design of the multifluid method has been the introduction of an algorithm for

single-component fluids with a general equation of state. This method defines a simple and general

procedure that can be applied to some classical finite volume methods designed for a restricted class of

equations of state to develop a scheme for arbitrary pressure laws. In particular, I have illustrated how

the idea of this approach specializes to the classical Roe’s scheme. I have also shown that the presented

method can be reinterpreted as a relaxation scheme for the original Euler system, thus exhibiting some

similarity with the energy relaxation idea of Coquel and Perthame [39]. With respect to the latter

method, the presented approach allows a local definition of propagation speeds based on satisfying
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the local sub-characteristic condition for the relaxation system in the equality limit, which reduces the

numerical diffusion.

A further step has been the introduction of a modified version of the single-fluid algorithm that

prevents pressure oscillations at contact discontinuities. Finally this Pressure Linearization Method

[163] has been extended to real multifluid flows. The resulting scheme is a flexible tool for single and

multifluid flow computations with an arbitrary equation of state that guarantees pressure equilibrium at

material interfaces. This is a step forward with respect to many methods proposed in the literature that

are applicable only to the ideal polytropic gas law or the stiffened gas equation of state [3, 4, 178, 74, 182],

or other more general laws but still with a specific form [183, 184]. With respect to the method of Allaire

et al. in [5], which can also be applied to arbitrary equations of state, our algorithm avoids an iterative

procedure that is needed in the general case in [5].

Further work is planned to test and possibly improve the robustness of the proposed multifluid

method for problems with large density and energy ratios.

9.3 Dusty Gas Flows and Applications to Volcanic Jets and Plumes

An extensive part of my thesis work has been dedicated to the study of a two-phase model for gas flows

carrying a particulate suspension. An f-wave propagation algorithm has been developed to solve the

governing system of equations, which is able to address the numerical difficulties that arise in relation to

source terms modeling, to the non-strictly hyperbolic character of the equations for the pressureless dust

phase, and to the possible appearance of unphysical states with negative dust densities. Specifically, the

algorithm exhibits the following features: (i) Small perturbations from gravitational steady states are

modeled efficiently through a technique that incorporates the gravity source term into the Riemannn

solver, as described in our work [124]. (ii) A semi-analytical solver has been designed for the treatment

of inter-phase drag and heat transfer source terms that models these processes for a wide range of

relaxation time scales. This allows to describe both the situation in which mechanical and thermal

equilibrium is reached on a very small time scale (and the numerical problem is stiff), and, on the other

hand, phenomena of formation of relaxation zones of finite width behind shock structures. (iii) The

f-wave Riemann solver for the non-strictly hyperbolic equations of the pressureless particulate phase

models robustly vacuum states and performs efficiently high resolution corrections.

The software used is based on the Fortran routines of clawpack [115]. My contribution has been

the implementation of the presented model on two-dimensional quadrilateral (curvilinear) grids with

cylindrical symmetry and with adaptive mesh refinement, and on three-dimensional Cartesian grids.

I have then devoted my work to the application of the two-phase dusty flow model to the simulation

of volcanic jets and plumes that characterize explosive volcanic eruptions. The employment of a wave

propagation finite volume method based on Riemann solvers is a novel approach in the context of the

numerical simulation of volcanic processes. In fact, many well established two-dimensional two-phase

numerical methods that have been extensively used in the past twenty years to describe explosive erup-

tion phenomena [206, 197, 51, 150, 155] are based on the Implicit MultiField finite-difference technique

of Harlow and Amsden [75] (1975). The shock-capturing conservative method proposed in this thesis

work has been shown particularly effective in the description of compressibility effects and shock wave

patterns.

As a starting work, we have kept the model very simple, omitting some effects that are taken

into account in other more complex models, such as turbulence and viscosity. These effects, however,

can be reasonably neglected in eruption dynamics problems on the small time scale dominated by

compressibility effects. To these I have dedicated my numerical study.

Some tests on pyroclastic dispersion dynamics and comparison with results in the literature have

shown that the proposed model is able to capture the main features of various styles of eruption columns,
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Plinian, collapsing, transitional, for different sets of eruption parameters.

I have then specifically focused my study on modeling the fluid dynamic structures characterizing

overpressured supersonic volcanic jets. The decompression phase of these jets has been recognized

[100, 210] as having a primary role in determining the subsequent development of the eruption column

and its pyroclastic dispersion. The main motivation for such a study is that little work has been done

in the literature by means of multiphase numerical modeling to explore in depth the mechanisms of the

expansion of the eruptive gas-pyroclasts mixture, and describe the details of the structure of the jet

thrust region. Experimental works such as [100] use pure gases, and cannot model gravitational effects,

due to the lack of a scaling relation for gravity. Theoretical models have the drawback of the single-gas

(pseudogas) approximation and the one-dimensional limit.

A relevant part of my study, which is also joint work with A. Neri and T. Esposti Ongaro of the

Istituto Nazionale di Geofisica e Vulcanologia, Pisa, (Italy) (who already made preliminary work on

the subject [159], 1999), is the analysis of the jet expansion process on different crater geometry. We

have described shock wave patterns that may form inside volcanic jets, and we have highlighted the

importance of the role played in particular by the crater opening angle in controlling the dynamics of the

decompression. Effects such as transient phenomena, instabilities, and relaxation zones behind shocks,

have been put into evidence. These effects can be properly modeled only by a two-phase transient

model.

Regarding the numerical code, besides its applicability to mapped grids, which allows modeling crater

morphology (and general topography), another advantageous feature is the adaptive mesh refinement

technique. This allows a fine resolution of fluid structures in regions of strong gradients and shocks,

and coarse resolution in extended parts of the domain where there are not relevant effects to capture,

thus limiting the computational effort.

The modeling of a complex global phenomenon such as a volcanic event should involve the col-

laboration and the converging efforts of many disciplines, from Geophysics to Numerical Analysis.

Experimental, theoretical and computational work should be considered as interactive areas each with

a complimentary role with respect to the others. With my study I wished to give a contribution for a

better understanding of some of the thermo-fluid dynamic processes that characterize explosive volcanic

events.

9.4 Future work

My plans for future work focus mainly on further developments in the numerical modeling of volcanic

processes.

Extensions of the current physical model are under study. Planned work includes the description

of particles of different size and microscopic density, to be able to capture elutriation phenomena, and

the modeling of the water vapor content, which might have an important role on buoyancy forces

in pyroclastic dispersion problems on the long time scale. Accounting for water vapor would require

considering a two-fluid gaseous phase, and in this context the algorithm developed for real compressible

multifluid flows could be exploited. This method would be advantageous for example for using a gas

specific heat relation dependent on the temperature, as for instance in [51, 150, 154].

An ambitious project in relation to the simulation of volcanic phenomena is the development of

a fully three dimensional model with adaptive mesh refinement on hexaedral grids, which could be

useful in the assessment of volcanic hazard. Such a three-dimensional model would allow to take

into account real volcanic topography, anisotropic atmospheric conditions, and in particular it could

simulate asymmetrical column collapse, as it has been observed in laboratory experiments, e.g. [25].

These aspects are all important for volcanic hazard analysis. Some work on this project is currently in

progress in collaboration with R. J. LeVeque and D. Calhoun.
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[21] T. Buffard, T. Gallouët, and J.-M. Hérard. A sequel to a rough Godunov scheme: application to

real gases. Computers and Fluids, 29:813–847, 2000.

[22] A. Burgisser and G. W. Bergantz. Reconciling pyroclastic flow and surge: the multiphase physics

of pyroclastic density currents. Earth Planet. Sci. Lett., 202:405–418, 2002.

[23] M. I. Bursik and A. W. Woods. The dynamics and thermodynamics of large ash flows. Bull.

Volcanol., 58:175–193, 1996.

[24] H. B. Callen. Thermodynamics and an Introduction to Thermostatistics. John Wiley & Sons,

1985.

[25] S. N. Carey, H. Sigurdsson, and R. S. J. Sparks. Experimental studies of particle-laden plumes.

J. Geophys. Res., 93:15314–15328, 1988.

[26] A. Chalabi. Convergence of relaxation schemes for hyperbolic conservation laws with stiff source

terms. Math. Comput., 68:955–970, 1999.

[27] Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher. A level set formulation of Eulerian interface

capturing methods for incompressible fluid flows. J. Comput. Phys., 124:449–464, 1996.

[28] S. Chapman and T. G. Cowling. The Mathematical Theory of Nonuniform Gases. Cambridge

University Press, 1970.

[29] G. Q. Chen, C. D. Levermore, and T. P. Liu. Hyperbolic conservation laws with stiff relaxation

terms and entropy. Comm. Pure Appl. Math., 47:787–830, 1994.

[30] G.-Q. Chen and H. Liu. Formation of δ-shocks and vacuum states in the vanishing pressure limit

of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal., 34:925–938, 2003.



156

[31] H.-T. Chen and R. Collins. Shock wave propagation past an ocean surface. J. Comput. Phys.,

7:89–101, 1971.

[32] A. B. Clarke, A. Neri, B. Voight, G. Macedonio, and T. H. Druitt. Computational modelling

of the transient dynamics of the August 1997 Vulcanian explosions at Soufrière Hills Volcano,

Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersion. In T. H.

Druitt and B. P. Kokelaar, editors, The Eruption of Soufrière Hills Volcano, Montserrat, from

1995 to 1999. Geological Society, London, Memoirs, volume 21, pages 319–348. The Geological

Society of London, 2002.

[33] A. B. Clarke, B. Voight, A. Neri, and G. Macedonio. Transient dynamics of vulcanian explosions

and column collapse. Nature, 415:897–901, 2002.

[34] J.-P. Cocchi and R. Saurel. A Riemann problem based method for the resolution of compressible

multimaterial flows. J. Comput. Phys., 137:265–298, 1997.

[35] G. Cochran and J. Chan. Shock initiation and detonation models in one and two dimensions.

Lawrence Livermore National Laboratory Report, 1979.

[36] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem for real gases.

J. Comput. Phys., 59:264–284, 1985.

[37] P. Colella and P. Woodward. The piecewise-parabolic method (PPM) for gas-dynamical simula-

tions. J. Comput. Phys., 54:174–201, 1984.

[38] F. Coquel, K. El Amine, E. Godlewski, B. Perthame, and P. Rascle. A numerical method using

upwind schemes for the resolution of two-phase flows. J. Comput. Phys., 136:272–288, 1997.

[39] F. Coquel and B. Perthame. Relaxation of energy and approximate Riemann solvers for general

pressure laws in fluid dynamics. SIAM J. Numer. Anal., 35:2223–2249, 1998.

[40] R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Springer, 1948.
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