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University of Washington
Abstract

The Immersed Interface Method — A Numerical Approach for Partial
Differential Equations with Interfaces

by ZHILIN L1

Chairperson of Supervisory Committee: Professor Randall J. LeVeque
Department of Applied Mathematics

This thesis describes the Immersed Interface Method (IIM) for interface problems, in which
the partial differential equations have discontinuities and singularities in the coeflicients
and the solutions. A typical example of such problems is heat conduction in different
materials (discontinuous heat conductivity), or fluid interface problems where the surface
tension gives a singular force that is supported only on the interface. The complexity of
the interfaces makes it more difficult to develop efficient numerical methods.

Our immersed interface method is motivated by and related to Peskin’s immersed bound-
ary method (IBM) for solving incompressible Navier-Stokes equations with complicated
boundaries. Our method, however, can apply to more general interface problems and usu-
ally attains second order accuracy.

We use uniform Cartesian grids so that we can take advantages of many conventional
difference schemes for the regular grid points which are away from the interface. Hence
attention is focused on developing difference schemes for the irregular grid points near the
interface, which can cut through the grid in an arbitrary manner. Assuming a knowledge of
jump conditions on the solution across the interface, which usually can be obtained either
from the differential equation itself or by physical reasoning, we carefully choose the stencil
and the coeflicients of the difference scheme. By using local coordinate transformations
and a modified undetermined coefficients method, we force the local truncation error to
be O(h?) at regular grid points and O(h) at irregular ones. For many interface problems,
this leads to a second order accurate solution globally even if the solution is discontinuous.
Cubic splines are used to represent and update the complicated interfaces.

We have implemented the immersed interface method for a number of interface problems
including: general elliptic equations in one, two and three dimensions, alternating direction
implicit methods for heat equations with singular sources or dipoles, the Stokes equations
with a moving interface, and Stefan-like 1D moving interface problems in which the interface
is determined by a nonlinear differential equation. Theoretical analysis and numerical
examples are presented to show the efliciency of the immersed interface method. We believe
that this methodology can be successfully applied to many other interface problems as well.
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Chapter 1
INTRODUCTION.

Interface problems have attracted a lot of attention from numerical analysts over the
yvears. Mathematically, interface problems usually lead to differential equations whose in-
put data and solutions have discontinuities or non-smoothness across some interface. Many
numerical methods designed for smooth solutions do not work efficiently for interface prob-
lems. This thesis is concerned with developing, improving and analyzing numerical methods
for various interface problems using uniform Cartesian grids. We will take advantage of the
classic central difference scheme at regular grid points which are away from the interface
and derive modified difference schemes at irregular grid points. These are much fewer in
number than the regular ones so this will not increase the computational cost too much.
Generally we get second order accurate solutions globally in the infinity norm for most of
the interface problems discussed in this thesis. Combining these methods with the spline
interpolation techniques, we are also able to deal with complicated geometries and moving
interface problems.

Interface problems occur in many physical applications. We present a model problem
below to show the importance and characteristics of interface problems.

1.1 A model problem.

The heat equation
u =V -(BVu)+ f (1.1)

describes many physical phenomena. For instance, u may represent the temperature distri-
bution in a material with heat conductivity 3. If there are two or more materials present,
then the coefficient § may be discontinuous across the interfaces between different mate-
rials. Physically, the temperature should be continuous, which means [u] = 0 across the
interfaces, where [ - | denotes the jump in a quantity. The heat flux Su,, across any interface
should also be continuous if no heat source is present there. If 3 is discontinuous, then there
must be a jump in the normal derivative u,,.

In the one-dimensional case, the heat equation is a mathematical model for heat con-
duction in a rod and we are looking at the case where the heat conduction coeflicient
changes abruptly at some point # = a. The governing equation for the temperature u(z)
in dimensionless form is

up = (Buz), + f(z,1)
w(0,1) =u(1,4) =0, u(z,0)=g(z),

where g(z) is the initial temperature and f is a heat source. We assume 0 < a < 1 and
distinguish the following special cases:



e The source term f(x,t) is continuous, but 3 is not. Then the heat flux is continuous,
ie., [fuz] = 0, but u, is not.

o f(z,t) = C(t)6(z — a), in other words there is a singular heat source at a point
a. So the heat flux at @ now has a jump given by the source strength C(%), i.e.,
[Bug] = —C(t). In this case u, is discontinuous even if 3 is continuous.

o The steady state problem: (Bug), = [f(z). In particular suppose
f(z) = Cé(z — a) and § is constant on each side of the interface a. Then the
solution is a piecewise linear function; see the following diagram. Even for this sim-
plest example, special care has to be taken to deal with the discontinuity in § and
the delta function singularity when we want to solve the problem numerically.

B~ .O‘ gt [u] = 0

u(z) [Bus] = C

For a two-dimensional model, we consider two materials with different heat conductivity
contacting on an interface, for example a circle as shown in Fig. 1.1 (a). Initially we assume
the temperature is zero everywhere and that a heat source is applied at two boundaries.
The mathematical description of the problem is the following:

’U,tIV(ﬁVU), —1§$,y§1,
5= 1 if 22+ y2 < %
100 otherwise,

BC: u(-1,y,1) = u(z,—1,t) = 0;

u(z,1,t) = sin <(a: + 1)%) ;ou(l,y,t)=sin ((y + 1)%) .
IC: w(z,y,0)=0.

The heat propagates as time evolves and travels faster in the region with larger heat con-
ductivity than the region with small one. Figure 1.1 (a) shows the contour plot of the
temperature distribution at a short time while (b) is the mesh plot of the solution.

1.2 Overview of the interface problems considered in this thesis.

Interface problems are those problems in which the input data (such as the coefficients
of differential equations, source terms etc.) may be discontinuous or even singular across
one or several interfaces which have lower dimension than that of the space where the
problem is defined. The solution to the problem, therefore, may also be non-smooth or even
discontinuous across those inlerfaces. In this thesis we only consider those problems with
smooth interfaces and bounded solutions. In the future we hope also to study problems



-0.2

-04

-0.6

-0.8

0.8

0.6

0.4

0.2

40 x 40

-~

ﬁ+

-0.5

0 0.5 1

time = 0.01

%
O
AKX
i
o,::
e
XN
i
LD
5%
5

QIR
R

SESINS
LIS
IS
55

% c‘
Wl
Al
\\\&}\\\‘
Al

i

s
bl
i

55
S

Figure 1.1: Heat propagation in different materials. («) Contour plot of the temperature.
(b) Mesh plot of the solution.

where the interface has corners or kinks and the solution has singular behavior near these

points.

This thesis is concerned with the development of the immersed interface methods for
the following classes of interface problems:

o FElliptic equations corresponding to the steady state heat equations

V- (BVu)+ru=f

in one, two and three (mostly two) space dimensions, where 3, k, and f may be
discontinuous across some arbitrary interface(s), f can also be singular as in the form

7= [ P = X(5)) ds.

(1.2)

where I'is the interface. We will analyze some typical model problems to show how the
immersed interface method works in Chapter 2. Various examples are also presented

there to demonstrate the efficiency of the method.

o Heatl equations in 2D with fized interfaces. One class of problems is where the co-
efficients of the differential equation are continuous but the source term f(z,y,1)
corresponds to singular sources or dipoles along the interface. Then the solution may
be non-smooth or discontinuous. We want not only to develop a difference methods
for such problems but also to use the Alternating Direction Implicit (ADI) technique
for better efficiency. In Chapter 3 we discuss how to modify the ADI scheme for such

problems.

e 1D moving interface problems. In many applications, the interface is moving with
time [13], [15], [16], [17], [18], [19], [24]. An interesting class of such problems arises
from modeling phase transitions, e.g., solidification or melting. A simple example is
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the classic Stefan problem modeling the interface between water and ice by a heat
equation coupled with an equation for the motion of the interface. In this case there
is a discontinuous heat conduction coeflicient and also a singular heat source with
support on the interface, due to latent heat released in the solidification process. In
the one dimensional case, the equation takes the form

ur = (Pug), — (1) 6 (z — (1)),

where the interface a(t) is determined by some non-linear ordinary differential equa-
tion

da
i w(t, o, w, Ug, - +).

Various approaches have been used to solve Stefan problems numerically [13], [20],
[24], [28]. Our immersed interface method seems to be a very promising approach for
these problems. We discuss some one-dimensional problems with different interface
conditions in Chapter 5.

The Stokes equations with a moving interface in 2D. Consider a two-dimensional
viscous incompressible fluid containing an immersed boundary. If the effects of inertia
are negligible then the governing equations are the Stokes equations:

Vp = vAG + F(Z,1),
V-i=0,

where # is the fluid velocity, p is the fluid pressure, v is the constant fluid viscosity,
and F is the boundary force

(&1 = /F(S , Fls, 0627 — X(s,1))ds, (1.3)

where )?(s,t) is the Lagrangian representation of the immersed moving boundary,
parameterized by s and f(s,t) is the force strength along the interface. For such
problems the pressure will have a jump discontinuity across the interface and so will
the normal derivative of the velocity. The interface moves with the fluid so it satisfies
the equation

%—f(s,t) = @(X(s,1),1). (1.4)
We apply the immersed interface method for such problems in Chapter 4. Detailed
analysis to handle the delta function and its derivative are given to derive the jump
conditions needed for our immersed interface method. A quasi-Newton method with
rank-2 updating is used to solve the nonlinear system of equations when the Crank-
Nicholson implicit scheme is used for the stiff differential equation (1.4) determining
the motion of the the elastic interface.



1.3 OQur strategy and other approaches.

The Immersed Interface Method (IIM) takes various different forms for different problems.
But there are some common characteristics which we list below.

1.3.1 The skeleton of the immersed inlerface method.

e Solve the PDE on a uniform Cartesian grid.
o Use finite difference methods.
o Immerse the interface(s) in the Cartesian grids.

o Apply the standard difference scheme at regular grid points which are away from
interface(s).

e Derive the jump relations across the interface(s).

e Modify the difference scheme at irregular grid points which are near the interface by
using the jump conditions.

e Solve the resulting system of difference equations to get the approximate solution of
the differential equation.

¢ Estimate the global error through truncation error analysis.

We will discuss the details of each step in the coming chapters.

1.3.2  Why uniform Cartesian grid?

One of the most obvious advantages of using uniform Cartesian grids is that there is almost
no cost for grid generation, and the conventional difference schemes can be used at most grid
points (regular) which are away from the interface(s) since there are no irregularities there.
Only those points near the interface(s), which are usually much fewer than the regular grid
points, need special attention.

Certainly there are many other ways to discretize interface problems. Using a grid that
conforms to the interface is an obvious alternative, for example a structured grid that is
deformed in the neighborhood of the interface (e.g. [7]) or an unstructured triangulation.
The finite element method on such a grid would be a natural choice for elliptic equations,
and can be used very successfully (e.g., [3]). However, in many contexts the use of a uniform
grid may be preferable.

In particular, for the equation

(Buz)s +(Bu,), = [ F(s)6 (2 = X(5)) 6 (y = Y (s) ds (15)

where I' is an arbitrary interface, if 5 is constant then we will see that our modified difference
equation uses the standard 5—point difference operator and only the right hand side of the



linear system is modified (see Chapter 2). This means that fast Poisson solvers can still
be used to solve the system on a uniform grid, an advantage that would be lost on an
irregular grid. Even if § is discontinuous so that the coeflicients in the linear system must
be modified, the system maintains the same block structure as in the continuous case. One
can then use available software designed to accept a user—specified stencil on a uniform
rectangular grid.

More importantly, we are interested primarily in time-dependent problems, and the
interfaces are typically moving. Although it is possible to develop moving mesh methods
that conform to the interfaces in each time step, this is generally much more complicated
than simply allowing the interface to move relative to a fixed underlying uniform grid. For
example, the immersed boundary method has been very successful in modeling flow in very
complicated time-dependent geometries such as the beating heart with valves opening and
closing (see the next section). This would be difficult if not impossible to do with grids that
conform to the boundary.

1.3.3  Peskin’s immersed boundary method.

A more complicated interface problem arises in using the immersed boundary method (IBM)
to solve the incompressible Navier—Stokes equations in a region with complicated geometry.
This method was originally developed by Peskin[41], [42] to model blood flow in the heart,
and has since been used for many other problems, particularly in biophysics [5], [22], [25],
[26]. The idea is to solve the Navier-Stokes equation on a uniform grid in a rectangular
region in spite of the complicated time-varying geometry (see Fig 1.2), e.g., the heart wall.
Without worrying about the boundary conditions, the Navier-Stokes equations then take
the form

@ +(@-V)i+Vp=puAi+F,

V-i=0, (1.6)
ox_,

dat 7

where F has the same form as (1.3). Now these equations are defined on the rectangular
region. As in the Stokes equations we mentioned earlier, the boundary is viewed as being
immersed in the fluid and moves with the local fluid velocity. Since the force is singular,
the pressure is discontinuous and the velocity is not smooth across the interface. The force
strength f(s) usually can be determined by physical reasoning, say by Hooke’s law for the
elastic interfaces.

This approach leads to an interface problem with a singular source. Peskin uses a
discrete approach to solve such interface problem numerically. First he discretizes the
immersed boundary by a set of Lagrangian points (X (sx),Y(sz)), k& = 1,2,---,m (see
Fig 1.2), and replaces the integral in (1.3) by a discrete sum, also replacing the delta
function by some discrete approximation dy(z) with support related to the mesh width h.

Simple examples are the hat function

di(z) = { gh - lzh/ne i Iii ; Z (1.7)
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Figure 1.2: Peskin’s approach: embedding the region in a rectangle with a uniform Cartesian

grid.
and Peskin’s discrete delta function

1 .
3 (4 cos(ma/2h)) if x| < 2h
dn(e) = { 0 if |z > 2h. (1.8)

(a) " (b)
1/(2h)

hoo 2h h

Figure 1.3: Two typical discrete delta functions. (a) Hat delta function. (b) Peskin’s delta
function.

Figure 1.3 is the plot of these two discrete delta functions. They are both continuous. The
first one is not smooth but gives second order accuracy for many one dimensional problems
[6]. Peskin’s discrete delta function is smooth and usually is only first order accurate because
it will also smooth the kinks in the solution if there are any.

With Peskin’s discrete delta function approach the discrete form of (1.3) is

fii = i C(sk) dn(wi — Xi) dn(y; — Yi)As. (1.9)
k=1

In one space dimension this approach is easy to analyze. In this case the interface reduces
to a single point. For example, for the one-dimensional equation u,, = Cé(z —a),z = a €



(0,1), the finite difference method
(u]~+1 — QUJ' + u]~_1)/h2 = th(.rj — a) (1.10)

with dj, given by (1.7) turns out to be very accurate; in fact it produces the exact solution
u = u(z;) at all grid points in spite of the non-smoothness of u (see [6]). However if we use
(1.8) to define dp, we only end up with a first order accurate result.

Beyer and LeVeque[6] have also analyzed time-dependent versions of the problem and
show that second order accuracy can still be obtained with an appropriate choice of the
discrete delta function.

Our original motivation is to analyze and improve the results in [6] to two space di-
mensions and try to improve Peskin’s method. However, it seems very unlikely that the
discrete delta function approach can achieve second order accuracy except in a few special
situations, e.g., when the interface is aligned with the grid. An intuitive explanation why
it can not be second order accurate in two space dimensions is that the expression of (1.9)
as the discrete form of right hand side of (1.5) is independent of the derivative of C'(s) and
the curvature of the interface, which seem to be crucial in obtaining second order accuracy
(see Chapter 2).

1.3.4 Harmonic averaging.

Peskin’s approach is designed for interface problems with singular delta functions. For prob-
lems with discontinuous coefficients, another approach to deriving the proper coeflicients
on a uniform grid stencil is the method of harmonic averaging, see [4], [46] and [50]. The
one dimensional expression (fu)., for example, can be approximated by

1

7 [@%(Uiﬂ — ;) = i1 (ui = uz‘—l)] :

41 = z;+h/2) and achieve second
2

order accuracy. If § is discontinuous in [#;_1,#;41], then the coefficients can be chosen as

harmonic averages of 3(z), e.g.,

[} [ s

This can be justified by homogenization theory for problems where 3(z ) varies rapidly on the
scale of the grid cells, and to some extent also for the case where § is simply discontinuous
as we are considering, but the fact that this yields second order accurate results seems
to be primarily the result of fortuitous cancellation. To see this, suppose that 3 has a
discontinuity at a which lies between z; and z;4;. So z; and z;4; are two irregular grid
points. The local truncation error defined as

If 3 is smooth then we can take ﬂz_% = ﬂ(wl_l_%) (where z;

1
T = (Bue), — 75 [@%(Uiﬂ — i) = B;_1(ui - ui—l)]

is only O(1) at z; and z;4; which usually means the solution to the differential equa-
tion would only be first order accurate. But more careful investigation reveals that 7}, =



—Tj+1 + O(h) and the cancellation to the order O(h) is the key to the second order ac-
curacy. However, we need to calculate the integrals to O(h®) at i = j and ¢ = j + 1, to
guarantee the second order accuracy, which is not so easy especially in the interval where
the discontinuity takes place.

In two space dimensions, harmonic averaging is also commonly used to deal with discon-
tinuous coefficients [4], [46], now integrating over squares to obtain the harmonic average
of B(z,y). In this case, however, the method does not appear to give second order accurate
results because the cancellations are very unlikely to take place for arbitrary interfaces. It
is also not practical to compute the integrals to O(h?) at irregular grid points in two dimen-
sions especially when (3 is discontinuous across the interface. We find that our approach is
greatly superior.

1.3.5 Other approaches.

Because of the many advantages of the uniform Cartesian grid, there has been a lot of
research done using uniform Cartesian grids to solve interface or non-interface problems.
Tikhonov and Samarskii[50] discuss one-dimensional elliptic interface problems and derived
second order accurate methods on uniform grids using jump conditions at a point of dis-
continuity in the coefficients. In two dimensions, Mayo [35] has considered similar problems
and shown how standard difference formulas can be modified to obtain second order ac-
curacy in the context of solving Poisson or biharmonic equations on irregular regions by
solving some integral equation. The region is embedded in a regular region where a fast
solver can be used on a uniform grid and the right hand side is appropriately modified
near the original boundary. Mayo and Greenbaum[38] consider an interface problem in
magneto-statics of the form (1.5) with a piecewise constant coefficient 3. The possibility of
extension to variable § is mentioned in [36]. Li and Mayo [32] discuss difference methods
to solve the heat equations with fixed interfaces. Mayo [37] studied the stationary Stokes
equations with immersed interfaces in terms of Cauchy integrals.

MacKinnon and Carey[33] also use a similar approach in one dimension and make some
extensions to two-dimensional problems in which the interface lies along a coordinate direc-
tion. Fornberg and Meyer-Spasche[27] have considered elliptic equations with free bound-
aries which are solved on a uniform grid by adding correction terms near the interface to
improve the accuracy.

1.4 Mathematical aspects of the interface problems.

1.4.1 Interface conditions.

Generally, the interface problems with bounded solutions can be decomposed into one or
several regions whose size and shape may change with time. The solutions in different
regions are continuously differentiable to a certain degree and they are coupled by some in-
terface conditions, usually jump relations across the interfaces. It is crucial for our approach
that we be able to derive the interface conditions directly from the differential equations or
other known data. Sometimes this turns out to be a challenge.

Sometimes we can derive the interface conditions from the differential equations them-
selves. In the equation (fu;), = C 6(z — a), for example, the jump relations [u] = 0
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and [ u;] = C can easily be obtained from the equation itself. With a little effort we can
prove that the jump relations for equation (1.5) are [u] = 0 and [u,] = F(s) at each point
(X(s),Y(s)) on the 0©2. More complicated examples such as the Stokes equations can be
found in § 4.2.

Very often we deal with a physical application in which we have enough information
to determine the interface relations. For instance, in the example of heat propagation, we
know the temperature is continuous and the heat flux has to be zero across the interface,
so we have the interface relations [u] = 0 and [fu,] = 0 at every point of the interface. For
the ice melting problem, as another example, the value of the temperature on the interface
is known to be zero.

1.4.2  The classificalion of interface problems.

There are many kinds of interface problems. In this thesis, we roughly distinguish them by
the following classifications.
A: Classification by the structure of the differential equations.

o The coeflicients of the differential equations are continuous, but there are singular
source terms as in equations (1.5) and (1.6).

o The coefficients are discontinuous along the interface but no singular source terms are
present. The heat propagation is a typical example.

e A combination of the cases above.
B: Classification by the structure of the interface.

e The interface is fixed. The problem may or may not be time dependent.
e The interface is moving in a time-dependent problem.
e There is more than one interface.

1.4.3  Numerical difficulties.

The most noticeable characteristic of an interface problem is the discontinuity or non-
smoothness in the solution which is the result of discontinuities of the coefficients or sin-
gularities of the sources in the corresponding differential equations. This brings up several
substantial difficulties in the numerical analysis process for interface problems.

o Discretization. Special care has to be taken to discretize the discontinuous coeflicients.
Many current techniques such as harmonic averaging or coefficient smoothing [48] fail
to give high order accuracy in two or higher space dimensions.

If singular sources are present such as delta functions or dipoles, it is not clear what
the best way is to discretize them to achieve the desired accuracy in two or higher
space dimensions.
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o Arbilrary interfaces. Generally the interfaces can be arbitrary and complicated, and
analytical expressions for them are rarely available. Moreover, there are situations
in which the interface may develop cusps and spikes, change topology, and break or
merge.

o FError analysis. Because of the discontinuity and non-smoothness in the solution and
the complexity of the interface, it is difficult to perform convergence analysis in the
conventional way.

e Solving the system of discrete equations. Due to the presence of the interface and
the discontinuity or non-smoothness in the solution, the system of discrete equations
may lose many nice properties such as symmetry, positive definiteness, and diagonal
dominance etc. The structure of the linear system may be very different from regular
problems making it hard to use multi-grid or other efficient solvers.

1.4.4 Interface expressions.

To solve interface problems numerically, we need the information about the interface such
as the position, tangential and normal directions, and sometimes curvature as well. Some
common approaches to express the interface are the following.

o Analytic expression. If the interface is fixed, we may have an analytic expression
for the interface. However, it can still be difficult to calculate other information
needed such as the first derivative to determine the tangential and normal directions,
and second derivative to determine the curvature, etc., if the analytic expression is
too complicated. Then a discrete method to calculate those quantities to a certain
accuracy is needed.

o Discrete paramelerizalion and inlerpolation. Very often we only know the coordinates
of a number of control points on the interface, say (X, Ys), K = 1,2, -, in two space
dimensions. There are two ways to get derivative information on the interface.

The first approach is to use discrete difference formulas such as the central difference to
get the required derivatives. This approach has been widely used in implementing the
immersed boundary method for many problems. However we must balance the needs
of accuracy and stability in this approach. Usually higher order accurate difference
formula, or too many control points, will destabilize the algorithm and worsen the
condition of the resulting linear system of equations. This approach seems to be
unable to handle the situations when the interface develops cusps and spikes or when
the interface breaks or merges.

We have used a different approach in our numerical method. First we use piecewise
interpolation, mostly cubic splines, to get an analytic expression of the interface. Then
we calculate all the information about the interface from the analytic expression of
the interpolated interface. This approach works very well for many test problems
including Stokes flow with a moving interface. One advantage is that we can take
relatively few control points on the interface if the interface is smooth. Moreover,
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other quantities such as the force strength, jumps etc., can be calculated with the
same parameter as used in the interpolation formula (see Chapter 4). Although it
may be difficult to implement, this approach can handle cusps and spikes and even
situations when the interface breaks or merges.

o Level set approach. In this approach, the interface is modeled as the zero set of a
smooth function ¢ defined on the entire physical domain. The boundary is then
moved by solving a nonlinear equation of Hamilton-Jacobi type on the whole domain.
This approach was introduced by Osher and Sethian in [40] and has been used for
many moving interface problems ( e.g., [11], [12], [48], [53]) since then.

This approach does not rely on a discrete parameterization of the interface and can
be used for complicated moving interfaces in two and three dimensions. It can handle
cusps and spikes and situations in which the interfaces break or merge. The disad-
vantage of this approach is that it requires solving the Hamilton-Jacobi equation on
all grid points and comparing the signs of the level set function to determine the
interface while the interpolation technique only requires tracking the control points,
which are much fewer than the number of Cartesian grid points. Another difficulty of
this method is to extend certain quantities only defined on the interface to the whole
domain.

So depending on the knowledge of the physical problem, we can choose a suitable
method to express the interface. We have not tried to implement the level set approach
for our immersed interface method and that is something we are going to do in the
near future. David Chopp in the Mathematics Department, at the University of
Washington, is currently trying to solve the potential flow problems with free fluid
interfaces using the immersed interface method described in this thesis and level set
techniques.

1.5 Other applications.

In this section we mention a few more interesting applications of interface problems.

A Poisson problem with discontinuous coefficients is a fundamental problem in various
important applications, for example at the interface between two materials with different
diffusion parameters in steady state heat diffusion or electrostatic problems. Such problems
also arise in multicomponent flow problems, e.g., the porous media equations used to model
the interface between oil and injected fluid in simulations of secondary recovery in oil
reservoirs [2], [4], [46]. The immersed interface method is derived for such elliptic problems
in Chapter 2.

Discontinuous coefficient problems also can be found in hyperbolic equations, for ex-
ample in wave propagation through non-homogeneous media with discontinuities in the
propagation speed. For example, solving inverse problems in oil exploration seismology
requires a good technique for solving the forward problem, which is typically a hyperbolic
equation with discontinuous coeflicients, or wave speeds, at geological interfaces. Progress
has been made for solving such problems in one or two space dimensions with fixed inter-
faces by Chaoming Zhang, a Ph.D. student of Randy LeVeque, using the immersed interface
method described in [31] and this thesis.
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Domain embedding. Sometimes problems on irregular regions can be handled more

easily as interface problems by embedding the region into a rectangular domain and then
solving the equation on a Cartesian grid in the rectangle. The original boundary then
becomes an interface. The original application of Peskin’s immersed boundary method
used this approach; the fluid dynamics problem within the heart was extended to a flow
problem over a rectangle.

As another example, suppose we want to solve an elliptic equation on an irregular region
Q. We can embed the region in a larger rectangular domain R. For example, we could solve
the Dirichlet problem

Upg + Uyy = 0 in

w = g on 01,

by extending it to the problem

oo + 1y = /mF(s)a(x—X(s))5(y—Y(s))ds in R (1.11)
w = 0, on OJR.

The problem is then to determine F'(s) so that the condition u = g on 02 is satisfied. The
solution is still continuous on the enlarged region R, but not smooth across the interface
o09Q.

This particular problem has been extensively studied in the past and a number of domain
embedding procedures have been developed, e.g., capacitance methods [10], [21], [35], [45]
and methods based on solving integral equations along 9. Of particular note is the method
of Mayo [35] since, after solving an integral equation for the source strengths F(s), she then
uses the resulting jumps in derivatives across 02 to determine the right hand side in the
Poisson problem (1.11) using a technique that is very closely related to our method in this
case.

With the immersed interface idea, we can also develop an embedding technique to
solve elliptic equations on complicated regions with Dirichlet boundary conditions. This is
described in §2.5, see also Appendix B.



Chapter 2

THE IMMERSED INTERFACE METHOD FOR ELLIPTIC
EQUATIONS WITH DISCONTINUOUS COEFFICIENTS AND
SINGULAR SOURCES

In this chapter we develop the immersed interface method for elliptic equations of the
form

V- (BVu)+ku=f (2.1)

in a domain  in one, two, or three space dimensions. Within the region 2, suppose there
is an irregular surface of codimension 1 (hereafter called an interface) across which the
function w or some of its derivatives are known to be discontinuous. For simplicity we
assume that €2 is a simple domain, such as a square in two dimensions or a solid rectangle
in three dimensions. We wish to solve the equation using a finite difference method on
a regular grid, e.g., a uniform Cartesian grid. The interface is typically not aligned with
the grid but rather cuts between grid points so that for grid points near the interface the
stencil of a standard finite difference method will contain points from both sides of the
interface. Because of the nonsmoothness of u, differencing w across the interface using
standard difference formulas will not produce accurate approximations to derivatives of u,
and hence a naive discretization will produce results with low accuracy.

In order for discontinuities to arise in the solution or its derivatives, there must be dis-
continuities or singularities present in the coefficients of the equation. Suppose, for example,
that the function [ is discontinuous across the interface, while x and f are continuous. Then
u and f0u/0n will be continuous while the normal derivative du/dn will be discontinuous.
Such problems arise frequently in practical applications as we mentioned in Chapter 1.

Here we try to derive modified difference equations for a quite general problem of the
form (2.1), which produce second order accurate results on a uniform grid in one, two, or
three dimensions. Taking the two dimensional case as an example, we derive appropriate
coeflicients at the grid points on a stencil that contains at most six points: the points of
the standard five-point stencil plus a sixth point if we are near the interface which is chosen
from the set of diagonally adjacent grid points. The coefficients at these points can be
determined by solving a system of six linear equations.

Instead of discontinuities in [, another possibility is that § is continuous but that the
source term [ has a delta function singularity along the interface I', e.g., in two dimensions

fe )= [ €8 - X(s) oy~ V() ds, (22)

where (X (s),Y(s)) is the arc length parameterization of I' and C(s) is the source strength.
By this we mean that f(z,y) is a distribution with the property that

[ @ ooy dady = [ €(s) X (9. ¥(5)) s
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for any smooth test function ¢(z,y). Again the solution u will be continuous but the normal
derivative will have a discontinuity of magnitude C(s). As a model problem, consider the
heat conduction problem in which a heat source is applied only along I'. The temperature
u will be highest along I', falling off on either side resulting in a jump discontinuity in the
normal derivative. In this case the standard five-point stencil can be used, but we must
derive an appropriate term on the right hand side to model the singular source. A dipole
source may also occur, in which f contains the derivative of the delta function, and as a
result the solution w itself is discontinuous across I'. Again we can derive the appropriate
right hand side f;; at each grid point so that the solution to the finite difference equations
is second order accurate in spite of the discontinuities.

More generally we can handle discontinuities in 3, x, and f simultaneously with delta
function or dipole sources. A general procedure for deriving the coefficients in the stencil
and the right hand side is presented below. All that is required is a priori knowledge about
the jumps in derivatives of u across I'. For the above examples, sufficient information can
be derived from the equation itself, without a priori knowledge of the solution.

2.1 One-dimensional problems

We begin by considering the one-dimensional problem
(Bug)e + ku= [+ Cé(z — a) (2.3)

on the interval [0, 1] with specified boundary conditions on « at + = 0 and z = 1. The
function B(z) is allowed to be discontinuous at z = a. For simplicity we will assume that
k(z) and f(z) are smooth functions, although discontinuities in these functions could also
be handled with a minor modification of what follows.

We also allow an additional constraint to be imposed on the solution, namely that the
function u should have a jump discontinuity at z = a of specified strength C,

[u] =ut —u” =C. (2.4)

This could be incorporated into the equation (2.3) by including a dipole source term pro-
portional to the derivative of the delta function, changing (2.3) to

(Bus)e+ K = [+ C(z — a) + %(ﬁ‘ +AH)C (- a). (2.5)

For simplicity, however, we leave this as an external constraint.
By integrating (2.3) across the discontinuity, we find that fu, has a jump of magnitude

c,
[Bu.] = BFui - pug = C. (2.6)
An alternative way to state the problem is to require that u satisfy the equation
(Bua)a + = f 1)

in each of the intervals (0, @) and (a, 1), together with the two internal boundary conditions
(2.4) and (2.6) at z = a.
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We now wish to approximate the solution u(z) on a uniform grid in the interval [0, 1],
with

x;=1th, 1=1,2,---,n

where o = 1/n. The point a will typically fall between grid points, say z; < o < 241, Our
goal is to develop finite difference equations of the form

Vigtio1 + Yi2ui + Vit tRivi = fi+Ci 1=1,2,--- n—1 (2.8)

that can be used together with the boundary data up and u, to obtain a second order
accurate approximation to u(z) at the uniform grid points.

For i # 7,7 4 1 the solution u is smooth in the interval [#;_1, z;41] and we can use the
standard approximation

1

= (ﬁi+%(ui+1 — ;) — B;_1(u; — Uz‘—l)) + K u = fi, (2.9)

2

where

In this case we can take

Vi1 = ﬁi_%/h27 Yi2 = _(ﬁi_% + ﬁi_}.%)/th

2 (2.10)
i3 = ﬁH—%/h and C; =0.
This gives a local truncation error that is O(h?):
T; = vigu(zi—1) + vigu(z;) + visuw(zipr) + siu(z;) — fi = O(h?). (2.11)

We wish to determine formulas of the form (2.8) for ¢ = j and ¢« = j + 1 so that second
order global accuracy is obtained. Since only two grid points are involved (independent of
h), it is sufficient to have an O(h) local truncation error at those points.

To compute the local truncation error at the point z;, we expand w;_q,u;, and w41 in
Taylor series about the point = a. Since we expect the v coefficients to be O(1/h%) we
must expand out through O(%®) in order to ensure an O(h) truncation error. We use the
notation

ut=lm e(e), et = lim (o),
and expand to obtain
u(zj) =+ (o1 —@)ug + 5 (e — oz + O(F)  (212)
u(z) = w (2= o) ug + 5 (25— @) ug, + O(H) (2.13)

1
w(zin) =t + (g - ) uf + 5 (g0 — ) ul, + O(RY). (2.14)
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Note if z; = a, then u(z;) is defined as the limit of the u(z) approaching from the left. The
corresponding u; then is the approximation to this specific limit. We also use

kju(z;) = k(a)u (a)+ O(h) and f; = f(a)+ O(h) (2.15)

The expression for u(zj41) involves v, u} and u}, at a™. However, using the known jump
relations we can replace these by values at a™. This will allow us to use the PDE (2.3) to
determine the 7 coefficients. From (2.4) and (2.6) we have

wt = w” + é,
ug = (B7ug +C)/p%.

From the equation (2.7) we also see that (fu;), + ku is continuous at z = «, since f is,

and so
Bruf + Bruf, + sut = B ug + BT ug, + ku”
and hence
1 _ e W4 -
u;a?:ﬁ__}.( um—l—(ﬂz— 57 )uﬁ—ﬁjr—mC (2.16)

Using these expressions in (2.14) gives

- +3- )2
w(zjpr) = u + [gj (Tj41 —a)+ (g—i - f;f)g) (%HQ %) ] Uy
(gjp —a)?f™ _ | o

T us, +C (2.17)

) 1 —a)? [t .
+($J’+1—a)ﬁ%—w<g—ic+50).

In computing the local truncation error we also use the PDE (2.3), which in approaching

_I_

a from the left gives

Bruz + Buz, + K(a)u” = f(a). (2.18)
We use this to replace the f(a) term in the local truncation error, obtaining
Ty = yjpu(zia) +7500(z;) + visw(@j4n) + K(a)u”
—[Bzuz + B ug, + ku”] = Cj + O(R) (2.19)

Replacing w(z;_1),u(z;) and u(z;4+1) by the expressions (2.12)-(2.14) and collecting to-
gether terms then gives

T, = (via+7v2+73)u + { (z;o1 —a)yj1 + (25 — a)v;2

— + + - i _ 2
+ (g—+(x]-+1 —a)+ (g_i _ ?;f):)) (UC]+12 a) ) Vis — ﬁ;} u, (2.20)

1 B | -
+5 {(%‘—1 —a)’y1+ (z; — @)’ vz + (zj41 — O‘)Zﬁ__|_7j3 - 20 } Uy

) C Y +C ¢
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We can ensure that 7; = O(h) by requiring that each coefficient of v™,uy,uz, vanishes,

as well as the constant term. This gives four equations for the four unknowns 7;1,7;.2,7;,3
and C;. The first three equations gives a linear system for the 7’s:

Vi1t Vi2+ 753 = 0
(Tjm1 —@)yjn+ (25 — )72 2
- - 3-p+ o
{ G+ (5 -ZE) Pl e e

2 2 2 a—
Ti]—Q T —« Tip1 — @) p B
%7‘771 _I_ ( J 5 ) ﬁ/j,? + ( J 5 ﬁ—}_) ﬁ/]’73 — ﬁ

Once these 7’s have been computed, we then set

. c 1 +C C
Ci =153 { CH+(zj41—a) B 5( j+1—a)? (%JFQ + “ﬁT) } : (2.22)

In a similar way, we can compute the coefficients in the equation at z;4; from the system

Yi+1,1 + V1,2 + V41,3 = 0
pr g BTN (z — )
—(j—a)+ |25 -—— (z; )) Vi+1,1
p A= (87) 2 (2.23)
+(Tj41 — @)vi412 + (42 — a)vj413 = BF
z:—a)? Bt i —a)? Tiig—a)?
and then
. c 1 gz C C
Cj+1 = Yj+1.1 {—C + (Oé - w])ﬁ—_ — 5(0{ — wj)Q (F — /{ﬁ—_) } . (2.24)

In the particular case when 3, = 0 and B} = 0 (in particular if 3 is piecewise constant),
we can easily get explicit expressions for the 7;’s. Setting

D; = R4 [Bl(zj1 - a)(z; — a)/267,

Diy1 = B = [B)(zj12 — a)(zjq1 — @)/257F,
these can be written as:
via = (87 = [Bl(z; — )/h)/D; Yi+11 = B/ Djp
Yiz = (=287 + [Bl(zj-1 — @)/h)/D; 712 = (=267 + [B(2j42 — a)/h)/ Djpa
73 = BY/D; Y13 = (B = [Bl(@j41 — @)/h)/Djta

provided that D;, D;4q # 0. In practical problems 8 often represents a physical quantity
such as conductivity, permeability, or density and so 8 > 0 everywhere. In this case we
have the following theorem on the solvability of the linear systems for the v coeflicients.
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Theorem 2.1 Suppose 5~ 3% > 0. If 37 = 0 and 8 = 0 (which includes the special case in
which ((z) is piecewise constant), then equations (2.21) and (2.23) have unique solutions.
More generally, these systems are guaranteed to have unique solutions for h sufficiently
small.

Proof: It is enough to prove that equations (2.21) have a unique solution. The proof
for equations (2.23) is identical. Let A be the determinant of the coefficient matrix of the
system (2.21). With the help of Mathematica, a symbolic software package, we calculate
that:

C1D; if 37 (a) =0 and 3} (a) =0,
A=
C1 (D; + O(h®)) otherwise,

where (' is a nonzero constant. Without loss of generality, we supporse 3~ > 0 and 31 > 0.
Notice that (z;_1 — a)(z; — @) > 0, and h is small, so if [8] > 0, then |A| > |C1]h? > 0,
hence the theorem is true. If [3] < 0, i.e., 3~ > 3%, then since 731 > 0 we have:

g —pt
— | < 1.
‘ a
Hence:
1
W+ Pl —a)aj—a) > K= 2e -0l —a)
20 2
1
> h? - 5(2)h =0,
where we have used z; < a < z;41. The rest of the proof is trivial. a

If 3t3~ < 0 then the systems may be singular, although generically they are still
nonsingular. Note that in this case it would be possible to multiply the equation by —1 on
one side of a, yielding a problem with 3737 > 0 at the possible expense of introducing
discontinuities in x and f. These discontinuities can easily be handled as described below.
In this case one must be careful with the jump conditions — the jump conditions for the
original equation must be imposed and not the jump conditions for the modified £.

Note also the following properties and special cases of the v coefficients that result from
solving these systems:

e The 7 coefficients depends only on the function §(z) and the position of a relative to
the grid, and not on C or C.

o If § is constant, then solving the systems (2.21) and (2.23) we recover the standard
coefficients 7,1 = i3 = B/h? and v, = —28/h* for i = j, j + 1.

o If 3 is continuous, then the standard coefficients (2.10) satisfy the system (2.21) to
O(h).
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o In the case when [ is piecewise constant, the harmonic averaging coeflicients satisfy
the first two equations of (2.21) but not the third, indicating that the truncation error
of this method at z; and z;41 is O(1). But one can prove that due to cancellation of
errors this method is still second order accurate (see §1.3.4).

o If C = (C =0, then C; = Cj41 = 0 and the inhomogeneous term in the difference
equation is simply f;. In this case a discontinuity in § affects only the coefficients and
not the right hand side.

o If 3 is constant and kK = 0, then

1 . .
C; = ﬁ(x]'_}_l —a)C + %C = Cdp(zj — a)+ CBdy(z; — a) (2.25)
where dj, is the hat function (1.7). In this case we can view the difference scheme as
a direct discretization of the equation

Bu"(z) = f(z)+ Cé(z — a) + CB8'(z — a).

The general one-dimensional problem. Now we suppose that f and k¥ may also
have discontinuities at a. We only need a slight change in the linear systems for the ;s
and 7;41,s and the corrections C; and (41 to get the correct difference schemes at the
grid points z;, ;1.

At the grid point z;, the first equation of the linear system (2.21) becomes

T — a)?
Vit + vz + (1 - % [H]) 73 =0 (2.26)

and the correction term now is

. C 41— a)? [ BHC c
Ci =3 { Ct (zj4r =) g3 — (leQ “ ((éﬁ)z + ’“”~+ﬁ—+ - %) } - (227)

At the grid z;44, the first equation of the linear system (2.23) becomes

T, — O 2
(1 T % [“]) Yi+1,1 + Vi41,2 + V5413 =0 (2.28)

and the correction term is

Cit1 = Yj+11 {—é + (o - %‘)ﬁg_ (e _2%) ((%;_C)‘Z - “_ﬁg_ Li_]) } - (2.29)

2.2 A simple two-dimensional problem

In order to introduce the ideas used in two dimensions in a simple framework, we begin by
considering the equation

(Bug)e + (Buy )y + £(z,y) u = f(z,y) (z,y) € Q (2.30)
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in the case where [ is piecewise constant and has a jump discontinuity across some curve
I' in Q, while k¥ and f are assumed to be smooth. Formulas for the more general case,
in which k and f may be discontinuous, f may contain singular forces, and we may also
require a discontinuity in the solution u, will be presented in §2.3.

The interface I' can be an arbitrary piecewise smooth curve lying in 2. We need not
assume that I' is closed or even connected. It may consist of several segments.

We assume the domain  is a square, say [a, b] X [a,b]. We take a uniform grid with

z;=a+th,yy=a+jh, t,j=0,1,---,n

where h = (b — a)/n. Figure 2.1 gives an example of the uniform grid and the immersed
interface.

0.8 ]

0.6

0.4 1

0.2

-0.2

-04F ]

-0.6

-0.8F ]

Figure 2.1: A circular interface I' in a 26 X 26 uniform grid. This geometry is used for the
test problems presented in Section 2.4.

Our goal is to develop a finite difference equation of the form
DYk Uiy i+ Eijui; = fij + Cij (2.31)
k

for use at the point (z;,y;). The sum over k involves a finite number of points neighboring
(z,y;) (at most six in the formula we derive). So each i, ji will take values in the set
{-1,0,1}. The coefficients 7; and indices ¢k, j; will depend on (%, j), so these should really
be labeled 7;;, etc., but for simplicity of notation we will concentrate on a single point
(¢,7) and drop these indices.

We say (4, 7) is a regular point if the interface does not come between any points in the
standard 5-point stencil centered at (¢,7). At these points we obtain an O(h?) truncation
error using the standard 5-point (k = 5) formula

1 (Uig1,; — Uij) (ui; — wi—1,;)
A <<ﬁi+1/2,j# - ﬁi—l/Q,j%) (2.32)
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Figure 2.2: The geometry at an irregular grid point (¢,7). The coefficients v; through 7
will be determined for the stencil points labeled 1 through 6. The circled point on I is the

point (27, 7).

IU’Z',‘ — Ui,' IU’Z',‘ — Ui,'—
+ <ﬂi,j+1/2% - ﬂi,j—l/?%)) + Kijui; = fij,

with
Ci; =0. (2.33)

We wish to determine formulas of the form (2.31) for the irregular points also. Since
these points are adjacent to the curve I', and form a lower dimensional set, it turns out to
be sufficient to require an O(h) truncation error at these points, just as in one dimension.
We follow the same approach as in one dimension, and expand all w;4;, ;4+;, about some
point (z7, y]*) on the interface I'. In one dimension there was only one such point, a. In
two dimensions we have flexibility in choosing (w;‘,y]*) We might take, for example, the
point closest to (z;,y;) as illustrated in Figure 2.2. We then expand each u;y;, ;4 about
(z7,9y;), being careful to use the limiting values of derivatives of u from the correct side of
the interface. We use the superscripts — or + to denote the limiting values of a function
from one side or the other. As an example, in the configuration shown in Figure 2.2, we
would expand

— — * — * 1 — *
1 — * — * *
+5uyy (yj - yj)2 + Uy (‘rl - )(3/] - yj) + O(hg) (234)
and
* * 1 *
w(ipr,y;) = o4 uf (zigq —af)+ U; (y; —v;)+ 5“& (zip1 — 7)°

1 . . .
5y (45— )7 4y (i — o)y — v) + O(R). (235
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If we do this expansion at each point used in the difference equation (2.31) then the local

truncation error 7T;; can be expressed as a linear combination of the values u®, ut, u;t, ut ufy,
u;ty. Following the one-dimensional derivation in Section 2.1, we now wish to eliminate all

: ; + oyt ut owt o wt o out i
values on one side of the interface, say the values u™, uy, wl, uz,, ufl,, uj,, in terms of

the values on the other side, u™, uy, uy, Uz, ug,, u,,. We must do this using the jump
conditions across I,
u” = ut (2.36)
and
Ju~ ou™
T— =pT— 2.37
p on p aon ( )

where 0/0n represents differentiation in the normal direction. From (2.36) we have that
tangential derivatives are continuous, while (2.37) gives information about the jump in the
normal direction. Differentiating these and manipulating the results allows us to perform
the desired elimination, as detailed below. In order to do this, it turns out to be very
convenient to first perform a local coordinate transformation into directions £, normal to
I', and 5, tangential to I'.

Once T;; is expressed as a linear combination of the values u™, u;, u,, uy,, ug,, and
yy» We must require that the coefficient of each of these terms vanishes in order to achieve
an O(h) truncation error. This gives a linear system of six equations to determine the
coeflicients 7;. To obtain a solvable system we require six points in the stencil. We use the
standard 5-point stencil together with one additional point.

U

To summarize, in order to determine the difference scheme at an irregular grid point we
need to do the following;:

Select a point (z7,y7) € I near (z;,y;).

Apply a local coordinate transformation in directions normal and tangential to I' at
(3, 97)-

Derive the jump conditions relating + and — values at (7, y;‘) in the local coordinates.

Choose an additional point to form a six—point stencil.

e Set up and solve a linear system of six equations for the coefficients 7;. The value C;;
is also obtained.

Below we give a detailed analysis of each step.

For each irregular grid point (z;,y;) we need to find a point (z7,y7) on the interface.
We usually take this point as the projection of (z;,y;) on the interface if the interface is
smooth at this point. Otherwise we can take any smooth point on the interface in the
neighborhood of (z;,y;). In some contexts it may be more convenient to choose a nearby
point that lies on a coordinate line between (z;,y;) and one of its neighbors.
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After choosing (z7, y;‘) we are ready to apply a local coordinate transformation (shift
+ rotation) near this grid point. Let 6 be the angle between the z-axis and the normal
direction, pointing in the direction of the + side. The transformation is as follows:

£ = (z — a7 )cos + (y — y; )sind, (2.38)

k3

n=—(x—zi)sind + (y — yj)cosb. (2.39)

Notice that under this local coordinate transformation the PDE (2.30) remains unchanged.
In fact, this is true more generally when (3, k, and f depend on z and y, as is shown in
§2.3. We should have a new notation for u(z,y),x(z,y), f(z,y) in the local coordinates,
say, u(&,n) = w(z,y), k(& n) = k(z,y), and f(&,n) = f(z,y). But for simplicity we drop
the bars and use the same notation in the local coordinates as in the old ones. With these
local coordinates we are able to derive the interface conditions as we did in §2.1.

The interface relations in the local coordinates for 2D problems.

We consider a fixed point (xz*,y;‘) and define a new £-7n coordinate system based on the
directions normal and tangential to I' at this point using the formulas (2.38) and (2.39).
In a neighborhood of this point, the interface lies roughly in the n—direction, so we can
parameterize I locally by £ = x(n), n = 1. Note that x(0) = 0 and, provided the boundary
is smooth at (z},y7), x'(0) = 0 as well.

The continuity condition (2.36) holds at each point on I'. In our local coordinates, we
can write this as

u”(x(m),m) = u" (x(n),n) (2.40)
for all n in a neighborhood of n = 0. Differentiating this with respect to n gives
ug X' +uy = ufx + g, (2.41)
or, in compact form,
fuel + [uy] = 0. (2.42)

Differentiating again with respect to n gives

[wee]X'* + 2uen]x’ + [ue X" + [wy,] = 0. (2.43)

Evaluating (2.42) and (2.43) at = 0, where x’ = 0, gives two of the desired jump condi-
tions:

[ug] =0, le  uy =uf =u, (2.44)

[ue] X" + [ugy] = 0. (2.45)

We also have the jump condition (2.37) at each point on I'. At a point (x(n),n) € I' we can
express the normal derivative in terms of £- and 7- derivatives as

ou 1

2= = (g — uyX’)
on /1 + X,2
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so that we can write (2.37) as
B (ug —uyX') = B (uf —ug ') (2.46)
Differentiating this with respect to n gives
2
[8 (ueex” + wen — unX" — ugnX'™ — gy X')] = 0. (2.47)
Evaluating (2.46) and (2.47) at = 0 gives more jump conditions:

[Bug] =0, (2.48)
[B (ugy — uyx")] = 0. (2.49)

We can use the relations (2.46)—(2.49) to derive the following expressions for values on the
(4+) side of I' in terms of values in the (—) side. Setting

p=p"/8",
we can write these relations as
ut =u”
=y
ug' = pug (2.50)

ug—n = pugy + (1-p) u;XH
ut, = u,, 4+ (1-p) ug X"
To obtain an expression for “2_57 we note that the PDE (2.30) gives
Bt = B g + 57y, - 6,
so that
ufe = puze + (p = Dy, 4 (p = Dug X" (2.51)

Now we have expressed all the quantities with (4) superscripts in terms of the quantities
with (—) superscripts for the case x/(0) = 0. In this simple case they are homogeneous.
The next thing to do is to choose an additional point from (¢ — 1,5 — 1), (i — 1,5 + 1),
(i+1,7—1),(i+ 1,7+ 1) besides the standard five point stencil. It seems that the best
choice is the point which has the shortest distance from (z*,y*). The additional point can
be written as (z;4iy, Yj+j, ), Where ¢g and jo are either —1 or 1 depending on the position
of the additional point.

The derivation of the difference scheme for an irregular point. We are now ready
to derive the difference schemes at irregular grid points. Denote the £-75 coordinates of the
six points in the difference stencil,

(mi—la 3/])7 (xh y])v (‘ri—l—ly y])a (xh yj—l)y (xh yj—|—1)7 (:Ei—l—imy]"}'jo)v

as

(517771)7 (‘527 772)7 (‘537 773)7 (547 774)7 (‘557 775)7 (567 776)7
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respectively. The local truncation error 7;; of the difference scheme (2.31) at (z;, y;) is then
Tij = vru(e,m) + v2u(€z, m2) + v3u(€s, n3) + yau(€s, n4)
+v5u(s,7m5) + Yeule, m6) + Kiju(éz, m2) — fij — Cij.

We now expand all the terms about (0,0) in the local coordinates from each side of the
interface, as we did in (2.34) and (2.35), obtaining

(2.52)

1 1
u(br,me) = uF &l ok ul + 55;3 uF + Eemk ol + 3 i ug, + O(R?),

where the 4 or — sign is chosen depending on whether (&, ;) lies on the 4+ or — side of I'.
We also use

Kiju(€2,m2) = Kk~ u” + O(h) and f;; = [~ +O(h), (2.53)

where k7 = £(0,0) and so forth (recall that k,u, and f are continuous). Using these

K
expansions in (2.52) and collecting terms gives an expression of the form

T, = alu_—|—agu+—}—agug—|—a4ug—}—a5u;—|—(16u7‘7F

+ arug, + ag ufe + ag uy, + aro uy, + ary ug,
+ a2 ug'n + KT u” — 7 —Cy + O(h). (2.54)

The coefficients a; depend only on the position of the stencil relative to the interface. They
are independent of the functions u,x and f. If we define the index sets KT and K~ by

K* ={k: (&,n)is on the % side of T'},

then the a; are given by

a= > % ay= Y Yk

k€K~ keK+
as= Y v as= Y, &
keK— keK+
as = Y MYk ag = Y KTk
kK~ keK+
1 2 1 2
ar =5 > & as = 5 > &R (2.55)
keK— keK+
1 2 1 2
a9 = B E M7k 10 = 9 Z Mk
keK— keK+
a1l = Z EkMk Tk @12 = Z Eeni V-
keK— keK+

Using the interface relations (2.50) and (2.51) in (2.54) and rearranging it we obtain
Tij = (ax+a2)u” +{az+asp+as (p—1)x"+aw (1-p) X"} u;
+{as +ag + a2 (1 - p) X"} w; + {ar +agp — 67} ug, (2.56)
+{agt+ao+as(p—1)— 57} u,, +{a11 + azp} Ug
{87 (uge +uy,) k™ w” = f7 + Cij} + O(h),
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where again p = 37 /3%, From the PDE (2.30) we know that
B (uge +uy,) + k" u” — 7 =0.
and so this term drops out of (2.56) by taking C;; = 0. We can ensure that 7;; = O(h)

by requiring that each coeflicient of U™ U 5 Uy s Uy Ug and u,_, vanish. This gives six
equations for the six unknowns vy, --,7g:

nn

a1 + ag

as+asp+as (p—1)x"+ a0 (1 —p)x"
as + ag + a12 (1 —p) x”

a7+ agp

ag + ajp+ as (p— 1)

a11 + a2 p

: (2.57)

[l
ocmTm o oo
: I

As in one dimension, if 3731 > 0, then the linear system has a unique solution. To prove
this is not very complicated but rather tedious. We need to consider all the possible cases for
the formation of the new stencil (i.e., the position of the points relative to the interface).
We omit the detailed analysis here. If 3737 < 0, then it turns out that only for some
specific value of [§] the coefficient matrix for the unknown ;s is singular, so the algorithm
is typically successful even in this case. Moreover, by negating the equation on one side of
the interface, it is possible to insure that 3~3% > 0 at the expense of perhaps introducing
discontinuities into k and f.

Note that since the interface relations (2.50) and (2.51) are homogenous, we have C;; =
0 and there is no contribution to the right hand side resulting from the discontinuous
coefficients. If St = 3~ then solving (2.57) we recover the standard 5-point coefficients

B g
’71—/3—74—/5—h27 /2__h2’ and 7 = U.

In general, however, the resulting ;s are different from those in the standard five point
stencil. Figure 2.3 shows some representative stencils for a problem in which § has the
value 1 on one side of I' and 3 on the other side.

The exact nature of the coeflicients depends on how large the jump in 3 is. We have not
investigated these coeflicients in general, but at least for reasonably mild discontinuities it
seems that:

e The contributions to the difference schemes at irregular points are mainly from the
standard five point stencil. These coefficients are O(1/h?) while the contributions
from the ‘additional points’ are typically much smaller. The magnitude depends on
the jump in B and the geometry of the grid.

o All the coefficients except occasionally 76 have the same sign ( — for the diagonal
and + for the off-diagonal) as in the classic five point difference formula. Since the
contribution from the sixth point is much smaller than from the standard five points,
we expect the classical theoretical analysis to still be applicable for the resulting
linear system with slight modifications. In particular, the system is nearly diagonally
dominant, and strictly so if 7¢ is always positive.
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Figure 2.3: The 7; coefficients at four grid points near the interface. The coefficient 3 is
piecewise constant with the value 8 = 1 to the left and § = 3 to the right. The standard
5-point stencil is used at regular grid points while special 6-point stencils are used near the
interface. The grid is a section of Figure 2.1, with A = 1/13.

We use an iterative method to solve the resulting linear system, which is block tridiag-
onal. In most of our numerical experiments we have used an LSOR iteration. If 3731 > 0,
the relaxation parameter is chosen as the optimal parameter for the Poisson problem on
a square. The convergence speed is almost the same as that if we use the LSOR method
to solve the Poisson problem with constant 8 on a square. This confirms the conclusions
above. But if 3781 < 0, it is difficult to determine a suitable relaxation parameter and we
simply use the line Gauss-Seidel iteration. Since this case is less interesting physically, we
have not investigated other approaches.

In the future, we plan to study the use of multigrid methods to achieve faster conver-
gence. It is not clear how the multigrid convergence rate will be affected by the discontinuity
in the coeflicients. Multigrid methods for problems like (2.30) with discontinuous coefficients
have been previously studied (e.g., [1], [8]), but mainly for problems where the interfaces
are aligned with the coordinate directions.

2.3 The general two-dimensional problem

In this section we present the analysis for the more complicated two-dimensional problem

(Buz)e+(Buy)y + Kz, y)u= f(z,y) (z,y) €, (2.58)
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Now (3, k, and f may all have discontinuities along a general interface I', and so do u, u,, u,,
Uzg, Ugy, and uy,. The process basically is the same as in the discussion of §2.2. We use the
same notations and assumptions about the region Q, uniform grid and arbitrary interface I'.
Again we want to use the difference scheme (2.31). For regular grid points, we still apply the
standard 5-point stencil (2.32) and (2.33) giving a local truncation error of O(h?). We will
concentrate on the derivation of the difference scheme at a typical irregular point (z;,y;).

We first demonstrate that the PDE (2.58) remains unchanged if the coordinate trans-
formation is composed of a shift and rotation. In fact, taking an arbitrary function w(z,y),
under the transformations (2.38) and (2.39), we have:

Wy = Wg cos § 4 w,, sin 0,
wy = —wg sin 6 + w,, cos 0,
where w(&,n) = w(z,y) and so forth, so we have

(Buz)e + (Buy)y + cu = B(tzz + uyy) + Betz + By uy + Ku
= B(tge + iyy) + (Becosf — B, sin ) (g cos § — i, sin §)
—}—(ﬁg sin § + Bn cos 0) (Ug sin 0 + 4, cos 0) + Ru
= B(ﬂ££+@nn)+56ﬂ£+6nﬂn+’%ﬂ
= (Bac)e + (B, + k.
For simplicity, we will drop the bars again. If some grid point u(z;, yj) happens to fall on
the interface, then w(z;,y;) is defined as the limiting value of u(z,y) from one side of the
interface or the other. The same argument applies to all other functions such as 3, k, f and
the derivatives of u(z,y). The corresponding u;; is the approximation to this specific limit.
We again use the superscripts — and + to express the limiting values from one side of the
interface or the other.
The essential difference now is that the interface relations are more complicated. Two

interface conditions are needed in advance to make the problem well-posed. We assume
locally that they are defined by

ut —u™ = w(n), (2.59)

out Ou
Bro =85 =), (2.60)

where again £ = x(n), n = 7 is the parametric representation of the interface in the
neighborhood of the point (z7,y7). Here v(n) and w(n) are arbitrary (smooth) functions
that are used to impose quite general jump conditions across I'. (Often v = w = 0, but
we may wish to impose other jumps as an external constraint. An example occurs in the
incompressible Navier-Stokes equations with the immersed boundary method, where the
known jump in pressure across the interface must be imposed in the solution of a Poisson
problem; see Chapter 4.)
Differentiating (2.59) with respect to 7 along the interface we get

[ug] X" + [u,] = w'(n). (2.61)

Differentiating this again with respect to n we obtain

[ue] X" + x’d%[us] + [ugn] X' + [tgy] = w (). (2.62)



30

Notice that in the local coordinates, (2.60) can be written as

BF(uf —ufx') = B7(ug —ugx') + vy/1+ ()% (2.63)
Differentiating this with respect to n along the interface we have
d
(B + B, (af = wf )+ 8% (dx + - 2 () X — v)

= (B X'+ By7) (ug —uyx')

_( _ _ d, _ _
+ 6 (u&x’ +ug, — d—n(u?7 )X —u, X”) (2.64)
,U(,],})X/X//
+ (. 1+ (X)) + ———==| .
o (Vi (4 S
Also from the PDE we know that
wo_ BBy B B
Yee = px Mee gy tan T Uant Ry ue T g U
ﬁn_ — ﬁ77+ + [f] K u — H-I— u+
The numerator of the last term can be rewritten as
K u” —kTut = —[klu —[u] kT, (2.66)

Using these relations, we can express quantities with (4) superscripts in terms of those
with (—) superscripts. The detailed analysis is similar to the process in Section 3 although
it is more complicated due to the fact that 8(z,y) is not constant in the neighborhood of
the interface and the presence of the source-like terms w(n), v(n). To save space here we
omit the detailed analysis and simply present the results. Recall that the parameterization
& = x(n) is assumed to be smooth with x’(0) = 0 and that we are considering the jumps
across I' at a fixed point (z7, y;‘) corresponding to £ = 5 = 0. In the expressions below, all
functions are evaluated at this point. The jump relations are given by:

u+:u_+w,

o v
e = Ple t g

u::u;—}—w’,
- + - +
+ ﬁ&_ " — " ﬁ&_ + ﬁn_ — ﬁn_ +
- - /1 [slu” + 67 [u]
+(p_1)unn+pugg_w//+ﬁ_+_ ﬁ_}_ 3
u;’n =y, + (ug — ug')x”—l—w”,
b B o Bty '

u; = Uy — U —}—(u"’— u_) "+ pu; —I—U—
&n T pE e T B e n TPl ) X0 Py T g
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The local truncation error 7}; at (z;,y;) is again given by (2.54) with the coeflicients aj,
given by the expressions (2.55) in terms of the unknowns ;. We now replace all of the (+)
values by expressions involving (—) values using (2.67). After combining common terms
and eliminating some terms due to the relation

57 (e o)+ B0+ B R [ =0

(resulting from the PDE (2.58)), we obtain

Tij = (al—a8[ﬁ]+a2)u_+{a3—l—a8 (ﬁ__ )+‘110X +a12ﬁ

G+ G+ pt
+ +
+p (a4—|—a8( "—%) — apox’ —a12ﬁﬂ+) Be™ }
la ﬁﬂ___i _ " g - -
5+ ag + ag 3+ 3t + aa(l = p) X" = B, Uy

+{ar+asp — B} uge +{ag +arot+as(p—1) -7} uy,

+ {a11 + a12p} ug, + (T — Cij) + O(h),

where
n ! a +
Tij = ayw+a ;—+ + (616 - Sﬂﬂf + (IIZXH) w' 4 a9 w”
+ +
+ ﬂ_—}_ ((14 + a8( " %—}- ) — a10X — (Ilgﬁﬁ_l_ ) v (268)

Uyl ke,
ta {ﬁ_+_ G _w}‘

We can ensure that 73; = O(h) by requiring that each coeflicient of U, ug, Uy Uge,
o Vanish, as well as the term (7;; — Cy;). This gives seven equations for the
unknowns 71, -+, 76 and C;;. The first six equations give a linear system for the v’s (recall

that each ; is a linear combination of the 7’s, given by (2.55), and that p = 5= /5%):

ug, , and u>

ay +ay —ag[k]/BT = 0

az + pas + as(Be~ — pBet — [BIX")/ BT
+ arwlBIX"/8T + ara(By” - 08, V)BT = B¢

as + ag — ag[B,]/ BT + ar2(1 - p) X" = B,~ (2.69)
ar+agp = (B~
ag+apptas(p—1) = [~
a1+ anp = 0.

Once the 7;’s are computed, we can easily obtain C;; as

Cyij = Tij, (2.70)
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where Tj; is given by (2.68).
The remarks at the end of the §2.2 still hold. Moreover, in the case where 3 and k are
continuous but vary with z and y, we see that the set of equations (2.69) reduces to

ait+ax = 0,
az+ag = S,
as +as = By,
ar+ag = p,
ag+ag = p,
ain + a2 = 0.

This set of equations is satisfied to O(h) by using the five-point stencil with

71 = ﬁi—1/2,j/h27 Yo = —(Bic1/2,; + Biv1/2,; + Bij—1/2 + ﬁi,j+1/2)/h27

V3 = Biy1/2,5/ 1% V4= Bijo12/ R vs = Bijr1/2/ M 76 = 0.

These are the coeflicients for the standard formula (2.32). So for elliptic equations with
singular sources we still can use the standard central difference scheme and only need to
add the correction terms at irregular grid points. Furthermore if 5(z,y) is a constant, we
have the following theorem

Theorem 2.2 If §(z,y) is a constant and k is continuous, then the solution of equations

(2.69) are

p 4p
M=VB=T4=95= 535 2= —75 T =0 (2.71)
Proof: We only need to verify that these 7;s satisfy the system of equations (2.69).
Without loss of generality let the irregular grid point (z;,y;) be the origin. The continuity
condition in 3 and k means [k] =0, [f]=0,p =1, Be = ﬁg’, and g = @‘7" Therefore the
first equation in (2.69) now becomes

k=6

a1+ ag =0, ie. E'yk =0,
k=1

which is obviously true. Under the transformations (2.38) and (2.39), the new coordinates

(&,-mj.), k=1,...,5, corresponding to (—A,0), (0,0), (k,0), (0, —h), and (0,k) are

(&smiy) (=(h4+z")cosa—y*sina, (h+ z")sina — y* cosa)
(&iys i) (—z"cosa — y*sina, z"sina — y* cosa)

(& M) ((h—a")cosa—y*sina, (—h+ z")sina, —y* cosa)
(& i) (—z*cosa— (h+y*)sina, z*sina — (h+ y*) cosa))
(&.,m5,) = (—z"cosa+ (h—y")sina, z*sina+ (h —y*)cosa).
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The second equation of the system (2.69) is

k=6
a3+a4:Z7k£ik = % (mh—z")+(h—a")—a" —a" 4+ 42")cos ¥
k=1
ﬂ * * * * * .
to3 (" =y = (At y) + (h—y7) +4y7)sinf = 0.

For the fourth equation we have

k=6 "E 2
a7 + ag = Z Tk 27’“ =
k=1
Ié; ( (h+ x*)2c0520 + y*2511120 +2(h+a")y" cosfsind
+(h — 2%)*cos?0 + y**sin?0 — 2(h — z*)y* cos fsin 0 +
z*%cos? + (h+ y*)2511120 +22"(h + y") cosfsinf +
z*?cos + (h — y*)sin?0 — 22*(h — y*) cosf sin § —
—42*%cos?0 — 4y**sin?0 — 82 y* cos fsin 0 ) /(2h?) = 3.
By the same token we get
k=6

as + ag = Z Ve, = 0,
k=1

k=6 n: 2
a9 + a1p = Z"f’k 22k = p.
k=1

The last equation is verified below:

k=6

a1y + a13 = > ki iy =
k=1

=B ([(h+2")cosf+ y*sinb][(h+ 2")sinf — y”* sin 0]
—[(h—=2")cos@ — y"sin@][(h—z™)sinb + y* cos ]

—[z"cos@+ (h+y")sinf][z"sinf — (h 4+ y*) cos 0]

—[2"cos@ — (h —y")sinf] [z sin b + (h — y*) cos 0]

+4[2*cos @+ y*sin O] [z*sinf — y* cos ] ) /h? = 0. O

2.4 Numerical Results

We have done many numerical tests which confirm the expected order of accuracy for the
immersed interface approach. We will present a few examples in two dimensions. In all of
these examples T is the circle z24y? = 1/4 within the computaional domain —1 < z, y < 1.
See Figure 2.1.
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Figure 2.4: Comparison of two methods on Example 2.1. (a) The discrete delta function
approach. (b) The immersed interface method.

Example 2.1 In this example we compare our method with the discrete delta function
approach for a problem where there is a singular source term along I'. The differential
equalion is:

o + Uyy = / 26(x — X(s))8(y — Y(s)) ds. (2.72)
r
We use the Dirichlel boundary condition which is determined from the exact solution
1 if r <

u(z,y) = (2.73)
1+ log(2r) if r> 1,

(I

where 1 = \/z? + y*. From the equation we know that [0u/0n] = 2 al all points on T.

For the discrete delta function method we take m points on the interface I', where
m =n = 2/Az = 2/Ay is the number of uniform grid points in each direction. In the
numerical experiments we have found that beyond this point, increasing the number of
points on the interface gives little improvement in the solution. We use Peskin’s discrete
delta function (1.8). We have also tested the hat delta function defined in (1.7) and the
numerical results are almost the same.

Figure 2.4 shows the results of both methods. We see that our method accurately gives
the jump in the normal direction while the discrete delta function approach smears the
jump, resulting in first order accuracy.

Table 2.1 shows the results of a grid refinement study. The maximum error over all grid
points,

| Ex Hoo = HZR}X | w(zs, y;) — wij |y
9.

is presented, where w;; is the computed approximation at the uniform grid points (z;,y;).
For our method we also display || T} ||co, the infinity norm of the local truncation error
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Table 2.1: Numerical results for Example 2.1

Discrete delta function Immersed interface method
n | £y || o ratio | £ |l o ratio | 7 | o ratio
20 || 3.6140 x 10! 2.3908 x 10~ 2.8276 x 107!

40 || 2.6467 x 1072 | 12.7939 || 8.3461 x 10~* | 2.8646 || 1.6922 x 10! | 1.6710
80 || 1.3204 x 1072 | 2.0045 || 2.4451 x 10~* | 3.4134 || 8.3449 x 1072 | 2.0278
160 || 6.6847 x 1072 | 1.9753 || 6.6856 x 107> | 3.6573 || 4.1892 x 1072 | 1.9920
320 || 3.3393 x 1073 | 2.0018 || 1.5672 x 107> | 4.2658 | 2.3049 x 10=% | 1.8175

over all grid points. The local truncation errors are O(h?) except at those points which are
close to the interface where they are O(h). We also display the ratios of successive errors,

ratio = || Ezn loo/Il En lloer 0 || Ton [loo/ll Tn [loo-

A ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second order
accuracy. We will use the same notation for other examples in this section.

Example 2.2 We now consider a problem with disconlinuous coefficients as well as a sin-
gular source term. The equation is

(Buc)s + (Bu,)y = J(a.9)+C [ 8(2 - X(s))ds (274)
with f(z,y) =8(2* +¢*) + 4,

ﬁ(wvy) = o2 2
b if o 4+ y© >

Dirichlet boundary conditions are determined from the exact solution

N[N

r? if r <

(1—ﬁ—%)/4+(§+r2)b+01og(2r)/b if r > (2.75)

u('rvy) =

R[= o[

It is easy to check that (2.75) satisfies (2.74). Table 2.2 gives numerical results for
the case b = 10, C = 0.1. Again the local truncation error near I' is only O(h), but the
resulting global error is seen to be O(h?). Figure 2.5 shows the computed solution for the
case b =10, C = 0.1 and b = —3, C = 0.1, respectively. In the first case S=48T > 0.
As we mentioned in Section 3 the resulting linear system is “almost” symmetric positive
definite. We use the LSOR method with the optimal relaxation parameter for the Poisson
equation on the square. In the second case 331 < 0. The computed solution has the
same accuracy as in the first case. In this case we used the Gauss-Seidel iteration.
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Figure 2.5: The solutions for Example 2.2. (a)
(b) The function —u in the case b = -3, C' = 0.1.

Table 2.2: Numerical results for Example 2.2 with = 10, C' = 0.1
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n | £y [ o ratio I T || o ratio
20 || 3.5195 x 1073 6.3843 x 107!

40 || 7.5613 x 107* | 4.6547 || 3.5988 x 10~ | 1.7740
80 || 1.6512x 107* | 4.5792 || 1.8999 x 10~! | 1.8942
160 || 3.6002 x 107> | 4.5864 || 9.7499 x 102 | 1.9487
320 || 8.4405 x 107° | 4.2655 || 4.9374 x 1072 | 1.9747

36

The function « for the case b = 10, C' = 0.1.
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Example 2.3 In this example we impose a jump in the function u itself and also a jump
in the normal derivative of u as external constraints. The differential equation on each side
of the interface is simply the Laplace equation

Ugg + Uyy = 0.

The jumps in v and du/dn are chosen so that the following function is the exact solution:

e® cos ifr <
u(w,w:{ voars

0 ifr> (2.76)

[T

From this we can compule the functions v and w in (2.59) and (2.60). Since § = 1,
the standard five-point stencil is used at each grid point and equation (2.70) is used to
determine the right hand side C;;. Any fast Poisson solver can then be used to solve the
resulting system, with Dirichlet boundary conditions u = 0 on 0fQ.

Figure 2.6a shows the computed results on a 40 x 40 grid. The discontinuity in u is
captured sharply. Table 2.3 shows that we again obtain second order accuracy at all grid
points, even in the neighborhood of the discontinuity.

(a) (b)

Figure 2.6: The solutions for Example 2.3, with jumps in u and its normal derivative
specified along I'. (a) Solution (2.76). (b) Solution (2.77).

Example 2.4 As a final test, we repeated this experiment with the exact solution

u(z,y) = { -yt i< (2.77)

0 if r >

DO = [ =

shown in Figure 2.6b. In this case our method produced a compuled solution with errors in
the range 10713 —1071% at all grid points (in double precision). This is expected since for the
special case of a quadratic function the resulting truncation error should be identically zero,
and only rounding errors appear in the computed solution (as amplified by the condilion
number of the matriz).
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Table 2.3: Numerical results for Example 2.3 with true solution (2.76).

n | En o ratio 1T || ratio
20 || 4.37883 x 1074 2.99215 x 1072
40 || 1.07887 x 10~* | 4.0587 || 1.52546 x 10~2% | 1.9615
80 || 2.77752 % 107° | 3.8843 || 7.70114 x 1072 | 1.9808
160 || 7.49907 x 107° | 3.7038 | 3.87481 x 1072 | 1.9875
320 || 1.74001 x 107° | 4.3098 || 1.93917 x 1072 | 1.9982

In summary, we have developed second order accurate difference methods for elliptic
equations in the following situations: (i) The differential equations have discontinuous coef-
ficients along a general interface. (ii) The differential equations have singular sources along
a general interface. (iii) The differential equations have externally imposed constraints on
the jump in w or normal derivatives of u across an interface. In all cases we are able to
derive an appropriate difference stencil involving at most six grid points and the correct
right hand side so that the global error is O(h?) at all points on a uniform grid.

In the special case where the coefficients are continuous, the difference stencil reduces to
the standard 5-point stencil (2.32) and only the correct right hand side must be derived to
obtain second order accuracy. In particular, if the coefficients are constant then the standard
5-point Laplacian is used and a fast Poisson solver can be used to solve the resulting linear
system.

The ideas presented here can be used on a wide variety of other problems with discon-
tinuous coefficients or singular sources. All that is required is that we be able to predict
jumps in the solution and its first derivatives across I' from the equation. These jumps are
used in conjunction with appropriate Taylor series expansions about the interface to derive
the difference scheme and right hand side.

2.5 Some implementation details and a Fortran package for two-dimensional problems.

It seems to be difficult to implement the immersed interface methods even if we have the
analytic expressions for the interfaces and jumps conditions because

e The interface may be arbitrary and complicated.

o We need to identify the irregular grid points and decide which side of the interface
they are.

o We need first and second derivative information for the interface.

e We need to differentiate the jumps u and [Bu] along the interface.

We have written several Fortran subroutines to perform these complicated jobs. Although
not optimized, they have been used successfully to deal with many interface problems
including the Stokes equations with a moving interface (see Chapter 4).
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The idea is to use cubic spline interpolation! with the arc-length of the interface as the
parameter. All the quantities defined on the interface, such as the z- and y- coordinates,
jumps in w and JBu, etc., can be expressed by splines with the same parameter. The first and
second derivatives of these quantities can be obtained by differentiating the splines exactly.

By using the splines, it is also relatively easy to identify those irregular grid points near
the interface. Taking a grid point (z;,y;), how do we determine whether a grid point is
regular and on which side of the interface it is located? First we find all the intersections
between the interface and two straight lines z = z; and y = y;. This only requires solving
some cubic equations. Let these intersections be (xi,y(l)), (xi,y@)), e (mi,y(s)), and
(x(l),yj), (w(Q),yj), e (w(p),yj), where 0 < s,p < Nj, Ny is the number of control
points taken on the interface. Then we can find the point (z*,y*) which has the shortest
distance from (z;,y;) among the intersections. If the distance is less than or equal to the
space size h, then (z;,y;) is an irregular grid point. By the sign of the inner product
of (z;—a*,y; — y*)T - 72, we can tell on which side of the interface this grid point lies.
The point (z*,y*) is also saved along with other information and used later for the local
coordinate transformation needed to derive the modified difference scheme at the irregular
grid point (z;,y;).

The approach described above has been used successfully for a number of interface
problems with complicated interfaces. Based on this approach we have written a Fortran
package DIIM. DIIM is a double precision package for solving the elliptic interface problems
on rectangular regions with Dirichlet boundary conditions. The prologue of this package
can be found in the Appendix A.

Also, with the spline approach we can solve Poisson problems or elliptic equations on
complicated regions with an embedding technique. We circumscribe the region with a
rectangle and only modify the difference scheme at those irregular grid points inside the
region. At the grid points outside of the region, we will use dummy values, say zero, for
the solution. So it really does not matter what the difference scheme is outside. With the
optimal relaxation parameter for the Poisson problem defined on the rectangle, both the
SOR and LSOR methods require fewer iterations for the problems defined on the small
region than that defined on the whole rectangle. So this approach is very competitive
compared with other methods which embed the region into a larger rectangle and need
additional treatment such as solving integral equations, or a few Poisson problems on the
rectangle etc., see [10], [21], [35], [45].

Below we present an example of solving a Poisson problem with the Dirichlet boundary
condition on a complicated region.

Example 2.5 The equation is

sin(66)
4 9

_I_

N | —

Upg + Uyy = —2sinz siny, in the region 1 <

where (r,8) is the polar coordinates of (z,y). The Dirichlet boundary condition is chosen
from the following solution

. .
u(z,y) = 1 + sin z sin y.
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Figure 2.7: Using the immersed interface method to solve the Poisson problem 2.78 with
the Dirichlet BC on the irregular rigion. (¢) The computed solution with a 40 x 40 grid;
(b) The error plot of the computed solution.

Fig 2.7 (a) plots the numerical solution using a 40 x 40 grid. The values on the outside
of the region are set to zero. Fig 2.7 (b) plots the error in the computed solution. We see
that the error is on the order of 107° with the 40 x 40 grid. The prologue of the Fortran
package PPACK for solving the Poisson problems on irregular regions can be found in the
Appendix B.

However we need to mention that this approach does not use jump conditions to deter-
mine the difference schemes at the grid points near the interface. Also note that although
the resulting linear system obtained with this approach is still diagonally dominant and
irreducible, it is not symmetric anymore because of the complicated region. So usually the
SOR iterative method would be preferred to the LSOR approach. Without the symmetry,
it is difficult to determine the optimal parameters for the Alternating Direction Implicit
(ADI) iterative method, or to apply the Fast Fourier Transform (FFT). Whether multigrid
techniques can yield fast convergence for the resulting system is not known at this point.

2.6 General three-dimensional problems
Now we consider general three-dimensional problems
(Bus)e+ (Buy)y +(Bus)s+rK(z,y,2)u=f(z,9,2), (2,9,2)€Q (2.78)

in some region {2, where all the coeflicients 3, s, f may be discontinuous, and f may even be
singular across an interface, which is now a surface S: z = a(p,v), y = y(p,v), z = 2(u,v),
To make the problem well-posed, we need two interface conditions of the form

[u] = w, (2.79)

! Linear or other interpolation techniques could be used, perhaps at the expense of losing the second order
accuracy.
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B—1=4q (2.80)

across the interface surface.

2.6.1 Interface relations.

At a point (z*,y*, z*) on the interface, we need to use local coordinates to simplify the
derivation of the interface relations. The local coordinates (£,7, () are chosen so that £ is
parallel to the normal direction of the interface pointing outward. The - and (- axes are
in the tangent plane passing through (z*,y*, 2*). In the neighborhood of this point, the
interface can be expressed as

f = X(r'%C)v with X(0,0) =0, XU(O,O) =0, X((0,0) =0. (281)

Notice that in the local coordinates the equation (2.78) is unchanged, so we will use the
same notation for u, w, ¢, 8, k and f.

As we did before, we use the jump conditions and their derivatives as well as the dif-
ferential equation itself to get the interface relations between the quantities of two sides of
the interface surface. Let us first differentiate (2.79) with respect to n and ( respectively
to get

[ue]xn + [uy] = wy, (2.82)
[uelxe + [u¢] = we. (2.83)

Differentiating (2.82) with respect to { yields
J
X7 0_C[u£] + X [ue] + [une] x¢ + [unc] = wye. (2.84)

Differentiating (2.82) with respect to n and differentiating (2.83) with respect to ¢ respec-
tively we obtain

Xn %[uﬁ] + X [te] + X [Une] + [tgy] = wyy, (2.85)
Xc¢ %[%] + xce [ue] + x¢ [uce] + [uee] = wee- (2.86)

Before differentiating the jump of the normal derivative (2.80) we first express the unit
normal vector of the interface S as

(17 —Xn>» _XC)

/1+X772+XC2.

So the interface condition (2.80) can be written as

[8 (ug —uyxy —ucxe)]=q(n,0) /14 x5 + X2 (2.88)

(2.87)

=
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Differentiating this with respect to n gives

[(Bexn + By) (ue — wyxy — ue xc )]
+ [ﬁ(u + ug, — iu — iu —u —u )]
&€ X &n — Xn an n — X¢ an ¢ n Xnn ¢ Xn¢ (2.89)

Xn X
=y 1+ X7+ X ————.
1 + X772 + XCQ
Similarly, differentiating (2.88) with respect to  gives
[(Bexc+ Be) (ug — g xn —ue xc))

9 9
+ [ﬂ (“&5 Xe ot te = Xn tin = XC e — tn Xn — e X“)] (2.90)

X¢ X
=g 1+ x? + X2+ g e
1_|_X772_|_X<2

At the origin, x,(0,0) = x¢(0,0) = 0, and from (2.82)-(2.90) we can conclude that

ut = u” + w,

+ _ B

e = g¥ ue + g+’

u; = u77 + wy,

u? = uC_ + we,
uf, = u” 4+ u, x —u+X + w

n¢ n¢ ¢ An¢ & Xn¢ n¢s
u;;? = Uy, ‘I'(ug_ —UZF)va + Wy,
+ - -+
uge = g+ (ug —ug )xee +wee, (2.91)
+ _ BT +_ B - +_ BT -
ey = /@+“£n+<“n_ﬂ_+“n)><m+(“<_ﬂTuc)XWC
R

ﬁ+ Ue = 5+ +ﬁ+’

B~ B~ g _
ufe = ﬂ+“£<+($—ﬁ+ )XHCJF(“ZF_F“@)XCC

B¢ BE L
+5+ 6_5_+ +ﬁ+

To get the relation for ug'g we need to use the differential equation (2.78) itself from which
we can write

[ B (uge + upy + uce) + Beue + Byuy + Beue + vu ] = [f]. (2.92)

Notice that

Kk u” —ktut = kTuT — ktuT 4 kTuT - ktut = —[kluT — kT [u]. (2.93)



43
Rearranging equation (2.92) and using (2.93) above we get
Bt (ude + uly+ ) + 8wt + BTl + Yl =
0 (uge +uy, +ug) + By ug (2.94)
+ 8w, + B ug + 1+ KETuT — kTut,

Plugging the sixth and seventh equations of (2.91) in (2.94) and collecting terms finally we

have
+ _ B~ -
Uee = Bx ££+(ﬁ+ ) +( 1) Ueet
_l_
Be

UEF (Xnn + X¢e — _|_) —ug (Xnn + Xee — ﬁi__)
p p (2.95)
1
+ 5 (54 ug = 53“?)
i (R + ¥ ul) 4 1 = e

2.6.2 Difference scheme

At a regular grid point, we still use the classic central difference scheme which has a seven-
point stencil. So we will concentrate below on developing difference formulas for the irreg-
ular grid points. Taking a typical irregular grid point, say (z;,y;, zx), we try to develop the
modified difference scheme at this point. Again we only require the local truncation error
for this difference scheme to be O(h). Let us write the difference scheme as follows:

D Vi ik jimhkm T Kijk tijk = fije + Cijrs (2.96)
m
where 2., jm, km may be 0, £1, £2, - - -. Of course we want the number of grid points involved

to be as few as possible. So first we need to determine the stencil, and then find the
coeflicients 7, for the given stencil.

The analysis is similar to the two dimensional case. We take a point (z*,y*,z*) on
the interface surface near (z;,y;, zx) and use local coordinates (£, 7,() at (z*,y*, z*). For
the elliptic equation the coefficients 7,, should be of order O(1/h?). So if we expand
Witip, j+im k+km 11 the difference scheme about the origin of the local coordinates from each
side of the surface 5, we need to match up to second derivatives to guarantee that the local
truncation error is O(h). Using the ten interface relations (2.91) and (2.95) to eliminate
quantities at the (4) side of the interface, then the Taylor expansion of (2.96) will contain
U, gy Uy Up, Ug gy Uy Upes Ug s Uge and u, .. To match them we need altogether ten
grid points to get ten equations for the v,,s. Thus we need to find three additional points
besides the standard seven-point stencil. The three additional grid points can be taken
from any of the twenty grid points (¢ £ 1,7 £ 1,k+ 1), (i £ 1,7+ 1,k), (¢t £ 1,5,k + 1),
(i, 1,E£1).

Once we have determined the stencil we need to find the coeflicients of the difference
scheme. To get the equations for those coefficients we use the Taylor expansion of (2.96)
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about (z*,y*, 2*), the origin of the local coordinates. If the grid point (z;,y;, 2) is on the
(=) side, we will get
Tijk = a1 u —}—a2u+ —I—agug —}—a4u2' —|—a5u; +a6u;|7' —}—a7ug —}—a8u2'
+agug e + aro Ug_g + a1 u,, + aiz U;n + a1z U,
+ a4 UZ_C + a5 ug, + ae ug_n + a7 ug + ars Ug_c (2.97)
+ a9 u, . + azo u;'7'< + K u
= [T+ Ciyjr + O(h).
Here the a;’s have similar meanings as in (2.55) except now there are more of them and

they are more complicated. Using the interface relations (2.91) and (2.95), and rearranging
(2.97) we have

_ Be
Tijr = <a1 - aloéj) u” +ayu’ + {a3 — @10 (Xnn +X¢¢ — ﬁ_+

ﬁ -I-alsﬁ + @20 Xn¢ ¢ U
pt pt e

g
+ 4 a4+ aro Xnn"‘XCC_ﬁT

sy A
_a _ e D g S +
12 Xom — @14 X(¢ — Q16 G+ ais 5+ 20 Xn¢ ( Ug

+a12 Xy + @14 X¢¢ + @16 7

as + a ﬁ_—a ﬂ—_ —a ﬂ—_ U
5 106+ 16ﬁ+X7777 186+X77C
‘|‘(a6_a10 ﬁ+‘|‘a16X7777‘|‘a18X77C) u
+la-+a ——a ﬂ—_ —a ﬁ—_ U (2.98)
7 1 a1 16 3t Xn¢ 18 G+ X¢¢ | U .

+ (as — a10 — + @16 Xn¢ t Q18 ch) Ue

—I-( + a10 )u££+(a11—|—a12—|—a10(§—+—1)) Uy p

+ ((113 + a14 + aqo (g—; - 1)) Uee + ((115 + a16 g_) U,

(aw + a1g ) Uge + (a19 + ago) u n¢ T @12 Wy + Q14 We¢

+
+ aig ([ﬁi_ﬂ _ Hﬂiu] — Wy, —wCC) + a6 -~ ﬁ+

+018—+a20wnc+ﬁ u” — 7 = Cijg.

ﬁ-l—



Now it is clear that to make 7};; to be O(h) we should set

01—010ﬁ—++02

Be
a3 — ajo (me + X¢e — ﬁ_+ + @12 Xy + Q14 X¢¢ + 16 5

ﬁ+

67 8- B¢
-I-a18ﬁ +a20X77C+ﬁ+ aq + a1g va‘|‘XCC_ﬁ_+

fCa :
—a12 Xnn — @14 X¢¢ — Q16 ﬁ—n_l_ — as ﬁ_-l— — 420 Xn¢

5 10ﬁ+ 16 5t X 18 G+ Xn¢
_|_
+ as —aloﬁ—+ T 16 Xnn + @18 Xn¢
¢, s —a s
3+ 16/6_|_X77C 186+XCC
_|_

B
+ ag — ayg ﬁ_-l— + @16 Xn¢ + @18 X¢¢

a7 + aqo

B+
a1 + a2 + axpo (ﬂ— - 1)

a13 + a4 + aio <— - 1)

ag + aio

a19 + a20

57,

By
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(2.99)

(2.100)

(2.101)

(2.102)
(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

This is a system of ten equations with ten variables. We can solve this system to get the

coeflicients 7,, of the difference scheme at this particular irregular grid point.

Once we

know the 7,,, we know the a; as well, so we can calculate the correction term from the

following:

[/~ s*[u]

Cijk = o (ﬂ_+ gt Wy — wCC) + @12 Wyy + @14 We¢

+016ﬁ—++a1sg + azo wy¢ + az [u]

1 of
+ A {a4 + aqo (Xnn + X¢e — ﬁ_"') — a12 Xy
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-a —a @—a —<+—a (2.109)
14 X¢¢ 16 5+ 18ﬁ+ 20 Xn¢ (¢ 4 .
By
+ | ag — a1p ﬁ_+ + a16 Xop + Q18 X5p¢ | Wy
e
+ | ag — aip ﬁ_+ + @16 Xn¢ + @18 X¢¢ | we.

If the grid point is on (+) side, there are two ways to deal with it. The first one is to
modify the correction term Cj;; and the linear system (2.99)-(2.108) a little bit. Use the
following relation

ﬁ_u_—l—/{"u"'—/i_u_

= k u” + &Y [u]+[k]u, (2.110)

and let the difference scheme at this irregular (z;,y;, zx) be:

Y A Wikim i bt km T Kijh wijk = fiji + Cije. (2.111)

Then 4, still satisfy equations (2.100)—(2.108). Now the first equation becomes

a); — ajo [ﬂi‘g + ag = —[l‘{/], (2112)

and the correction term éZ]k is
Cijk = Cije + &7 [u] = [f]. (2.113)

The other way is simply to reverse the roles of the twosides (4) and (—) in the discussion
above.

We have tested a couple of examples. Although we can not take very fine grids to
test the second order convergence due to the size in three-dimensions, we do observe good
numerical results. Below we give one test example.

Example 2.6 We consider a problem in three dimensions with discontinuous coefficients
as well as the singular sources. The equation is defined on the cube: —1 < z,y,z,< 1 and
has the form

(Bug)s + (Buy)y + (Buz): + Ku= [,
where

1_|_$2_|_y2_|_22 Z.fCL‘Q‘I‘y?‘I‘ZQS
1 z'fac2+y2+22>

Blz,y,z) = {

NN

6+ 11 (22 + y* + 2?)

z) = 1 1 /
f(-fayv ) . —10g (2 $2+y2—|-22).
x? 4 y? 4 22 x? + y? 4 22




Dirichlet boundary condition is determined from the exact solution

$2+y2+22

uw(z,y,z) =

1 .
N TR e + log <2\/x2 + 32 —}—22) if 22 4+ y2 4 22 >

Table 2.4 lists the local truncation and global errors in the infinity norm.

Table 2.4: Numerical results for three dimensional Example 2.6.

n | Er || o ratio || || T} || | ratio
20 || 9.2824 x 1073 1.1675

40 || 2.8176 x 1072 | 3.2945 || 0.6587 | 1.7724
80 || 7.1043 x 10~* | 3.9656 || 0.3757 | 1.7528

I[N
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Chapter 3
IMMERSED INTERFACE METHOD FOR HEAT EQUATIONS WITH
FIXED INTERFACE(S)

In this chapter we study the immersed interface method for heat equations with fixed
interface(s) in one and two dimensions.

3.1 General 1D heat equations with fixed interface(s).

Consider the model problem

u(z,t) = (B(x,t)uz), + sz, t)u(z,t) — f(z,1)+ C(t)é(z — a)

5 (307 )+ Ba*, 1) C(0) 'z — o), (3.1)
0<z<1, O<a<l, >0,

with specified boundary and initial conditions. We assume §(z,t), x(z,t) and f(z,t) are
bounded but may all have discontinuities at the interface a. From the equation we can
conclude

[W] = wulat,t)—ula™,t)=C(1),
Bus] = Blat,)uz(at,t)—pla,t)u(a,t) = C(t).

We use a uniform Cartesian grid as in § 2.1 and use the efficient Crank-Nicolson scheme at
regular grid points which is unconditionally stable. The general difference scheme at time
1" is the following

(3.2)

ntl _ o n 1

U U

3 z _ n .n AN T AN T n,n n n

% T 3 [%’,1%’-1 + Yoot + Vst R u — O+
~n+l. ntl ~n+l ni4l ~n+l ntl n+l ,n+l _ rn+l n+1
Vi1 UWilq T Vg Uy F Vi3 Uy R T+ ]7

where k is the time step and the ratio k/h is a constant, k" = x(z;,¢") and so on. At
regular grid points for which a ¢ (z;_1, %;41), we have the standard weights

g =B /W vip= =By 4 B,0)/R

1
: 3.3
7573:@[._'_%/}@2 and Cl=0, I=n or n+1, (3:3)

where 6! | =4 (xi_l/Q,tl) and so on. Since the interface in fixed, the derivation for the
3

difference scheme is just slightly different from that in § 2.1. So we will omit the details
and just give the results directly.

Suppose z; < a < xj41, then z; and x;4, are two irregular grid points. In this case the
coeflicients H’/j}l’ 7]1472 and 7]1473 satisfy the following system of equations:



2
i — &
7‘5'71 + 7]1‘72 + (1 - % [H]l) ”;’]1-73 = O7

(2jo1—a)yiy + (zj —a)qh,

ﬂ_l ﬁ;l /@—lﬁ;l le_az B
" { Eﬁ-}—;l (xj-H - a) i (Eﬁ-l—;l - ({(ﬁ)-l-()l}Q) ) ( : 2 ) }7][‘73 = (ﬁz )lv

)2 N2 ()
(wy > a) 7§72+ (36J+12 (;_B)l(ﬂ ) “;’;',3 _ (ﬁ_)l,

(zj-1 — a)2 1

where [ = n, n+ 1, and
6] = [sla, 2], (87 =Bl ), (B = Blat, 0,
(8:) = Bala™ ), (B5) = Ba(at, 1),

The correction term C]l- is

. C!
{ { {
C; = 7]-73{0 + (@i - Q)W}

| (201 —a)® ) (B C n (H+)l 't (é/)l -7
R R(CR 0% (5% |

where

(@)= 0 o).
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Notice that now we have an extra term (C’)! compared to the correction term in the general
1D elliptic problem due to the [u;] term. Similarly at the grid point z;4q, the coefficients

7;-“71, ﬂ/§+172, and 7;-+173 for I = n, n + 1, satisfy the following system of equations:

(z; — a)2 l l ! l
(1 + 2B (K] ] vjg11 F Y12 T V413 = 0,

G20 ((ﬂ;)l B (ﬂ;)f(ﬂﬂl) (x]-—a)Q}A;
{ G T e 2 [

!
+ (2j41 — a) 7]l‘+1,2 + (242 — a) ’7gl‘+1,3 = (BF),

z;—a)? (pH) Tjp — ) itz —a)’
( J : ) Eﬁ—;l ,.,,;_}—171_}_%7;_'_172{_%"/54{_173 = (ﬁ—i—)lv
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and the correction term now is

. C!
! ! l
Cj-|—1 = Yj+1.1 {—C + (o — x])m}

I s e e GOt}
R R0 (5°)

We have written a Fortran package for the one-dimensional heat problems with a fixed
interface and tested several numerical examples. All the results confirmed second order
convergence. More importantly, the method is always stable no matter how large the
jumps in coefficients, provided that §(z,¢) has the sign across the interface. This will not
be true for the two-dimensional case when we have arbitrary interfaces.

3.2 ADI methods for heat equations with discontinuities along an arbitrary interface

3.2.1 Introduction

In this section we present a new, second order accurate ADI method for the heat equation

we = (Bu,), + (Buy), — F(z, 5,0 (3.4)
in a domain  in two space dimensions. Within the region {2 suppose there is an irregular
interface I' (see Fig. (1.2)) across which the solution u(z,y,t) or some of its derivatives are
known to be discontinuous, and the source term can be also discontinuous or even singular.
We assume that the coefficient § is continuous in this section.

As a model problem consider heat conduction with a heat source applied only along the
interface I'. Then f(z,y,t) can be written as

Syt = [ Cs,0) 80— X() 8y~ Y () ds.

From the differential equation we know that across I', the jump in temperature is zero. But
there is a jump in the normal derivative which equals the strength of the source C(s,1).

Again we assume that {2 is a simple domain such as a rectangle, and that we wish
to solve the equation using a finite difference method on a regular grid, e.g. a uniform
Cartesian grid. The interface is typically not aligned with the grid but rather cuts between
grid points. We assume we know the jump condition in the solution « and normal derivative
U, across I'. As we mentioned earlier those jumps can often be derived from the differential
equations.

For parabolic equations, it is often desirable to use implicit methods because the time
step restriction is severe for explicit methods. In fact with some effort, we can get a second
order accurate difference scheme for this problem by using the Immersed Interface Method
(IIM) proposed in previous chapters and [31]. The Crank-Nicolson difference scheme when
0 =1 can be written as

un.-l_l — u

iJ tj
T

(%u% + byuf; — CZ) n »
((5 W st - C’??‘H) - f.n.'% ]
el yu "

(¥ 3

N — N —
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where 7 is the time step and
2
by = (whoa,y = 20y 4wl ) /1,
n o __ n n n 2
(5yuij = (ui,j—l — QU” + um-_l_l) /h .

The correction term is determined from the jump conditions in [«] and in [u,] (see Chapter 2
and [31]). But at each time step, the implicit version of the IIM leads to a linear system of
equations which cannot be solved efficiently by direct methods.

Historically people have used a variety of splitting or ADI methods for parabolic PDEs.
In these methods a single multidimensional implicit time step is replaced by a sequence of
steps, each of which is implicit in only one coordinate direction. In addition, the equations
can be solved along one line of grid points at a time, giving a banded system of equations
which can be solved easily. The reader is referred to [9], [14], [39] and [52] for an introduction
to many of the methods.

However, such methods usually have strong demands on the smoothness of the solution.
The classical ADI method, for example, when g = 1 is:

un+% ur 1 1
1 T %y nt3 n nt3
1
n+1 n+z
W, — Uy 1 1
¥ 1] _ nty n+1 nt3

For this method the local truncation error contains a term of the form
7% §2 65 Up R 7'2utmyy, (3.8)

if the solution belongs to C*.

Certainly we have difficulty in applying these methods directly to our problems because
the solution may not even belong to CY. It seems that we can regard the correction term
in (3.5) as part of f(z,y,t) and use the ADI method directly which would be

1

un+5 — u™ +1 +1 +1
ij i nt3 n nt3 nt3
2 bpuyp P byu; —Cr P = [ 2 (3.9)
1
nt+1 nt3
usTt — L 1 L
tJ J _ nt+3 n+1 nt3 n+3

Unfortunately, theoretical analysis and numerical experiments shows this scheme only gives

first order accuracy. The failure results from the fact that we have not split the correction
1

term C' : ;_5.

In this section we still use a five point stencil. At regular grid points the classical ADI
scheme is used. At each irregular grid point we add some correction terms in each sweep so
that the local truncation error is order O(h). In order to derive those correction terms we
use the idea proposed in [31] but now split the correction terms in the z and y directions
accordingly. Because the number of irregular grid points is O(n) or even smaller we can
guarantee the global error in the solution to be O(h?).
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3.2.2  The notatlions and difference scheme

Let the parametric expression of the interface I' be z = z(s), y = y(s), where s is arc
length. We assume we know the jump conditions [u] and [0u/dn]

[u] = w(s), [Ou/0n] = v(s), (3.11)

along the interface which can often be derived from the PDE’s as in the example above.
They are used to derive appropriate correction terms so that the standard five-point differ-
ence operator yields second order accuracy as in the work of Mayo [34], [35] (see also [31]).
The domain € is assumed to be rectangular, say [a,b] X [c,d]. We use a uniform M x N
grid with

where h = (b—a)/M = (d — ¢)/N. For simplicity, we will take § = 1, and concentrate our
attention on the difference scheme at irregular grid points. Figure 3.1 gives an example of
such points and their geometry.

Difference scheme: Our ADI method can be written as

un-l-;— url 1 1 1
Y nt3 n+3z n n n n ntz
2 by 2 = (Co)y * — Qf — B+ 0yufy — (Cy)5 — fi; %
1
n+1 n+z
B Tl () - Q- R (342
2 )i ij — A
1
n41 n+1 nt3z
+ 5y“ij - (Cy)ij —Ji; -

At regular grid points the standard ADI method is used, in which

n—|—1— n n n n n
(Co)ii 2 = Q= Rl = (Cy) = Qs = (Cy)H = 0.

1J 1 ij tj

At each irregular grid point we need to determine these correction terms.

3.2.3 Splitting the correction terms.

We know the local truncation error at regular grid points is O(h?). To obtain second order
accuracy globally we need the local truncation error to be order O(h) at irregular grid
points. First we try to approximate uz, and uy, to first order by choosing the correction
term C; and Cy and later on we try to choose the appropriate correction term R7; and Q)7
so that the local truncation error at each irregular grid point is O(h).

Take a typical irregular grid point (z;,y;) or (7,7) in short. Assume the interface I
cuts the straight line y = y; at = = xfj, where z; < @j < %i41. Take Figure 3.1 as an
example, at the point (¢, 7) using Taylor expansion about z*, (it really should be z;;, but
for simplicity, we drop the ¢,7 ). After some algebra we have

Uim1j = 2 fugny uwT —2u” b (B xr g Ti— z*
h? N h? z h? h?
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T
n

® ® Y;
Yi—1

Z; Ti41

Figure 3.1: The geometry at some irregular points near the interface

+ uf

* *\2 *\2
Tiy1 — @ b (i — %) _2(352-—35 )
h? e 2h2 2h?

4 (@i — z*)?

2h2
~ [y (zit1 —a~) (zig1 — )’
= Uy + 5o+ [uz] — gz T [tzz] —opz T O(h)
=ty +(Cz)y (3.13)

Note that all the quantities are computed at (z*,y*) € I', where y* = y; in Figure 3.1, at
some time t,, where for convenience we didn’t write time indices in the expressions above.
Similarly at the point (¢ 4+ 1,7), we have

x *\2
g m Bt g Mg BT g G o
= ufy +(Co)iyr - (3.14)
In other words for any grid point (¢,7) we can write
bpttij = gz + (Cr);; + O(h) at irregular points (3.15)
where
(Ca);; = i[h%] + [ug) (xilhig"” + [tgs] % (3.16)

If the point is regular then (Cw)i]- = 0, otherwise it can be expressed in terms of z direction
jumps [u], [u;] and [us,]. The sign is determined by the relative position of the interface T’
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and the point (z;,y;). We can do the same in the y direction to get
byuij = uyy + (Cy);; + O(h) at irregular points. (3.17)

Now we need to find the jumps [ug], [uy], [tzs], [yy] in terms of the known information
[u] and [u,]. If we are able to find these jumps then we can split the correction terms
into the z direction and y direction, respectively. Fortunately, with the results obtained in
Chapter 2, we are able to get these jumps.

We use the local coordinates transformation at (z*,y*) as we did in [31]:

& = (z—2a")cosb + (y — y")sinb,
n = —(z—z")sinf + (y — y")cosb.

Here 6 is the angle between the z—axis and the normal direction at (z*,y*). In a neigh-
borhood of this point, the interface lies roughly in the n-direction, so we can parameterize
I' locally by € = x(n), n=n, and we write the jumps as [u] = w(n,1), [u,] = v(n,t). For
convenience we use the same notation for w,w, and v both in the original coordinates and
the new local coordinates. It is easy to see that

ug = Upcosl 4 uysinb,

Uy, = —Ugsinf + u,cosb.

After the local coordinate transformation we get

Ug = Up,. (3.18)
So the jumps in u¢,u, are
Ug| = |Un| = v(n,1),
[ue] = [un] = v(n, 1) (3.19)
[ug] = [u]y = wy(n, 1),

which are known already. For the remaining second derivative jumps we can use the interface
relations from Chapter 2 with minor modifications to get

[uge] = x"[ue] — woy + [f]+ we,
[wnn] = =x"[ue] + wyp, (3.20)
[ugy] = x"[uq] + vy
Now we have expressed all the jumps in the local coordinates in terms of the known quan-
tities [u] and [uy]. From (3.19)-(3.20) we can get the jumps in the z and y directions,
respectively, using the following formulas:
[ug] = [u¢] cos @ — [u,]sind,
[uy] = [ue] sin 0 + [uy,] cos @,

9 . .5 (3.21)
= [uge] cos™ 6 — 2[ugy] cos @ sin 0 + [uy,] sin” 6,

—

[uxx

[tyy] = [uge] sin? 0 + 2[ug,] cos B sin @ + [u,,] cos? 6.
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With these known jumps we can compute (Cy);;, the split correction term in z direction,
and (Cy);;, the split correction term in y direction respectively. Now we are ready to give
the ADI method. It is natural to use the following ADI scheme:

un+§_ — u _|_1 +1 ‘|‘1
) z Ty nTy rTe
]TQJ = bguy * = (Ca)yy * 4 dyuiy — (Cy)j5 = fij 7
» (3.22)
ST et s - (O —
T = O0gUy; —( z)” + oyu ij ( y)ij —Jig

Numerical experiments gives promising results and the method appears to be second order
accurate. But more subtle analysis (see §3.2.4) shows that the local truncation error is only
O(1) at irregular grid points which is also confirmed by the numerical results. So there
must be some fortunate cancellation in the errors. At this point, we are not sure whether
such cancellation will always occur or only happened in our test problems. Anyway, for
safety, we are going to modify this ADI scheme further so that the local truncation errors at
irregular grid points are O(h) so we are guaranteed to get a second order accurate solution.
We modify the ADI method in the next section.

3.2.4  Local truncation error analysis

In this section we discuss how to determine ¢);; and R;; through local truncation error
analysis . We assume that 7 ~ h. Now if we add the equations in (3.12) together we get

w T — ntl L
o Ty 6Iuij+2 _ (C'Yﬂ?)ij+2 _ ;_zj_ R'ZrLJ
T ) ) . (3.23)
n n n n+1 n+3
t3 (%%’ + 6yuij+1) ~ 3 ((Cy)ij + (Gt ) - fij
And if we subtract them, we have the intermediate result
n 7’L+1
ntg Ugj + U 7 n n n n+1
Ut = : 9 —+ 1 (6yuij - (Cy)ij - 6yuij+1 + (Cy)¢j+ ) : (3.24)
Plugging this into (3.23), we get
u".z.-}'l — 1 1
%J L n n+1 nt+ n n
- = 5‘590 (Uij + ) —(Cz)y; * = QF — R
1 n k23 n
+5 (6 = (Cy)f; + dyult™ = (G (3.25)
T n n n n+1
+ 280 (6,uls = (G — sl + (G5
This is the difference scheme which we actuaﬂy use to get the next time solution u LAt

regular grid points we can regard those (C )” 7Q”7 R (Cy)iss (Cy):;-l'1

consider the local truncation error so that we can determine the correction ¢)7; and R},
keeping in mind that the interface is fixed and all the terms are continuous with time. The

left hand side is

as zero. Now we

whtl

Y M (ut)?*% +0(r). (3.26)
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The first few terms on the right hand side can be written

1 n—|—1—
n 1 no_
5‘590 (uij + ) —(Ca)y; * — Q=
1 n—|—1— 9 n—|—1— n—|—1— (327)
§5m“ij P+ 70 be(un);; 2 - (Ce)y ® — Q-
So if w is continuous, that is [u] = w = 0, then
2 ntg 2
7% 6, (uge);; * ~ 7°/h ~ h. (3.28)

We can simply take @7 = 0. If u is not continuous, we rewrite the expression above as
2% (wfy + ) = (Co)* - Q=

% (dzuly — (C)) + % (baust™ = (C)5T)

—(C 4 5 () + (Co) - @3 =

i3 ij
1 n n n+1— 1 n n n

n+l n+i 1 n n n

7
Now we know we should take

L
)

((Coyty + (Cdi™) = ()i, (3:29)

N | =

Notice that

1 n n n k13
9 (6y“ij —(Cy); + 6yuij+1 - (Cy)ij+1)
1 n n
= 5 ()l + (w)) + O(h) (3.30)

n—I—é—
= (uyy)ij + O(h).

So these terms do not cause any trouble. Finally we turn our attention to the remaining
terms. Recall that the interface is fixed and all quantities are continuous with time so we
can write

61/“?]' —(Cy)i: = (uyy)s + Sfjh + O(h2)>

2] 2]

3.31
6yu?j+1 — (Cy):.;"'l = (uyy):.;"'l + Sfj""lh + O(h?). (3.31)

Here |S]: — Sfj+1| = O(h). Hence from (3.17) we know that
byug; — (Cy);n] - 6yuzT'Lj+l + (Cy):';‘-l_l = (uyy)?j - (uyy)?j—}_l + O(hQ)- (3.32)

Therefore we have
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T n n n n n
100 (Bl = (G} = 8,5 + (C) - Ry,

¥ ¥ vy
T n n n
= Z‘Sz ((uyy) — (tyy) +1) +0(h) - R (3.33)
7—2 n
= _Z(S (uyyt)” R + O(h)

Now we see that the real trouble comes from the term %(Sz(uyyt)n which is O(1). We have
to approximate this term to accuracy O(h) to make the right correction. However, notice
that
Z‘Sz(uyyt)ij T ( (tyyt);_ g (uyyt)z’j + (uyyt)i+1,j) (3.34)
) .
7 luyyli + O(h).

Again the sign is determined by the relative position of the (4, 7) grid point and the interface.
For example, in Figure 3.1, we would have a — sign for (4,7), and a + sign for (¢ + 1, 7).
Fortunately we have expressed the jump [u,,] along the interface in terms of the known
jumps [u,] (see (3.19)-(3.21) ). So

(tyye ) = ) i O +O(h). (3.35)

1 T

At last we can determine the R}, which is taken as

n+1

— [uyy]”

T . (3.36)
From the analysis above we know that if we take Q7; and R, as in (3.29) and (3.36), then
we can guarantee that the local truncation errors are O(h?) at regular grid points, and O(h)
at the irregular grid points near the boundary. Since the boundary is one dimension lower
than the whole problem, the solution to the difference scheme will still give second order
accurate solution globally.

n [4yy]
R” — q: Yy

3.2.5 Numerical results

We have done a number of numerical tests. All of them confirmed our analysis in §3.2.4.
With the correction terms @7 and R}, we observed second order accuracy globally in the
solution. Without these terms, the convergence rate also seemed to be nearly second order

accurate, but we are not sure whether it is generally true or not.

Example 3.1 In this example the solution u(z,y,t) is continuous but has a constant jump
in the normal derivative. The differential equation is:

Us = Uag + tiyy + /F C(t) 6(z — X(s)) 6(y — Y(s)) ds,
(3.37)
C(1) = e (Y5(0.5) Jo(0.5)/ Yo(0.5) — Jo(0.5)) ,
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on the square —1 < z, y < 1, where I is the circle 2%+ y* = 1/4. In (3.37), Jo and Yj are
the Bessel functions (of order 0) of the first and second kind, respectively. The Dirichlet
boundary condition and the initial condition are taken from the exact solution:

et Jo(r) if r <

u(z,y,t) = (3.38)
e tJo(0.5) Yo(r)/Yo(0.5) if r >

[

D=

Table 3.1 and Table 3.2 give the numerical result at ¢t = 5 with and without the correction
terms Q7'; and R;; respectively. We see that the method with correction terms @7, and
R?; behaves better in this example. But the method without correction terms seems also
to approach second order accuracy. Figure 3.2 shows the solution.

The maximum error over all grid points,
I EN lloo = max{] u(zi, y;) - uij |},

is presented, where u;; is the computed approximation at the uniform grid points (z;,y;).
For our method we also display || Tn ||, the infinity norm of the local truncation error
over all grid points. The local truncation errors are O(h?) except at those points which are
close to the interface where they are O(h). We also display the ratios of successive errors,

ratiol = || B [loo/ | En [loos ratio2 = | Ton /Il T [l

o0

A ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second order
accuracy. We will use the same notation for other examples in this section.

Table 3.1: Numerical results for Example 3.1 with correction terms Q7 ; and R},

N ||| Enl,, t=5|ratiol | ||In ]|, t=0 | ratio2
20 || 5.39851 x 10~° 4.04973 x 1071
40 || 1.01368 x 107> | 4.6345 | 1.885347 x 1071 | 2.1480
80 || 2.30004 x 107 | 4.4072 | 8.94152x 1072 | 2.1085
160 || 5.56747 x 10~ | 4.1312 | 4.33057 x 10=% | 2.0647

Example 3.2 In this example we impose a jump in the function u(z,y,t) itself and also a
jump in the normal derivative of u(z,y,t). These jumps vary along the interface and are
not symmetric. The partial differential equation is

Uy = Ugz + Uyy — f('rv yvt)' (339)
The jumps in u(z,y,t) and du/Idn are chosen from the following exact solution:

1 ifr <
u(z,y,t) = (3.40)
cos(t)sin(§(z 4+ 1))sin(§F(y + 1)) ifr >

b=

pO |
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Table 3.2: Numerical results for Example 3.1 without correction terms Q7 and R

N ||| En|l t=05| ratiol | [|Tn ||, ¢ =0 | ratio2
20 || 7.70093 x 107° 2.32077

40 || 2.07288 x 107> | 3.7151 2.60534 0.8908
80 || 5.44382 x 107° | 3.8078 2.73938 0.9511
160 || 1.42010 x 107° | 3.8334 2.80317 0.9772
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Figure 3.2: The solution ( N = 40,¢ = 5) for Example 3.1 with the jump given in the
normal derivative along the interface.

The function f(z,y,t)is defined as:

0 if r <

DO

[y, 1) = ,
(sin(1) — 75 cos()) sin(5(x + 1)) sin(F(y + 1)) if 7 >

[

Table 3.3 and Table 3.4 give the errors of the computed solution with and without the
correction terms Q7 and Rj;. Figure 3.3 is the solution plotted at time 27.

In summary we have developed a second order accurate Alternating Direction Implicit
Method for the heat equation with singular sources (giving jumps in u,) and dipoles (giv-
ing jumps in u) along some fixed interface. The same method can be used for arbitrary
continuous coeflicients g with a little change. Numerical experiments have confirmed the

efficiency of the methods proposed in this section.



Figure 3.3: The solution ( N = 40,¢ = 27) for Example 3.2 with given jumps which are not
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symmetric.
Table 3.3: Numerical results for Example 3.2 with correction terms Q7 and R}

n ||| En|l, t=5 1] ratiol | || Tn ||, ¢=7/2| ratio2
20 | 9.28331 x 107* 7.14922 x 1077

40 || 2.46366 x 10~* | 3.6943 | 3.51033 x 10=° | 2.0366
80 || 6.47184 x 1077 | 3.8067 | 1.73839 x 10=2 | 2.0193
160 || 1.66843 x 107> | 3.8790 | 8.64918 x 10=* | 2.0099
320 || 4.25187 x 107° | 3.9240 | 4.31816 x 10=* | 2.0030

Table 3.4: Numerical results for Example 3.2 without correction terms ()7 and R}

ratiol

n ||| En|l, t=5 | TN ||loo ¢t =m/2 | ratio2
20 || 9.28331 x 10~* 0.17446

40 || 2.47616 x 10~* | 3.7491 0.16917 1.0313
80 || 6.48125 x 10> | 3.8205 0.16631 1.0172
160 || 1.66920 x 10> | 3.88350 0.16483 1.0090
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Chapter 4

SOLVING STOKES FLOW WITH MOVING INTERFACE IN 2D

In this chapter we apply the Immersed Interface Method (IIM) to solve the Stokes
equation with a moving interface that exerts a singular force on an incompressible fluid
in two dimensional space. This new approach gives better accuracy compared with other
approaches and provides a new way to solve incompressible moving-interface problems.
Theoretical analysis is given to deal with the distribution of the singular sources, namely
the 2D delta function and its derivatives, arising in the problem. Techniques to interpolate
non-smooth or discontinuous functions to the interface using grid values are also presented.
We consider a model problem studied by Tu and Peskin [51] consisting of an elastic boundary
immersed in a zero Reynolds number fluid.

The motivations for considering this problem are:

o We want to determine whether the immersed interface method can give second or-
der accurate solutions for incompressible flow problems with moving interfaces. The
problem considered here is the simplest of this form.

e Tu and Peskin’s method for the Stokes flow is only first order accurate in the 1-norm,
and less accurate in the infinity-norm if the solution is discontinuous. Furthermore,
there is a slow leaking phenomena in their method which we can see from their pa-
per [51]!. We will give some explanation of this phenomena in §4.4. Such leaking
should not occur because we are dealing with incompressible flow and an imperme-
able boundary. So we want to have a better method for the Stokes equations which
gives higher order accuracy and also preserves the enclosed area.

4.1 The governing equation

The model problem is two dimensional Stokes flow taken from [51]. Some of the description
of the problem in this section is excerpted from their paper. We consider a two dimensional
viscous incompressible fluid containing an immersed elastic weightless boundary. Generally
the boundary is stretched and under tension due to the motion of the fluid surrounding it
or some external force. Reciprocally the boundary exerts force on the fluid as well and will
influence the motion of the fluid on the whole domain so that the entire dynamic system can
approach its equilibrium state. As an intuitive example, we consider a balloon filled with
air. The equilibrium shape for the balloon is a sphere. Without external force the balloon
will not deform even though the boundary force is nonzero since the balloon is stretched
and under tension. The elastic boundary force is balanced by a jump in pressure. However,
if we squeeze the balloon at some initial time and then let it go the balloon will change its

! Peskin and Printz have suggested a modification to fix the leaking problem in [44], and we have not tried
to implement this modification for the Stokes equations described in this chapter.
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shape with time until it reaches the equilibrium again. This example is very similar to the
problem discussed in this chapter except we consider very viscous and incompressible fluid
which surrounds the interface. We assume that effects of inertia are negligible both for the
fluid and for the immersed boundary. Note that both the fluid inside and the fluid outside
the immersed boundary are physically significant in the problem and influence the motion
of the boundary. As in [51], we put the entire problem in a periodic box.

On the basis of the above assumption, we can write the equations of motion that are
valid for both the fluid and the immersed boundary in the Stokes equations:

Vp = vAd + F(Z,1), (4.1)
V.i=0, (4.2)

where 4 is the fluid velocity, p is the fluid pressure, v is the constant fluid viscosity, and F
is a boundary force such as an elastic force or surface tension. The immersed boundary is
represented by the Lagrangian variable )?(s, 1), parameterized by s. Then we can write the
force distribution using Dirac é-function notation:

F(#,1) = /m) Fls,0)65(F — X(s,1))ds. (4.3)

The integral is over the entire boundary and §; is a two-dimensional é-function 63(Z) =
01(2)61(y), where & = (z,y). Therefore, the force is singular and has support only on the
immersed boundary.

For an elastic boundary, the force is the restoring force of the stretched boundary. If
we use sg to express the arc-length of the unstretched boundary, then there is a continuous
mapping between s and sq:

so = P(s). (4.4)

Let T'(s) be the tension in the immersed boundary. We assume a generalized Hooke’s law
response,

0X

/19'(s)] = 1. (4.5)

o

_1:‘

Then the density function for the force exerted by the boundary on the fluid is

s 0 0
5)= =— (T7) = =— (T7) /¢ 4.
fls) = 5= (1) = 5 (17) [4/(s), (46)
where 7 is the unit tangent to the boundary
. 0X |oX
T 38/‘85 ' .7

The final assumption is that the fluid adheres to the boundary. Thus, we impose the
no-slip condition

——(s,1) = @(X(s,1),1). (4.8)
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We will directly use the dimensionless form of (4.1)~(4.2) and assume v = 1 in equation
(4.1) for simplicity.

There are two approaches to solve the Stokes flow problem. The first approach is to
solve for the pressure and the velocity simultaneously using (4.1)-(4.2) as was done by Tu
& Peskin [51]. This is discussed in § 4.4. The second approach is to solve a set of three
Poisson equations, since using the incompressibility condition, we can easily decouple the
Stokes equations (4.1)—(4.2) into three Poisson problems:

Ap=V-F, (4.9)
Au=p, — 1, (4.10)
Av = p, — I3, (4.11)

where F = (F1, Fy); Fy and F, are the components of the force in z- and y- directions,
respectively and we take v = 1 from now on. The details will be given in § 4.5. We have
found that the second approach works better in conjunction with the immersed interface
method.

4.2 The derivation of the jump conditions

In order to use the IIM to solve this interface problem we need to derive the jump conditions.
The velocity is continuous because of the no-slip boundary condition, but the pressure is
not and there are also jumps in the normal derivatives of p, u, and v.

First we review some results from distribution theory. Below we will assume that ¢(z,y)
is an arbitrary twice continuously differentiable test function defined on an appropriate
region Q. Let 6(z — Xo)é(y — Yp) be the two dimensional Dirac-function, a point source at

(Xo,Yp), is defined by
//Q $(z,y) 8(z — Xo)b(y — Yo) = &(Xo, Yo). (4.12)
If we have a source distribution
[ Cts) oo = X())ey - Y ()ds

along a curve I' : (X(s),Y(s)) with strength C(s), then

//Q oz, ) {/F C(s)b(z = X(s5))o(y - Y(S))ds} dz dy

- /Fc(s) & (X(s),Y(s))ds. (4.13)

For a vector function G = [Gi(z,y),Gaz,y) ]T, by using Green’s integral theorem, we
know that

// ¢d$dy—/89(é-ﬁ)qbds—/Qé-V(bdxdy.

Thus we can generalize the one dimensional result

/qﬁ §'(z —a)de = —¢'(a)
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Figure 4.1: Diagram used for the derivation of jump relations

to two dimensions

//qbwaFdacdy_// $y{/r 7,

_ /(fl(s Hae © (X(5),Y () + fals,t)

t) 63 ( — X(s,1 ))ds} dzdy
EE©.YE)ds @)

Theorem 4.1 For the Stokes equations (4.1)-(4.3) or (4.3) and (4.9)-(4.11), the following
jump relations hold*

Pl(s) = Jils:0), (4.15)
pal(s) = a0, (4.16)
[un](s) = fg(As,t)sinH, (4.17)
[va](s) = —fa(s,t)cosé, (4.18)

where 0 is the angle between the x-axis and the normal direction pointing outward from the

immersed boundary at (X (s),Y(s)) and f1, f> are the normal and tangential force strengths
defined as

fils,1) = fi(s,t)cos@+ fao(s,t)sin, (4.19)
fals, 1) = —fi(s,1)sin@ + fas,t)cosé. (4.20)

Proof: Referring to Fig. 4.1, we take a belt domain {2, which encloses the interface I
Let I'T and I'” be the outer and inner boundary of €2, respectively. Here € is some measure
of the distance from I' to I't and T'~.

From the Poisson equation (4.9) for pressure we have

//Qsqubdxdy - /Qeqbv-ﬁdxdy
() -

2 We have omitted the time dependence in our notation for some quantities such as [p](s), 8 etc. in order
to simplify the notation. This does not affect our analysis.
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Referring to Fig. 4.1, let us handle the left hand side of (4.21) first by using Green’s theorem
repeatedly

//QsApGﬁdwdy = / (Vp d<—|—/ d<—/Q€Vp Védr dy
/FjpnédS—A:P;¢dS—Aj(V¢-ﬁ)p+ds

- [ (Vo (-anpds+ [[ pacdady,
where the superscripts + and — indicate the values taken from outside and inside of the

interface I' respectively. Notice that ¢ is twice continuously differentiable and p is bounded
and discontinuous only along the interface. So as € approaches zero, we have

] pavdzay — o as =0
//Q Appdudy — /F[pn]cbds—/r[p] ¢nds  as € — 0. (4.22)

To deal with the right hand side of (4.21), we express d¢/dz and 0¢/dy in terms of its
normal and tangential derivatives along the interface

T

¢, = Vo-ii= 090 os@ + 3y sin @, (4.23)
IR T T

¢ = Vo-T=— 9 sin 8 + 3y cos 6. (4.24)

After solving the linear equations above for d¢/dz and d¢/dy we get
29

9 - ¢p cos — ¢ssin b, (4.25)
oo .
% = ¢,sinb + ¢, cosb. (4.26)

Plugging these two equations in (4.21) and collecting terms we have
09 0¢ _ . 0¢ . 3¢)
/F (fl e + f2 3y> ds = /F <(f1 cosf + fysin @) I + (f2 cosf — fisin ) s ds
/ (fl@% + f2¢s) ds.
r

Integrating by parts in the second term and noting that I' is closed, we may rewrite the
equation above as

[ (n5e+ns ) - /(flabn Q";%b) ds.

Comparing this with (4.22) and using the fact that ¢ is arbitrary, we must have
[p] = flv
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To get the jump for u,, we multiply by ¢(z,y) on both sides of (4.10) and integrate

//Qe Auqﬁdwdy—//gepqudxdy: —/Ffl(s)qbds. (4.27)

The first term of the left hand side of (4.27) is

//QeAucbdxdy = /F+uquds—/F_u;qbds—//ge(Au.Aqﬁ)dxdy

€ €

— /[un] ¢ ds, as € — 0. (4.28)
r

The second term of the left hand side of (4.27) is

[ pecdzay /Q€¢v.l§] 4o dy
/chb ([p+’ O]T.ﬁ) ds—/r_qb([p—’O]T_ﬁ) s

€

9o 991" | p
- —, — - dz d
//6 [336’ 0y 0 rvay
— / ¢ [p] cos B ds, as € — 0, (4.29)
r
where 7 = [ cos @, sin@ ] Since ¢ is arbitrary, from (4.19)—(4.29), we must have

[un] = [p] cosf - fi
= cosb (ficos@+ fosinf) — fi
= sinf (—f; sinf + f; cosb)
= fg sin 6.

Similarly, for v we can get
[vn] = [p]sind - f;
= cosf (fy sinf — f; cosb)
= —fg cosf.
This completes the proof of Theorem 4.1. 0

Note we can also decompose the jump of the normal derivatives of p, u, and v into
jumps in the z- and y- directions,

[pz] = [pn]cos — [ps]sinb, (4.30)
[py] = [pn]siné + [ps]cosé. (4.31)

We know the jump [p,] already and

_dpt Op~ 0
[ps] = s o8 = 8—8[17]7 (4.32)
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i.e., [ps] is the derivative of jump of pressure p along the interface. So we find

_ 0 0N
[p:] = s cosd B sin 6, (4.33)
py] = D5 sin 8 + 55 8 0. (4.34)
By the same token
0 N
[us] = 3—S[u]=07 (4.35)
0 —

So we can also compute [ug], [uy], [vz], [vy] according to the following:

[uz] = [un]cosf — [us]sinf = fg sin 6 cos 8, (4.37)
[uy] = [up]sing + [ug]cosd = f2sin? 6, (4.38)
[v:] = [vn]cosf — [vs]sinf = —fg cosfsinf, (4.39)
[vy] = [vn]sind + [vs]cosf = —fg cos® 6. (4.40)

In summary, we can compute the force strength from the interface configuration, and
all the jumps in terms of the force strength and the properties of the interface.

4.3 Computational frame and jump calculations

For the periodic box [a, b] X [¢, d] on which the Stokes flow is defined, we take a fixed uniform
grid with

r; =a+th, yy=a+ jh, 1,7=0,1,---, N,

where we assume that h = (b — a)/N = (d — ¢)/N. We use a periodic spline X(s,1) =
(X (s,1),Y(s,t)) passing through the Lagrangian points (X}*,Y}") to express the moving
interface, where s is the arc-length of the interface and (X7, Y;") is the position of the k—th
point on the boundary at time { = nAt{, k =1,2,---, N, — 1. Since the interface is a closed
curve, the arithmetic on k£ is modulo NVy.

Any other quantity w(s) defined on the interface such as the force strength or the jump
in some quantity can also be expressed in terms of a periodic spline with the same parameter
s. Since cubic splines are twice differentiable we can gain access to the value of w(s) and
its first or second derivatives at any point on the interface in a continuous manner.

To implement the immersed interface method, we calculate the jumps of [p], [pa], [wn],
and [v,] in the following steps:

e Determine the tangential and normal directions.
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T ¢ vect . 0X / 0X
angent vector 7T = —/|—
& 0s' | 0s|’

0X < 0X oY )

ds s 0s
Normal vector 7 = (cosf,sinf),  where
oy |0X 0X ,|0X
COS@—a—S E N Slng——g/fa—s ) (441)

where 6 is the angle between the z-axis and the normal direction pointing outward from
the immersed interface.

—

e Calculate the tension 7'(s) and the force strength f(s,1).

T(s) = ‘g_x -1=| G|/l
flsst) = 5= (T(5)7(s))
_ S—S(T(S)F(S))/w'(S)

We do not differentiate w(s) = T'(s) 7(s) directly, but use its value at s;, to form a new spline
to get the first derivative. To get ¢/(s) we do not need to know the continuous mapping
¥(s) but only the corresponding relation between sj and (sg)., k =1, 2,--+, Ny — 1. Then
we can use a spline again to get the continuous expression and its derivatives.

We have substituted this spline approach for the finite difference method used to cal-
culate the tension and force in Peskin and Tu’s Stokes solver. While the convergence rate
remains the same, this gives a smaller error constant in the results.

Usually we take equally spaced A(sg), for the unstretched boundary. Different distri-
butions of Asg will lead to different problems. Once we know the corresponding relation
between sy and si, we can approximate ¢'(s) using either discrete formulas or a spline
interpolation.

e Compute the tangential and normal force strength using equations (4.19) and (4.20).

e Compute the jumps at a point s on the interface using (4.15)—(4.18), (4.30)-(4.31),
and (4.37)-(4.40).

4.4  The direct Stokes solver

Since the Stokes flow is defined on the periodic box, it is natural to use the fast Fourier
transform (FFT) to solve for the pressure and velocity simultaneously using (4.1)-(4.2) as
discussed in [51]. In this section we will describe how to combine the immersed interface
method with the FFT.
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4.4.1 Discrete Stokes equations

For¢,7 =0,1,---,n — 1, the discrete form of the Stokes equations are
Uim1,j + Wit1,j + Wijo1 + Wijy1 — AUij  Pit1j — Pi-1, 1
h? - 2h Rk
Vi—1,j + Vig1,; + 025_1 + vij+1 —4vii Ppija Q_hpi,j—l _ 2%7 (4.42)
Wil = W1 Cighl = Oijo1
2h * 2h -
If (4,7) is a regular grid point, then
1 2

At irregular grid points we need to find these quantities using the immersed interface method
so that the local truncation errors of the three equations above is O(h).

Suppose (%,7) is an irregular grid point, we take a point (z*,y*) on the interface near
(z;,y;). From the previous section we are able to compute the jumps [p], [p,], [u,] and [v,,].
We use the same coordinate transformation at (z*,y*) as in Chapter 2:

Iy
|

(z —a")cosl + (y — y*)sinb, (4.44)
= —(z—2a")sinf + (y—y*)cosb, (4.45)

where the § has the same meaning as before, see (2.38)-(2.39).

Using Taylor expansion about (z*,3*) from both sides of the interface and collecting
terms accordingly, we can write

o def wl@ion i)+ ul@ign, yi) + (@i yin) + @i yion) — du(i )
) h2
P(zi41,9) — P(Ti-1,9;)
2h

= agug —|—a4u2' —|—a5u; —|—a6u7‘|7' —|—a7ug£—|—a8ug'£
+ agu, , —|—a10u7"7'77 + a1 U, + a1z Ugn +b1p”

+ba pT + b3 Pe +b4p2—+65p;‘|‘b6p7—7}—‘|‘0(h)7 (4.46)

R def Wiy, ) — u(@iog, y5) + 0(i Y1) — (i, Y1)
“ 2h
= 03u£_—I—C4ug—|—65u;+c6u7‘7|'—|—d31)£_—|—d4v;—|—d5vn_—|—d6v;, (4.47)

where a;, b;, ¢; and d; have expressions similar to (2.55) with different ~4’s, which are the
coefficients of central difference scheme for u,., p;, u; and v, respectively. Define
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b= > W 2= > W

keK— keK+
$3= > Exvk 1= Y, &k
keK— keK+
b5 = >, Mk b6 = Y MYk
keK— keK+
1 1
¢7 = 3 > G ¢s = 2 > G (4.48)
keK— keK+
1 9 1 2
$g = B Z N7k ¢10 = BY Z Mk
keK— keK+
dri= Y ExrTk 2= D Exmks
keK— keK+

where Kt and K~ is defined by

K* = {k: (&,n;) is on the % side of I'}.

Then
. . 1 4
aiquiv 223747"'7127 with 71:’.}'/3:74:75:§7 "},’2:—?7
1
bi =6 = Qbi, 1= 37475767 with Y1 = —73= %7 Y2 =74 =75 = 07
. . 1
di = Qbi, t= 37475767 with Vs = —Y4 = %7 M =72=73= 0.

Notice that we have used the fact that » and v are continuous. With almost the same
derivation as in Chapter 2 we can get

u;7F =u,,
ug = ug + [un], [u,] is known,
J
+ _ —
ul =u; + —[unl, (4.49)
&n &n an
u7-7}—77 = u;n - [uf]X”v
ugg = uge + [uelxX” + [pz], [p2] is known.
Similar relations exist for ». It has been proved that
as + aqg = 0
ag + ajp =1
as + ag = 0
a1 +ajz = 1.
a7 +ag =1

From the coordinate transformation (4.44) and (4.45) we also have

(41 —2*)cosO+ (y; —y*)sin@  (z;_q1 —2*)cos@+ (y; — y*)sinb

batbs = 2h 2h
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= cos#,

—(@ip1 —2*)sinf + (y; —y*)cosd —(z;_1 —z*)sinf + (y; — y*) cosb
2h 2h

bs +bs =

= —siné.
Hence
(b3 + ba) pg + (b5 + bs) p,, = cosbp; —sinbp, = p,. (4.50)

We can get similar relations for u, and v,. Now we can rewrite (4.46) and (4.47) as

Tij = gy +uy —pgy + (as+ (as — a10)x”) [uy] (4.51)
+ ag[p.] — b2[p] — ba[pe] — be [p,] + O(h)
and
Ry = g +vj +ealue] + colu,] + dafoe] + dslo,] + O(h). (4.52)
Therefore we should choose
L= (as+ (as — a10)X") [un] + as[pz] — balp] — balpe] — be [py), (4.59)

¢ij = calug] + c[uy] + dafve] + delvy].

We can determine ffj in the same way.

Remark: Tu and Peskin [51] used the discrete delta function approach to find the right
hand sides 2-1]' and 22] In their approach ¢;; = 0. So their method smooths the solution
and adds an artificial source term —g¢;; to the continuity equation. This could explain the
leaking phenomena in their approach.

4.4.2  Fast Fourier transform

We consider a grid function ¢ and define the discrete Fourier transformation of ¢ as

N-1
R 1 . . .
<bk17k2 = N Z e_Z(Zﬂ/N)(hkl-}_Mkz) quhjzv 0<Fki, ko <N-1 (4-54)

11,J1=0

The inverse of Fourier transformation can be obtained with almost the formula above except
the plus sign in the exponential. According to this definition, the discrete Fourier transforms
of the Stokes equations (4.42) are as follows:

) . 27'[']{?1 4

5 o mhy o Tha :

_ E sin Tpkl’]@ — ﬁ <51n2 ¥ + Sln2 N ) Uky ky = fk1717k27 (4.55)
’i . 27l'k2 N 4 . 7Tk1 . 7Tk2 N "

_E S1n Tpkl,kg - ﬁ <Sl112 T + slh2 T) Vky ky = fl?l ko (4.56)
1 . 27Tk1 N 7 . 271']62 N N

5 S = Tk gy + 7 S Ok, = ey (4.57)
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The solution of this algebraic equation is

hi (sin(27rk1/N) f%]’kg + sin(27kz/N) f,?hkg)
sin?(2rky /N) + sin?(2mky/N)
4 (sin®(7k1/N) + sin®(7k2/N)) G, k,
sin?(2rky /N) + sin?(2nky/N)
—hi sin(27ky/N) Pry e, — S}k,

A _ 4.59
Uky ko 4 (sin*(7k1/N) + sin*(7kz/N))’ ( |

ﬁkth =

(4.58)

o chisin(rky/N) b g, — IR, (4.60)
ke = Gk /V) + sin(nka/ ) |

Notice that certain values of k1 and ky will cause difficulty in (4.58)-(4.60). When (&1, k3) =
(0,0),(0,N/2),(N/2,0),and (N/2,N/2), we should have

f(},o = fg,o = Goo =0, (4.61)
QO,N/Q = QN/2,0 = QN/Q,N/2 =0 (4-62)

so that the linear system of equations is consistent. Due to the discretization error for the
Stokes equation, which is O(h?) away from the interface and O(h) near the interface, the
quantities in (4.61) and (4.62) will have magnitude O(h) by the Parsevel theorem. If we set
those quantities in (4.61) and (4.62) to be zero, this is equivalent to perturbing the right
hand side of equation (4.55)-(4.57) by magnitude of O(h?). We anticipate the solution of
the perturbed system will agree with the solution of (4.55)—(4.57) to O(h?).

4.4.3  Analysis of the approach

We have implemented the method described above. The area is well preserved and it seems
to be better than first order but not quite second order accurate, yielding better results
than Tu and Peskin’s method but not as good as the three Poisson approach discussed in
the next section.

It is certainly not desirable to solve the linear system of equations (4.42) directly for p,
u, and v simultaneously. The coefficient matrix is singular and very large (3N? x 3N?), and
it is not clear what the best iterative method would be. But if we use the FFT technique
we can not determine py, r, for certain £; and £y, so we are unable to recover the pressure.

Another big issue is that of accuracy. When we discretized the Stokes equation, we
made the local truncation error to be O(h) near the interface and O(h?) away from the
interface. This is also true for the perturbed system. However, we do not know how well
the solution of the linear system (4.55)—(4.57) approximates the exact solution of the Stokes
equations.

Even for smooth solutions, it is known that the pressure obtained from the discrete
Stokes equation is only O(h) accurate. The error in the pressure will certainly affect the
accuracy of v and v. We construct an example for a steady state Stokes system with a
discontinuous source term below to see how well our method works and how the error
behaves.
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Example 4.1 Consider the following functions defined on [—1,1] x [-1,1]:

Py fa <]
‘T { 0 otherwise, (4.63)
2?4 siny if 22/a? +g?/b? < 1
’ { 0 otherwise, (4.64)
— 32% 4 6yz + cos y if ﬂ172/612_|_y2/62 <1
b { 0 otherwise. (4.65)
They satisfy the “ Stokes equation ”
Au — Pz = 07
A?J — = 07
" (4.66)
n _ 32? + cos y if 22/a® +y2/b? < 1
T 0 otherwise.

This example is more complicated than our model problem because u and v are also
discontinuous. In addition there is a discontinuous source term in the continuity equation.
Using the immersed interface method we can still get 2»1]-, 2-2]-, and ¢;;. In the derivation, we
need to add more terms related to the jumps [u], [v], and the jump in the source term. We
omit the details and just present the results below. Table 4.1 shows the local truncation
error for (4.42), where || TX || _, k = 1,2,3 are the truncation errors of the three equations
in (4.42), and 7y, is defined as the ratio |T¥|/|T%.|, for k = 1,2, 3.

Table 4.1: The truncation errors in the direct method for Stokes flow.

| A m [EHe r2 173 Nl s
20 0.167 0.138 7.84 x 1072
40 0.100 | 1.6657 | 0.130 | 1.0606 || 4.99 x 1072 | 1.4259

80 || 5.71x 1072 [ 1.7513 || 6.88 x 10~2 | 1.8884 || 5.92 x 10~2 | 1.6853
160 || 2.87 x 1072 | 1.9855 || 3.88 x 1072 | 1.7709 || 1.59 x 10~2 | 2.0400
320 || 1.47 x 1072 | 1.9531 || 1.97 x 102 | 1.9730 || 7.91 x 102 | 2.0198

Table 4.2 gives the error of p, u, and v in spectral space. For the transformed p, we
exclude those points where pi, r, is undefined.

Table 4.3 shows the error between the computed velocity and the exact solution. We
observe second order accuracy. Since we cannot get p from the FFT method, we did not
compare the error in the pressure.

4.5 Three-Poisson problem approach

In this section, we describe how to solve the Stokes equation using the three Poisson equa-
tions (4.9)—(4.11). The approach seems to be faster than the direct method and also more
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Table 4.2: The error of the direct method for Stokes flow in the spectral space.

no || [ Pn=Pello | ™ | i — the [Joo | T2 [ B —Fe lloo | 73
20 || 6.94 x 1072 7.31x 1074 5.31 x 10~*
40 || 4.99 x 1072 | 1.3904 || 1.99 x 10~* | 3.6698 || 1.59 x 10~* | 3.3242
80 || 2.54 x 1072 | 1.9656 || 5.02 x 10~° | 3.9678 || 4.18 x 10> | 3.8242
160 || 1.61x 102 | 1.5731 || 1.22x 107> | 4.0971 || 1.07 x 10=> | 3.9079
320 || 1.02x 1072 | 1.5736 || 3.04 x 10~% | 4.0258 || 2.72 x 10=% | 3.9278

Table 4.3: The error in velocity of the direct method for Stokes flow.

n [ Me—ullo | [ lo=vell, | 7
20 || 7.35x 1073 5.12 x 10~3
40 || 2.24 x 1073 | 3.2736 || 1.97 x 1072 | 2.5946
80 || 5.92 x 107 | 3.7938 || 5.20 x 10~* | 3.7951
160 || 1.58 x 10™% | 3.7395 || 1.33 x 10~* | 3.8868
320 || 4.15 x 1075 | 3.8120 || 3.41 x 107> | 3.9220

accurate. Moreover we can also obtain the pressure once we specify its value at one partic-
ular point.

With the known jumps [p] and [p,], we can use the immersed interface method to get
the discrete equation for the pressure

Pic1j + Pit1j + Pij—1 + Pij+1 — 4ps;
h2

= Cjyj. (4.67)

Now we can still use the classic five-point stencil of the central difference formula and only
need to add correction terms at irregular grid points. The condition for the linear system
to have solutions is the constraint

N-1
Se= > Ci=0. (4.68)

i,j=0

But for the immersed interface method, C;; usually does not satisfy (4.68) because the local
truncation error is order A at irregular grid points. So S. will be order O(1). If we perturb
C;; by a constant so that the constraint does hold, i.e., if we define

. s,
Cii=Cii— 33

(4.69)
and replace C;; by C‘ij, then the solutions to the perturbed (4.67) exist and is the least
squares solution to the unperturbed equation (4.67) (see [49]). Notice that S./N? = h%S. is
of order h?. This means the order of the local truncation errors, which are O(h?) away from
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the interface and O(h) near the interface, have not been changed. We expect the solution
to the perturbed equation (4.67) will approximate the true solution of the Poisson equation
to second order accuracy.

We use the Fourier method described in [49] to solve the perturbed equation (4.67) and
set ppg = 0 to get a particular solution.

Once the pressure is computed, we can solve for the components of the velocity « and
v through (4.10) and (4.11). But we have to determine the values of p, and p, first at all
grid points using the known p;; before we can use the Fourier method again to solve the
two Poisson equations. This is not an easy job because p is discontinuous. Below we show
how to interpolate p;; to get (plf)i]- at all grid points. Since p, appears on the right hand
side of the Poisson equation for u, we only need to approximate it to first order at irregular
grid points.

If (¢,7) is a regular grid point, then we simply use the central difference

Pi+1,; — Pi—1,5
(Po)iy = =5 (4.70)

If (¢,7) is an irregular grid point, we distinguish the following different cases.
Case (i): The grid points (7, j) and (¢ —1, j) are located on the same side of the interface.

Then

Pij — Pi-1,5
(Pe)yj = =—— (4.71)

Case (ii): The grid points (7, j) and (i+1, j) are located on the same side of the interface.
Then

Pit1y — Pij
(Pe)yj = ==5— (4.72)

Case (iii): The grid points (i + 1,7) and (7 — 1,7) are located on the same side of the
interface, but (7, j) is on the other side. In this case we interpolate p;_q ;, p;; and p;41,; to
get (pz);; to first order by using the known jump conditions [p], [p;], and [p,] from (4.15),
(4.30), and (4.31).

Let (X;,Y)) be the control point closest to (z;,y;), and 2, ({ = ¢+ 1, or ¢ — 1) be
the one of z; and x;4; which is closer to X;. Then we can use the following interpolation
formula:

(), = PP F [l ¥ [pz]( a(cfl—_w/z‘;; ) F [py] (5 —¥5) (4.73)

where the sign in the expression depends on which side of the interface the point (¢, 7) is on,
and [p], [pz] and [p,] are calculated at (X}, Y};). It is easy to prove that the approximation
of (4.73) is first order accurate. We give a proof for the case when (¢, 7) is on the — side, or
inside of the interface. This means that (¢ — 1,7) and (¢ 4 1,7) are on + side. We expand

o — P yi) = p(@gi) + [pl+ [pe] (20— X7) + [py] (95 — Y7

Gz (4.74)
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about (X,Y)") from each side of the interface to get

(zi—a)T = p (X5, Y0 +po (X5 YY) (mi — X))+ py (X5, YY) (95 — Y5
— (X5, Y9 = pE (X5, V) (s = X3) — pf (X5, Y5) (9 — Y%)
+[p] + [pe] (21— X5) +[py] (95 — V) + O(h?) (4.75)
= pr (X5, Y5) (2 — 1) + O(R?)
= py(xi,95) (2 — 1) + O(h?).

Therefore
T =p;(zi,y;)+ O(h). (4.76)

Now we have enough information to use the immersed interface method described in
Chapter 2 to get the discrete form for u. To solve the linear system uniquely for u;;, we set
ugp = 0 and use the Fourier method to the perturbed system.

We obtain the component of the velocity in the y direction in almost the same way by
replacing the z-related quantities by the y-related ones.

4.6 Moving the interface

With the information of u;; and v;;, we now need to use the ODE

88—)15( =u4(X(s),Y(s),1), (4.77)
to move the interface to its position at the next time step. Possible discrete forms are
X o= X4 A0 (explicit),

Xt o= Xrgy % (0" +0™)  (implicit).

Here U is the approximation to @(X (s), Y (s), "), the velocity of the interface which is the
same as the velocity of the fluid in contact with it.

Whether we use the explicit or implicit method, we need to interpolate the grid functions
u;; and v;; to get the velocity of the interface. In this section we will omit the time index
n in uj; and vj; for simplicity. More precisely, we need to find U and V; to second order
accuracy at all control points ( Xy, Yy). Note that the velocity is not smooth across the
interface and we need to use the jumps [ug], [u,], [v;] and [v,] in the interpolation process.

Taking a typical point (X,Y’) on the interface, we show how to interpolate u;; to get
the z-component U of the velocity at (X,Y).

First we choose the first three grid points (z;1,¥;1), (zi2,y;2), and (z;3,y;3) closest to
(X,Y).

Then we form a linear combination of the grid values at these points plus a correction
term to approximate U

U =71 w51 + 72 iz, ;2 + 73 ti3,;3 — Correction. (4.78)
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We use Taylor expansion about (X,Y) to get the equations for the coefficients 7’s so that
we have a second order approximation:

U Yru( i1, Z/jl) + vou(z;2, ?sz) + vsu(z43,y;3) — Correction
aju” + asut + asu, + a4u + asu, + a6u — Correction + O(hQ)
(a1 +az)u™ + (az + aq)u; + (a5 + ag)uy, + az[u]

+ aqug] + ag[u,] — Correction + O(h?),

where a; has a similar meaning as in (2.55), and all the quantities are calculated at (X,Y").

So we set
ay+ay = 1,
az +aqy = 0,
as +ag =
These are equivalent to
N1+t = 1,

(g — X)+ 72 (@ - X)+y3(zi—-X) = 0,
Y1 (Y1 = Y)+72(y2 = Y) +73(yjs = Y)

The solutions to this linear system are

by = (?/gl—Y)( zis — i) — (21 — X) (y;3 — yj1)
(zi2 — za1) (yj3 — yj1) — (23 — @i2) (Y2 — yj1)’

vy = (951 — 3/11)( i1 —X)— (w2 —2a)(yn - Y) (4.79)
(zi2 — 1) (Yj3 — Yj1) — (Tis — 2i2) (Yj2 — yjn)’

no= —(1zt+7).

Once we get the coefficients 71, 72, and 3, we are able to compute the correction term
which is the sum of a; [u], a4 [uz], and ag [uy]. We can use the same coefficients to find the
y-component V of the velocity at (X,Y).

4.7 The Implicit method

One could consider using explicit (e.g. forward Euler), approximate implicit (see [43] [51]),
or implicit (e.g. backward Euler or Trapezoidal) methods to update the interface X.

In the explicit approach, the boundary force and the velocity are computed from the
configuration at the beginning of the time step. Usually the differential equation (4.77) is
stiff (see Fig. 4.7, Fig. 4.10). So there is a strict restriction on the time step for the explicit
method.

In the approximate implicit approach described in [51], the force density is computed
from an estimate of the interface configuration at the end of the time step

e = By AT

= X" AT (X, (450
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where A is an approximation to the magnitude of the velocity induced at a point by a
unit force applied at that point ignoring the effect of force at other boundary points. The

boundary force f_)(f”“’*) could be a function of ¢ as well, but for simplicity, we write it
as f(f”“’*). The derivation of (4.80) can be found in [41]. Instead of solving (4.80) for

X7t directly, we can form a nonlinear equation for f (X”‘H’*) using the energy function

defined as
F(X)=-VE(X) = -VE [ X"+ a0\ [ (X))

Treating f (f ) as a new independent variable, we then get the nonlinear system for f ()? ),

f*+VE(X'”+AtAf‘) = 0.
The Newton iterative method can be written as follows
(1 +AcxHg (X7 4+ AAFr)) (Frt - ) =
- (fm +VE (5?” + At Afm)) , (4.81)

where Hp is the Hessian matrix of £. Hpg is a periodic block-tridiagonal system (with
2 x 2 block). Once an approximate solution for the force is obtained, we can solve the
Stokes equation to get the velocity of the interface and update the location explicitly. So
the only difference between the explicit and approximate implicit methods is that the force
is calculated implicitly in the approximate implicit approach.

In this approach, each iteration in solving the nonlinear system requires about O( N?log V)
multiplications if the FFT transformation is used to solve the Stokes flow. The total cost
will depend on the number of iterations.

The approximate implicit method has better stability properties than an explicit method
but not as good as the fully implicit method.

In the fully implicit approach, the boundary force is computed from the unknown con-
figuration at the end of the time step. Tu and Peskin proposed an approach which uses
the fundamental solution of the Stokes equations. Let GG be the discrete Green’s function
of the Stokes equations on a periodic domain, so each entry of G(¢, j)is the solution of the
Stokes equation with the force being a two dimensional delta function at (z;,y;). So G is
an N X N array with 2 X 2 matrix entries. The matrix G needs to be calculated just once.
Define

~ N-1 N-1 . .
Cu=ht> Y G(i—ij-j) é (f] - X};) (5;@-,]-, - Xl”) , (4.82)
2,j=01',7'=0
where 6}, is the two dimensional discrete cos-delta function (1.8). Then the system for the
new location X! is

Xl = Xm 4 AtAsG T (X)), (4.83)

see [51] for the proof. Similar to the approximate implicit method, using the energy function

again we get a nonlinear system for f(f”“)

Gf+GVE ()?MAms(;f‘) — 0. (4.84)
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The Newton iterative formula now is
G+ AtAsG Hg ()Z'” n Ams(;fm) (;] (fm+1 - fm) -
— (G +GVE (X" + AtAsG 7). (4.85)

Once an approximate solution is computed, we get the new location using (4.83).

Now each iteration in solving the nonlinear system requires about O(N2) ~ O(N?)
operations, much more than the approximate implicit approach if Ny ~ N.

Using the discrete delta function approach, we need to take enough control points N, to
prevent the boundary from leaking. In other words, we need enough control points so that
all grid points near the interface feel the effect of the boundary through the spreading of
the discrete delta functions. So while it is stable, the fully implicit method described above
is very expensive.

By contrast in the IIM (immersed interface method) approach the boundary can be
represented by relatively few control points. Cubic splines passing through these points are
used to define the boundary and jump conditions at any point needed.

Neither of the approximate implicit or the fully implicit methods discussed above solve
the Stokes equations for p, w and v in the process of finding the solution of the non-
linear equations for the boundary force at the end of time step. However, to form the
nonlinear equations can be expensive. In the approximate implicit approach, we need

to have the estimate of /\()Z), VE ()Z” + At/\fm) and Hg ()_()” + At/\fm). The last

two terms change with the iteration for fm For the fully implicit approach, we need G,

Hg ()?” + Al Aséfm), and V& ()?” + Al Aséfm). G needs to be updated at every

time step and the other two terms need to be changed in every iteration for the force fm
Also these two methods are based on the forward and backward Euler’s formula, hence
they are only first order accurate. They are not suitable for the immersed interface method
because it will damage the second order accuracy. We naturally want to use the second
order accurate Crank-Nicolson implicit method.

4.7.1 A second order-implicit method using rank-2 updating
With the IIM, we use the trapezoidal formula to update the interface,

. e Al e e
n+1l _ n n n+1

Xt = X g = [0 +d (X1 ], (4.86)
where U ()?) is defined to be the velocity of the interface of the location X. We try to

solve this nonlinear equation directly using the quasi-Newton method. Define
e e Alre s
[(X)=X-Xn- [0+ (X)]. (4.87)

If we solve the nonlinear system f()?) = 0 of dimension 2N}, we can update the interface
at the end of a time step.

Certainly, it would be costly to compute the Jacobian matrix J(t) at every time step
and every iteration for the nonlinear system. For example, to compute a column of the
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Jacobian matrix involves solving three Poisson problems. However the Jacobian matrix
J(t) is close to the identity matrix, J(¢) = I + O(At), and is also continuous in time,
so J(t) = J(t — At). This suggests that we use a quasi-Newton method in which we
maintain an approximation B to J~! and update this approximation in each time step.
The quasi-Newton method is super-linearly convergent even for a poorly approximated
Jacobian. So we can use various low-rank-updating techniques which usually only require
the computation of inner products without affecting the convergence speed. To go from X
to get X"*!, the following BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [29], [47]
for solving the nonlinear system seems to be very efficient.

For m =0,1,2,---,m",

(m™, the step when the iterative method converges )
Cntl _ ¢ -1
Xitt =X, By =B,

Xyl = Xt — B g (X)), (4.88)
n oy = By 4 S 3”;%1? — Bimsn (4.89)
where
smo= =By (X)),
g = J(X05) - 7 (X, (4.90)
TBn m
SO

and we have omitted the time index n for s,,, p,, and y,,. At the initial time step ¢t = 0,
we take BY = I. This is reasonable since J = I + O(At).

In our implicit approach, each iteration for solving the nonlinear equation calls the
Stokes solver, which requires 3 Poisson solvers and hence O(NZ2log(N)) operations if we
use the FFT method. In addition we need a couple of inner products in order to compute
B f ()ZT?}L‘H) The total computational cost per iteration is O( N%log(N)). Usually we only

need about 2 or 3 iterations per time step.

4.8 Some typical numerical examples for Stokes flow

Now we present some typical numerical examples to see how well our method works and
compare our method with Tu and Peskin’s approach.

Example 4.2 This example is taken from Tu and Peskin [51]. The initial interface (the
solid line in Fig. 4.2) is an ellipse with major and minor axes a = 0.75,b = 0.5, respectively.
The unstretched interface (the dash-dot line in Fig. 4.2) is a circle with radius r = 0.5. Due
to the restoring force, the ellipse will converge to an equilibrium circle (the dashed line in
Fig. 4.2) with radius r = V/ab; this is larger than the unstretched interface because of the
incompressibility of the enclosed fluid. So the interface is still stretched at the equilibrium
state, and the non-zero boundary force is balanced by a nonzero jump in the pressure

(Fig. 4.3).
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Figure 4.2: The interface at different states: Initial interface (solid line), the ellipse with
a = 0.75, b = 0.5. Equilibrium position (dashed line), the circle with r = v/ab = 0.6123 - - ..
The resting circle (dash-dot line), the circle with r = 0.5.

We can not compare the accuracy in the pressure since this is not available in Tu &
Peskin’s method. For the velocity u (Fig. 4.4), and v, if we compare a slice of the -
component of the velocity as shown in Fig. 4.5), we can see that their approach smooths
the velocity profile in the neighborhood of the interface, as is expected with the discrete
delta function spreading of forces.

Now let us compare the accuracy of p, v and v at { = 0 as we did in Example 4.1. In
this example, however, we do not know the exact solution. The conventional approach for
estimating the convergence rate is the following:

Suppose a method is order ¢ accurate is some norm. Let @(h) be the approximation to
the exact solution #ezqer in a problem, obtained by using the method with some grid size
h. Then we can write

@(h) = tesact + C h? + o(h?), (4.91)

where (' is a constant. Let h* be the finest grid used for the method; then on a coarser grid
with the step size h, we have

—a(h) 20 (1= (W /h)")

)
a(h/2) —a(h*) = 1—(2h*/h)" (4.92)

From this ratio, we can estimate the order of accuracy.
For example, if we double the number of grid points successively, i.e.,
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Figure 4.3: The computed pressure distribution of the Stokes flow at ¢ = 0. The pressure
is discontinuous.
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Figure 4.4: The z-component of velocity u in the Stokes flow at ¢ = 0. It is continuous but
not smooth across the interface.
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The x-component of the velocity u(x,-0.4).

Pressure profile: p(x,0)

L L L L L L L L L R L L L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
X

Figure 4.5: (a) A slice of u, the z-component of velocity in the Stokes flow at { = 0 and
y = —0.4. It is continuous but u, should be discontinuous across the interface. Solid line:
IIM results, dot-dashed line: Results with method of Tu & Peskin. (b) A slice of pressure
at t = 0 and y = 0, little ‘0”s are the computed results with the IIM at the grid points.
Note the large jump in pressure across the interface.

then the ratio in (4.92) is

(4.93)

In particular, for a first order method (¢ = 1), this becomes

amy—arry  2(1-27%) 9y
~ %)—ﬂ(h*) 1 91—k = 9k-1 _ 1"~

For k = 2,3, -, these ratios are
3, ! ~ 2.333, B ~ 2.1429, 31 ~ 2.067, ---.
3 7 15

Similarly for a second order method (¢ = 2), (4.93) becomes

i —a(h*):4(1—4"“) S

—ﬂ(h*) 1 41—k = k-1 _ 7"~

|~~~
o S
S| S

i
For k = 2,3, ---, the ratios are

63 255 1023
— =42 —— ~ 4.0476 —
15 ’ 63 T 255
Below we will denote the number of grid points in each direction in the uniform grid by
N and the number of the control points on the interface as Njp.
Now we use the technique described above to estimate the accuracy of our immersed

interface method and Tu and Peskin’s approach for various quantities. Table 4.4 and

5, ~ 4.0118, - - -.
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Table 4.4: The errors of computed p, u, and v at ¢ = 0 using the IIM method via three
Poisson equations. Second order accuracy can be observed.

N H PN — P320 Hoo ! H UN — U320 Hoo 72 H UN — U320 Hoo T3
40 1.9730 x 10~2 2.6739 x 1073 5.0411 x 1073
80 1.5416 x 1072 | 12.7986 | 6.3611 x 10~* | 4.2035 | 5.5415 x 10~* | 9.0969
160 | 2.6087 x 10~* 5.9094 1.1161 x 10~* | 5.6996 | 1.0713 x 10~* | 5.1729

Table 4.5: The errors of computed u and v at { = 0 using Tu & Peskin’s method. First
order accuracy can be observed.

N || un — us20 Hoo T2 || v — 320 ”OO T3
40 || 1.0170 x 102 5.0540 x 1072
80 || 4.4694 x 1072 | 2.2755 || 2.0512 x 102 | 2.4639
160 || 1.5012 x 10=2 | 2.9773 || 7.4032 x 10~* | 2.7707

Table 4.5 show the computed results using different grid sizes N with Ny = N for the two
different methods. In Tu & Peskin’s approach, direct discretization and FFT (§4.4) are used,
so the pressure is not available and is not listed in Table 4.5. As we expect, the immersed
interface method via three Poisson equations exhibits second order convergence while Tu
& Peskin’s approach behaved as a first order method. In the Table 4.4 and Table 4.5, py,
uy and vy are the grid functions approximating the pressure and the velocities in z- and
y- directions, respectively, on an N X N grid. The ratios are defined as

N H P2N — P320 Hoo I H U N — U320 Hoo - H VaN — U320 Hoo
B H PN — P320 H ’ ? :
o0

1

B || un — us20 Hoo ’ B | oA — v320 Hoo .

Determining the convergence rate for the moving interface is very difficult, especially
in the infinity norm since the error in the location of the interface is not a monotonically
decreasing function of the grid size h. It also depends on the relative position between the
interface and the grid used. For example, let 7,42, 7min be the longest and shortest distance
of all control points on the interface from the origin. We use the results computed from the
finest grid (N = N, = 320) as the “exact solution” and compare the error for these two
quantities with different grid sizes. We use the least squares method to get straight line fits
to the data and use the slopes as the average convergence rate. Fig. 4.6 shows log — log plots
of the error in our method and in Tu and Peskin’s approach. For short time, say ¢ = 0.01,
the results are predictable. The errors go down as N increases. Qur method not only has a
faster convergence rate, but also smaller errors; see Fig. 4.6 (a). As time increases (e.g., at
t = 1), our method still converges quadratically. The behavior of Tu and Peskin’s approach
shown in Fig. 4.6 (b) is much more chaotic. The reason for this behavior is that if a point
moves faster toward the equilibrium than it should, later on the restoring force will become
smaller and smaller, so that the movement will slow down. In other words, there is an
automatic adjustment mechanism for this type of moving interface method.
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Figure 4.6: Comparison of the convergence rate for 7,,4,. The solid line and the stars (x)
are the results of our method, the dash-dot line and ‘o’ are the results of Tu and Peskin’s

method. (a) At t=10.01. (b) Att=1.
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0.7 0.7
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Figure 4.7: The longest (7,.q4,) and shortest (7,,,,) distance of the control points from the
origin as the function of time ¢ on a 160x160 grid with Ny = 160. The solid line is computed
using the immersed interface method via three Poisson equations. The dotted line is the
result of Tu and Peskin’s approach. (a) Blow up for short time 0 < ¢ < 10%. Both methods
show convergence to a circle, but slow leaking in the Tu & Peskin’s method is visible. (b)
Over a large time scale, it is seen that their leaking continues.
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Therefore we have only been able to get a reasonable estimate for the convergence rate
at the initial time and at large times when the interface reaches the equilibrium. However,
as Peskin pointed out in [44], there is a systematic tendency in Tu and Peskin’s method to
lose volume slowly at a rate proportional to the pressure difference across the interface. This
is the case for this test example since there is a jump in the pressure at the equilibrium
state. So the results do not converge to the correct equilibrium using Tu and Peskin’s
method. Fig. 4.7 shows the change of 7,4, and 7., with the time. Theoretically they
both converge to vab = 0.6123 ---. But because of the leaking, the result obtained with
Tu and Peskin’s method continuously shrinks beyond the equilibrium. Fig. 4.8 shows the
change in the area with time. The immersed interface method preserves the area quite well
while Tu and Peskin’s approach continues to lose area slowly until it finally converges to
the resting circle.

(a) (b)

100 200 300 400 560 600 700 800 900 1000 o 0z o4 05 o8 e 1z 14 16 18 042
Figure 4.8: The computed area with the same notation as in Fig. 4.7. (a) Short time
behavior, 0 < ¢ < 10°. (b) Long time behavior, 0 < ¢ < 2 x 10%.

Above we only considered the error in 7,,,,. We could also look at some norm of the
error along the entire interface, for example the 2-norm. Let us take N* = N} as the finest
grid. For the coarser grid with N x N, we take Ny = N*/I, where [ = int(N*/N). In
this way we are guaranteed that each control point (JUEN), yZ(N)), t=1,2,---, Ny on the
interface is also a control point for the finest grid N* x N* and N;. So it is possible to

compute the error

i, )\ 2 #\ 2
Z (xEN) - xii\zf )) + (yz(N) - ?/Z(i\; )) . (4.94)

=1

NTN,

Our test results show that the error defined above is indeed a monotone decreasing function
as N increases. In Fig. 4.9, we plot the global error at ¢ = 1 with the finest grid being
N* = 320, and N and Ny being the pairs of (40,40), (50,40), (60,40), (70,40), (80,80),
(90,80),- -+, (150,80), (160,160). Note that the number of control points Ny does not
decrease smoothly with N.
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Fig. 4.9 shows that our method converges with a smaller error and a faster convergence
rate® than the method used by Tu and Peskin.

-3
©
o: Tu & Peskin d
O/
Oy
slope = 1.7496 ,
-3.5F ,
kel
el
0)
al of
/
o
-4.5F
time=1
5L *: [IM & Three Poisson
slope = 2.5333
*
55 . . . . .
-2.5 -2 -15 -1 -0.5

log10(h)

Figure 4.9: The global error at { = 1 in the 2-norm. Solid line and the star () are the result
computed with the immersed interface method via three Poisson equations. Dash-dot line
and the small ‘0”s are the results computed with Tu and Peskin’s approach.

Another interesting phenomena we can observe from Fig. 4.9 is that the number of
control points N, on the interface plays an important role in Tu and Peskin’s method. If
we refine the space grid but keep the number of control points on the interface N, fixed,
say N = 40, 50, ---, 70 with N, = 40; and then N = 80, 90, ---, 150 with N, = 80; and
finally N = 160 with N, = 160 in Fig. 4.9, the errors obtained with their approach with
Ny fixed will gradually cease to decline even if we refine the mesh grid because the error
in expressing the interface will dominate. Then a refinement of the interface grid will lead
to a relatively large fall in the error as we can see in Fig. 4.9. There is sharp drop in the
error in Tu and Peskin’s approach when N changes from 40 to 80 and from 80 to 160. So
we should refine the grid for the domain and the interface simultaneously if we use their
approach. However in our approach, as we mentioned in § 1.4.4, we can take fewer control
points on the interface with little effect on the accuracy with our method, as we can see
from Fig. 4.9, where we have the same structure mentioned above but no big jump in the
error.

Now let us change the example slightly and let the radius of the resting circle be exactly
the same as that of the equilibrium circle. There should be neither force nor a jump in
the pressure across the interface when the equilibrium is reached. So both methods can
reach the equilibrium state eventually. However before reaching the equilibrium state, the
force will be very small and both methods will stop converging when the error in the

? Since we use the results obtained from the finest grid as the “exact solution”, the slopes or ratios are
greater than their actual values.
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Figure 4.10: Comparison of the convergence rate for the case when the equilibrium state
is the same as the resting circle. Solid line, dash-dot line and dotted line are the results
obtained with 160 x 160, 80 x 80 and 40 x 40 grids respectively. (a) Immersed interface
method via three Poisson equations. (b) Tu and Peskin’s method.

discretization dominates the force. We see in Fig. 4.10 that the result obtained from Tu
and Peskin’s method is much less accurate than that obtained from our method.

Example 4.3 This example shows we can handle more complicated regions. The initial
interface in polar coordinates is p = 0.6 4+ 0.3 sin 84. The unstretched interface is the circle
with the radius r = 0.3. Because the interface is complicated, we take Ny = 160 so that we
can express accurately. The problem is very stiff and we need to take the time step to be
reasonably small. We compared our method with Tu & Peskin’s approach and it revealed
a similar behavior as the first example. So we will not give detailed numerical results but
instead present the change in the interface in Fig. 4.11.

In this chapter we mainly discussed the case when the force is elastic. With slight
modifications to the force calculation, the approach described in this chapter can apply to
different boundary forces. For example, if the boundary force is due to surface tension at
the interface between two different fluids, then the force strength at time ¢ is

" 02X
f(57t) =C ds2

(s,1), (4.95)

where s is the arc-length. With minor modification to handle the discontinuity in density,
it should be possible to use this same approach to solve multi-flow problems with free
boundaries.
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Figure 4.11: The interface at different times with a 160 x 160 grid. The dotted circle is the
unstretched interface with » = 0.3.



Chapter 5

IMMERSED INTERFACE METHODS FOR 1D HEAT EQUATIONS
WITH MOVING INTERFACES

In this chapter we study the immersed interface method for the one-dimensional heat
equation with singular source terms and non-smooth solutions across some interface, which
is also moving with time. As in Chapter 4, the interface is determined by an ordinary
differential equation except now the ODE can be more complicated.

Beyer and LeVeque [6] studied various one-dimensional moving interface problems for
the heat equation assuming a priori knowledge of the interface. At each time step a tridi-
agonal linear system of equations is solved to get the approximate solution if the Crank-
Nicolson method is used. However, for the interface problems discussed here, the interface
is unknown and the discrete difference form is a nonlinear system of equations involving the
solution and the interface. We use a predictor-corrector scheme to find the solution and
the interface simultaneously.

The purpose of Beyer and LeVeque’s work in [6] is to analyse and improve Peskin’s im-
mersed boundary method for one-dimensional interface problems. A discrete delta function
is carefully selected and some correction terms are added if necessary in their approach to
get second order accuracy. However, with the immersed interface method, we use the jump
relations to derive the modified difference scheme at irregular grid points.

The interest in this topic was motivated by the following;:

e In Chapter 4, we discussed a simplication of the Navier-Stokes equations with the
terms @; and (4 -V)4d absent. Eventually we want to apply the immersed interface
method to the full Navier-Stokes equations with moving interfaces. So the work in
this chapter is preparation for work in such a direction. One difficulty with #; term
is that it may discontinuous when the interface crosses grid lines. We need to modify
the difference scheme to handle this discontinuity.

o Also the work here is a necessary step in applying the immersed interface method to
solve Stefan-like problems

where X is the interface along which discontinuities occur and the latent heat sources
are applied. Such solidification (or melting) problems have broad applications and
have been studied over the years. With the work discussed in Chapter 2, 3 and
this chapter, it is not very difficult to use the immersed interface method for one-
dimensional Stefan problems. The two-dimensional problem is more challenging and
will be studied in the future.
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5.1 The model problem and the outline of the numerical scheme.

Consider the following model problem:
Ut = Ugy, 0<z<a(l) and a(t) <z <1, (5.1)

where the interface a(t) is determined by the following nonlinear ordinary differential equa-
tion

da
— =w(o,t,u(a,t)), (5.2)
dt

where w is a known function and we have dropped ¢ in the expression of a(t) and hereafter
if no confusion occurs. The boundary and initial conditions are

w(0,) = h(t), u(l,1)=g(1),
uw(z,0) = f(z).

The interface a(t) divides the solution domain into two parts: 0 < z < a(f) and
a(t) < z <1 which we will denote as domain I and II domain, respectively.

To make the problem well-posed, we also need two interface conditions. First we as-
sume that u is continuous for simplicity!, which means u(a~,t) = u(a™,t). The interface
condition takes one of the following forms:

(5.3)

e Case 1: The jump in the derivative wu, is known
ug(at, 1) — uz(a™,t) = c(t). (5.4)
In this case, the equation can be written as
U = Ugy — (1) 6(z — a(t)), 0<z<1, (5.5)

and the solutions in domains I and II are coupled together.

e Case 2: the interface value u(a,t) = r(¢) is given. In this case, the problem can be
solved separately in domains I and II if an explicit method is used.

e Case 3: The mixed boundary condition
a(t) ug(a™, 1) + b(1) u(a, 1) = v(1) (5.6)
or
a(t) ug(a™, 1) + b(t) u(a, t) = v(t) (5.7)

is given. In this case, the problem can be solved independently in domain I (or II)
with explicit approaches. But the solution in domain II (or I) depends on the other
domain.

!t is not very difficult to handle the case where u is discontinuous using the techniques described in the
previous chapters.
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We use a uniform grid
x; = th, 1=0,1,---,N, 2z0=0, a2y = 1.

and try to solve the problem for both domain I and II simultaneously. Let o’ be the
computed approximation to the interface a(¢"). Using the Crank-Nicolson scheme, we
write the difference scheme in the following general form

n+l . n
G

1 n n+1 n+y
- 5 lut, s + ]+ QT2 (5.8)

As usual, we assume the ratio k/h is a constant, which means we can write O(k) as O(h)
and soon. If o/ & [z;_1,2;41] for [ =n or n+1, then

~ _J

zz,j ~ h2

ub = 2ub + ol
: Lt AL A 2 (5.9)

1
If there is no grid crossing, which means z; ¢ (a”,a™*1), then Q;H_? = 0. The interface
is also determined by the trapezoidal method applied to (5.2)

an—}—l —a”

k

[w(a”,t”, u™) 4+ w(a™tt u”"’l)] ; (5.10)

N | =

here u™ and u™*! are approximations to u(a, ") and u(a,"*1) respectively. For different

. oy . . . n n+1 n n+1
interface conditions, we will discuss different approaches to get uy, ;, u,. ., u”, u and
1

QM_Q. We are going to determine these quantities so that the local truncation errors are

order O(h) at the irregular grid points. In this way we still can ensure that the computed
solution is second order accurate globally.

5.2 Grid crossing

If the interface crosses the grid from one time step to another, say there are some 77, with
"<t < ("1 (see, Fig 5.1), such that «(77) = z;, then usually there is a jump in u; and

J
1
50 Q;HQ will not be zero. From [6] we know that

k
w(z;, ") —w(z;, ") = = |u(@, ") + we(z, "
(2,11 = (1) 2{43 )+ iz, )] 1)
+(t"Fz = 1) [we]rm + O(k*),
where we define [u;]_ = wi(2j,7%) — us(x;,77). Therefore we should take
n+é‘ 1 n_|_1_ n
Q]. =7 ( 2 — Tj) [ut]TJn. (5.12)

Differentiating the continuity condition [u] = 0 with respect to ¢ we have

0] 5 4+ fu) = 0,
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Figure 5.1: Interface crossing the grid.

ie.,

da

P —[uz] w. (5.13)

[ue] = [uzz] = —[ug]

We will discuss how to find u;» = u(a,7}') in the computation of w(a,rf,uTjn) in the

2
coming sections. We first discuss how to find 7 if it exists. Using the Crank—Nicolson
formula twice we get:

w - % [w(a(t™), 17, u(a(t"), 1) + w (a(]), 77, umm) |
a(tz:l) - ZST}L) = % [w (a(rf), 77 um )+ w (a(t+h), 0+ u(a(e+h), 1)) |

J

Replacing a(77') by z; and eliminating the w(a, 7, UTJ") term, we get

zj—a(t”)  a(t"t) -

no__4n ntl _ om0
=t t T (5.14)

% [w(a(t™), 1%, u(a, 1) = w (a(t™+), 1+, u(a, 1))

From this quadratic equation, we can solve for the crossing time 7;". Numerically we actually
use

CYn—l—l

z; —a” —z; 1
S = 5 (e ) w(a (5.15)
J J

where u”™ and u™*! are approximations to u(a™,t") and u(a™t1,{"+1) respectively.
Below we discuss the numerical algorithm for different interface conditions. We assume
that z;, < a" < zj,41 and z;, < @™t <z 44, for 1< jo, 51 < N.
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5.3 The source strength ¢(t) = [ug] is known.

In this case we interpolate ué-, I =n,orn+1,to get u', the approximate solution at the
interface at time #!. Define the following discrete delta function d}

X 1 - (z/h)?, |z| < A,
di(z) = 2= 13z/h| + (z/h)?, h <|z| < 2h, (5.16)
0 otherwise.

From Lemma 4.2 in [6] we know that

u(a,t) = hZu(xj,t) di(z; — a) + O(R?). (5.17)

Thus u", u"*! are computed from the following formula
ut =hY uf di(z; - a”), (5.18)
J

"t = hZu?‘H di(z; — a™th). (5.19)
J

If ; < a(t) < 41, using Taylor expansion about a(?) we can easily show that

w(@j,t) = 2u(z), ) + u(@j, 1) i —a(l)

Ugzp(Tj,t) = % - 72 [z (e, 1)]
_M [uge(, )] + O(R), (5.20)

Uzz($j+17t) _ u(xjvt) - 2u($ji-:217t) + u('rj-i-?vt) + Ly _hza(t) [uz(a,t)]
+M [tgz(, 1)]. (5.21)

12
Note: If z; = a(t), then uz(z;,1) and uye(2;,1) are defined as the left limiting value of a(t).

Therefore we can discretize u”, and u”}! as follows

no_9un Loy
U1 2u]+u]+1

Uy j = ¥ +C7, (5.22)
n+1 n+1 n+1
= 2u 7
Upa; = : ;Z2 = + O (5.23)
where C7 and C';H'l are determined in the following way:
C;Izov j:1727"'7j0_17 j0+27"'71\7—17
n Ljo+1 — a” n ($j0+1 — an)2 n n
Cjo v — c(t") — T c(t")w", (5.24)
n n\2
Tjo — @ (2jo — ™)

%+1 = T C(tn) -I— T C(tn) wn7
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where w" = w(a™,t", ™). Similarly

Citl = 0, j=12, 0 i L 42, N -
. n+1 i n+1 2
n Tih41 — @ n (.’E +1 - ) n n
crtt = _hT c(tmty — 224 Iz (™t wnth (5.25)
. antl . antl 2
CZ-:—ll — x]l h2a C(tn+1)—|— (wﬂ h? ) C(tn+1)wn+1.

1
If the interface crosses the grid line # = z;, then we need to find Q;H_? using (5.12).
From (5.13) we know

[ut(xj,rf)] = —C(T}L) w(xj,rf,uTJn). (5.26)

There are two ways to compute the unknown Urn = u(z;, 7). The first one is simply to
take the average

urr = 5 (u” + u”"’l) . (5.27)

Since u(a,t) is continuous, we can expect that

1
u(xj,7}') = 3 (un + un+1) + O(h).

Notice that [u¢(z;,7")] is multiplied by (t”"'% — T]”) in (5.12), so this O(h) error only
contributes O(h?) to the local truncation error. The second approach is to use the forward
Euler formula

urn = uf + (T]” - t”) Upy ;s (5.28)

where we have used the relation u; = u;,. Now the difference scheme has been all set up
for this case.

5.4 The solution on the interface u (a,t) = r(t) is known.

In this case, it is obvious that we can take
u" =r(t"), u" Tt = (", (5.29)

To get the discrete u”_ . and u"'}

i 2> We use the following lemma.
b ?

Lemma 5.1 Suppose u(x) has continuous second derivative. If hy hy # 0 and hy # hy then

Upal) = 71 0@ + h2) + 72 u(x) + 35 0@ + hr) + O(ht) + O(ha),  (5.30)
where

o 2 o 2

N R =Ry hy T R =R hy (5.31)

-~

Y2 = —71 — 73-
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If zj, = a", and a"™! > o™, this means that the point (z;,¢"*!) is on the left side of
the interface, so we use the one sided difference scheme to the left to get
Ujp—2 — 25,1 + U

Uy jo = = : (5.32)

Similarly if z;, = o™, and a™*! < a™ we use the one sided difference scheme to the right:

— 2u” + u”
e (5.33)
If z;, < a™ < 2,41, we use the Lemma above to set
Uy i = Vo1 Wi_g + Y0 w; +77 r(t"); (5.34)
here 77 _;, 7}, and 77 , are determined by Lemma 5.1 with hy = —h, by = @™ —z;. By

applying the same process at z; 41 we set

n . n P n n n n n .
Uz jor1 = Viort,a T(") + Viog12 4] + 7413 U4 (5.35)

here again 77 11 o, 7o 41,2 and 75 1 5 are determined by Lemma 5.1 with h; = o™ — z;,
hy = h.

. n+1l
fz;, =a

, since we know u(a"t! ¢"*1) the equation at z;, simply becomes
uj, = r("t). (5.36)

Otherwise if z;, < o™t < xj 41, we set

n+l _ . n+l, n—I—l n+1 n+1 - n—I—l n+1
TT, g1 r]l 1 ]1—1 + 7]1 2 ]1 —I_ ]17 (t ) (537)
here again the coefficients are determined by the formula in Lemma 5.1 with h; = —h, and
hy = o™t —z; , and
n+1 _ n+1 n+1 n+1 n—I—l ~n+1 n+1
Uit = Vin,a TET) F 2 G 750 5 U (5.38)

with hg =Tj 41 — Oén+1, hl = h.

If the grid crossing occurs at x;, then [us] » in (5.12) can be calculated using
J

B u?"’l — T(T]n) T(T]n) —uf
[ut]Tjn = ToA n T ang (5.39)
J J

This approach, however, may be unstable sometimes, especially for the mixed interface
condition discussed in the next section. A more stable method is the following formula:

"(r?) - u |
Zz’,jo - T%?L _n : if o™ < an+17
J
[Ut]T]n - ( n) . (540)
r(Th) — u”
uZLjO_H — 77_7]% — 1 if a® > a”t!,

where u}, . is determined from one of (5.32)(5.34), and uf, ; ., is from (5.35). Although

zz,jo
this approach may have larger error constant than (5.39), it is more stable.
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5.5 The mixed interface condition is known.
If we know the mixed interface condition
a(t)ug(a™, 1)+ b(t)u(a,t) = v(1), (5.41)

we still can use (5.18) and (5.19) to approximate u™ and w"*!. However a simpler way is
to use the mixed boundary condition directly. We have the following lemma.

Lemma 5.2 Suppose z; < a < zj41, and aug(o,t)+bu(a,t)=v(t). Then

(o, t) = yru(z;, 1) + y20(t) + O(hQ), (5.42)
where
71 = %7
@~ ’ ) (5.43)
___(@i—a)
72 = a—b(z;—a)

Proof: From the mixed boundary condition we have
au(a,t) + aug(a,t)(z; — a) = v(t)(z; — a) — bu(a, t)(z; — o) + au(a, t).
Notice that
u(zj,t) = u(a, t) + ug(a, t)(z; — a) + O(h?).
So we can write
au(z;,t) = u(a,t)(a — b(z; — a)) + v(t)(z; — @) + O(R?).
That is,

u(a,t) — au(wjvt) — U(t)(xj — a) + O(hQ)7

a—blz;—a)

which also gives (5.42) and (5.43). [
With this lemma we can get a new interpolation formula for «® and w1,

Ly — (i) (a, — a”)
a(17) — (") gy — o)
a1l = o1z, — 0™

J
a(tHh) = b(tr )z, — amt)

(5.44)

un—}—l —

(5.45)

Numerical experiments show little difference between the formulas (5.18) and (5.44), though
the latter one seems to give slightly better results. We will see a more significant application

of Lemma 5.2 and (5.45) when we try to get uth}1+1'

To get uy, ; and uZI}l we need somehow to incorporate the mixed interface condition.
7 1,

We need the following lemma.
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Lemma 5.3 Suppose z; < a < zj41  and aug(a,t)+bu(a,t) = v(t). Then

tgz(a, ) = Mu(zj-1,1) + v2u(z;, 1) + 730(t) + O(h), (5.46)
where
b = 2(a—b(xj—a)); vy = —2(a—b(xj_1—a))’
D D
D =a(zj-1 - a)’ = b(zjo1 — a)*(z; — a) = a(z; — )’ +b(zj_1 - a)(z; - a)’,
2

T —a(wj 1 — a) — a(w; — o)+ b(z; 1 — a)(z; —a)’

where vy, 72 and y3 are the solutions of the following linear system

1+72+73b = 0,
n(zj—1 —a)+ 12z —a)+y3a = 0, (5.47)

(zj-1 — ) _}_72(1'] ) - 1

71 5 5

Note: The formula (5.46) is quite useful in getting second order difference schemes for
1D differential equations with mixed boundary conditions. For example, if we want to solve
v = f with the mixed boundary condition auz(a)+bu=c¢ at z, = b, and discretize the
mixed BC directly

Up — Up—1
a[% _I_ bun — C’

we would get the solution with only first order accuracy globally unless all of b,¢ and f,
are zero. Here h = z,, — x,,_1. But if we use the formula of the lemma which now is

2 2b 2

ﬁ(un—l _un)_ Eun‘}' ECI fn7
we would get a second order accurate solution globally. Notice that we still only use
information on w, and w,_1, so the structure of the resulting system is still tridiagonal.

With the formula (5.46), we can get expressions for u If z;, <a™ <

vz, and u
Tjy4+1, then

$$7]1 )

Ugzjo = Vio Ljg—1 T Vjo,2 Wy + Vjg,a 0(17), (5.48)
where 7%, , 7% 5 and 77 , are determined by Lemma 5.3 with a = a(¢"), b = b("), and
v(t) = v(¢"). Similarly
1 1, n+l 1, n+l 1
UZZQh = 7;‘114,_1 u?j—l + 7;‘11—3_2 u?jl + 7:7@1-,'—04 ”(th) (5.49)
with @ = a(¢"*1),b = b(t"*1) and v(t) = v(t"F1).
To compute u}, ; +, we use (5.35) with r(¢") replaced by u", which we can get either

from (5.18) or from (5.44). Generally the results are pretty much the same if u]s are
second-order accurate.
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But for uzzilﬂ, it seems that (5.45) gives better results than (5.19) since we use the in-

terface condition more directly. Below we derive the discretized formula for uz,(zj, 41, " *1).
From (5.38) we know

n+1 _ n+l n+1 ,_,7'1—}-1 n+1 - '{z—l—l n+1
Upz,ji+1 = Tii+1,a ¥ T Y52 % T Y 3 U 2o (5.50)

where ’YZTLQ ; ’YZ':_ILQ and 7%'5_1173 are determined by (5.31) with Ay = o™t — 2, | hy = h.

Plugging (5.45) in we can rewrite it as

a(tn-i—l)u;bl-kl _ U(t”+1)($]'l _ an—l—l)

n+1 _ n+1 n+1 n+1 n+1 n+1

Uer 41 = Tih+11 a(tn-}—l) _ b(tn—i—l)(le _ an-}—l) + Ti+1,2 %541 + Ti+1,3 Y142
1 1 1 1 1 1 1
= Vel e e s uihe + OR (5.51)
where

R B a(t™) (5.52)

T1+1,1 Tj141,a a(tn-l—l) _ b(tn—l—l)(le _ an—}—l)’ :
C,”.H'l — _,.f,?jb-}-l v(tn-}_l)(xh — an-}-l) . (553)

J1+1 n1+1l,a a(tn—l—l) _ b(t”“)(le _ an—l—l)

1

When grid crossing occurs, one method to calculate u(a, 7]') needed for Q}HQ in (5.12)

is
u? + (T]” - t”) “Zm if a® < a™t!,
[Ut]T]n - (554)
uy + (T]” - t”) Uy 41 if @™ > a™*!,

Another approach is described below. First we get
; =u’ P—t") ul 5.55
IU’J—LTJ" =U; 1 + T; Uz, ( . )

where Uj_1,7n is the approximation of (mj_l,Tf) . Then use Lemma 5.3 to get Urn:

uTJn = ﬁ]nJ u]'—lﬂ']n + ﬁ]nﬂ ’U(T]n), (556)
where
n N a
» hb’
) @ +h (5.57)
2T a4 hb

Both methods are approximately second order accurate. But the latter method gives slightly
better results. Also the error decreases more smoothly with the latter choice.
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5.6 Solving the nonlinear system: a predictor—Corrector method

From the discussion above we know that in order to get the solution u(z,?) at time ¢"*1,
generally we need to solve the following nonlinear system.

At a regular grid point with a” ¢ (z;_1,2;41) and ™! & (z;_1,241), and there is no
grid crossing, the difference scheme is

n+l n n _ n n 77,-|—1 _ n—I—l n+1
u; u] _ 1 ul_q 2u] +uly uly 2u + u;iy
k 2 h? h2
Otherwise
M I WA At + O
2 - 9 Vi-1%;-1 13 %3 f3+1%5+1 J
n+1, n—l—l n+1, n—l—l nt+l, n+l n+1 n+3
Ti-1%i-1 7 J+1+CJ+1]+Q'
a™tl — qn 1
_ +1 +1 +1
2 = 3 [w(a”,t”,u”) + w(a" T T u" )] .

The quantities {77} depend on a”, «”, the approximation to u(e, "), and the interface con-
dition, and the quantities {7}-“'1} depend on a™t!, u"t! as well as the interface condition.
n+1
uj -
the interface condition, but also the relative position between a”,a”t! and the uniform

1
The correction term Q;H_Q to ( u?)/k depends not only on o™, u", a™+! w1, and
grid. We have shown how to get these quantities in previous sections for different interface
conditions.
So we have a quite complicated nonlinear system to solve. The difficulty is that we can
not use a nonlinear equations solver just once to solve the system because some quantities

such as Q;H_E, C’f_l‘_i'll are not known until we know the solution. So the best method to solve
the resulting system seems to be a predictor-corrector method by which we can adjust
those quantities during the predicting and correcting process. Below we give the outline of
this approach.

Suppose we have gotten all necessary quantities at the time ¢", and the next time step

is k, so t"T! = {" + k. We want to get all corresponding quantities at time level ¢"+1,
e Determine jo such that z;, < a" < zj,41. Get the approximation to uy, ;. For
example, if j # jo, jo + 1 then we can use the central difference scheme. Otherwise
we use the discretization we have studied in the previous section.

o Set

n+l _ n n+l _ n n o4n ,mn
uy™ =", o™ =a" + kw(a”, 1", u").

Form=1,2,.--,

o (**) Determine {j1},, such that Tiitm < a?‘H < Tyt Get the discretized
n+1

vajym 50 that we can get the coeflicients of the linear system for

expressions for {u

{u] ).
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o If jo # {ji}m, then for I = jo 4+ 1,---, {j1}m, when jo < {j1}m, or for I =
{1tms {d1dm + 1,00+, Jo, when jo > {Jji}m, first get {77}, using (5.15), then de-

1
termine the correction {Q;H_2 b to ({u] ™}, — ul!)/k using the technique described
in previous section.

e Solve the tridiagonal system for {u?"’l Y-

e Use one of the interpolation methods discussed before to get u?t!.

o Determine

k
artl =a" + 3 [w(a”,t”, u™) + w(altt gt UZ;:—II)] . (5.58)

o If jan+! — a7th| > € a given tolerance, then m = m + 1, go to (**).

o If [ant! — afntlﬂ < €, then set all quantities { }%F! to { }"*!, in other words we
drop the {m} notation and accept these values at time ¢"*!. Go to the next time
step.

5.7 Numerical examples
In order to check the algorithm we proposed here, we use the following true solution.

sin(wy z)ewr’t if z < a(t)
u(z,t) = (5.59)

sin (wy — woz) e w2’ if z > a(t)
for some choice of w; and w,. The interface a(t) is determined by the scalar equation

W't — §in (wy — woa) €792, (5.60)

sin(wra) e”
This equation has a unique solution if we take, for example, 7 < w; < 27 and also 7 <
wq < 27. Figure 5.2 gives the plot of a(¢) on a uniform grid. We can see how the interface
crosses the grid. This example is adapted from [6].
We will test the same PDE with the same initial and boundary conditions but different
interface conditions. The PDE is

U = Ugy, 0<z<a) and a(t) <z <1,

where the interface a(t) is determined by the following nonlinear ordinary differential equa-
tion
da (W —wd) u(a,t)

dt o cos(wy @) e71° + Wy cos (wy — wy a) e7w2’t

(5.61)



102

The moving interface n =20

0.50 |-

0.25 |-

0.00 " " " " L " " " " L " " " L " " " " L

0.00 0.25 0.50 0.75 X 1.00

Figure 5.2: Moving interface a(t¢), 0 <t < 1.

The initial and boundary conditions are

u(0,6)=0,  u(1,t)=0, (5.62)
sin(wq ) if 2 < a(0),

u(z,0) = (5.63)
sin (wg — wy ) if z > a(0).

One of the interface conditions is u(a™,¢) = u(a™,t). Below we show numerical results for
u(z,0.1) for different interface conditions.

Example 5.1 In this example we specify the jump condition in the derivative u,:
[uz(a,t)] = —wq cos(wy — wp ) et ) cos(wy ) et (5.64)

Figure 5.3 shows the computed profile of u(z,?) as t changes from 0 to 0.1. We can clearly
see how the interface moves and crosses the grid with time.

Table 5.1 shows the computed results and the convergence rate both for the solution
and the computed interface when we take £ = h. In this case, the interface crosses two grid
points during the first few time steps (see Fig 5.2). Table 5.2 shows the results when we
take k = h/2. Now the interface only crosses at most one grid. We can see that the results
are much better compared to the previous case. But in both cases we can observe second
order convergence.
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The profile of u(x,t), 0 <=t <=1, N = 160, k=h/2

0.6 ]
04+ .

0.2 .

t=0.1

Figure 5.3: The profile of the computed solution u(z,t) from ¢t = 0 to ¢t = 0.1 for Example
5.1 with N =160, k = h. The interface condition: [uz(c,1)] is given.

Table 5.1: Numerical results for Example 5.1 at ¢t = 0.1 with N = 40, £ = h. The interface
condition: [uz(a,t)]is given.

N 1 Tw || rate Il En |l rate | Eql rate
40 || 2.2991 x 101 1.8721 x 10~2 1.2988 x 10~2
80 || 1.0658 x 10~1 | 2.1572 || 4.7573 x 1072 | 3.9353 || 3.2314 x 1073 | 4.0193
160 || 5.0962 x 1072 | 2.0914 || 1.1620 x 102 | 4.0940 || 7.9777 x 10~* | 4.0505
320 || 2.5074 x 102 | 2.0324 || 2.9005 x 10~* | 4.0062 || 1.9890 x 10~* | 4.0108
640 || 1.2496 x 1072 | 2.0065 || 7.2502 x 10~ | 4.0006 || 4.9867 x 10> | 3.9887
1280 || 6.2127 x 1073 | 2.0115 || 1.8087 x 107> | 4.0084 || 1.2440 x 10> | 4.0084
2560 || 3.0998 x 1073 | 2.0042 || 4.5182 x 10=° | 4.0032 || 3.1091 x 10~° | 4.0014
5120 || 1.5482 x 1073 | 2.0022 || 1.1293 x 10=° | 4.0009 || 7.7710 x 10~7 | 4.0009
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Table 5.2: Numerical results for Example 5.1 at ¢ = 0.1 with N = 40, & = h/2. The
interface condition: [ug(a,t)] is given.

N [| 70 | o rate | £y o rate | £y rate
40 | 2.1754 x 1072 3.7607 x 1073 2.3650 x 1072
80 || 1.0641 x 1072 | 2.0443 || 9.8655 x 10~* | 3.8120 || 6.1332 x 10~* | 3.8562
160 || 5.0008 x 103 | 2.1279 || 2.4299 x 10~* | 4.0599 || 1.5398 x 10~* | 3.9830
320 || 2.4580 x 1073 | 2.0345 || 6.0753 x 10> | 3.9997 || 3.8577 x 10~° | 3.9916
640 || 1.2127 x 1073 | 2.0269 || 1.5179 x 107> | 4.0023 || 9.6215 x 107° | 4.0094
1280 || 6.0273 x 10~% | 2.0120 || 3.7976 x 10~% | 3.9971 || 2.4058 x 10~° | 3.9992
2560 || 3.3004 x 10~* | 2.0063 || 9.48813 x 10~" | 4.0025 || 6.0145 x 10~7 | 4.0001
5120 || 1.5015 x 10~* | 2.0008 || 2.3703 x 10~7 | 4.0028 || 1.5057 x 10~ | 3.9943

In this section, || En ||, is defined as the infinity norm of the error at the fixed time ¢,

ie.,
I B [l = max { |u(ai,t) - ul| |,
where ufv is the computed solution at the uniform grid points z;, ¢ = 1,2, ..., at some time

t, with the number of grid points being N. Ty is the local truncation error at time ¢, and
F, is the error between a(t) and computed interface at the time {. The rates are defined
as the ratio of the errors with the number of grid points N and N/2; for example

rate = || Eon ||/l EN |-

Figure 5.4 (a) shows the true solution and the computed solution for & = h/2. Figure 5.4
(b) shows the corresponding error plot. We see that the error is relatively large around the
interface but not significant so. Globally we obtain second order accurate results at all grid
points.

Example 5.2 In this ezample we specify the solution on the interface u(a,t) = ¢(t):
—w%t

c(t) = sin(wia) e

Table 5.3 shows the results for N = 40,k = h/2. Figure 5.5 shows the corresponding error
plot.

Example 5.3 The mized inlerface condition is known. We lake

a(t) = b(t) =

1
v(t) = ug(a,t) + u(a,t) = ewit (—w1 cos(—wiz) + sin(—wqz)).
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o : Approx. soln.

: True soln.
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Figure 5.4: The comparison of the exact and computed solution at ¢ = 0.1 for Example 5.1
with N =40 and k£ = h/2. (a) The solid line is the exact solution and the little ‘o’s’ are
the computed results at grid points. (b) The corresponding error plot.

Table 5.3: Numerical results for Example 5.2 at ¢t = 0.1 with N = 40, £ = h. The interface

condition: u(a,t) is given.

N | TN | o rate | £n o rate | £yl rate
40 | 9.4190 x 1073 6.7882 x 1072 1.3056 x 10~

80 || 1.6565 x 1072 | 5.6859 || 1.4829 x 10~* | 4.5776 || 3.2481 x 107° | 4.0197
160 || 1.6894 x 1072 | 0.9806 || 3.7328 x 107" | 3.9727 || 8.1105 x 107° | 4.0049
320 || 3.5552 x 10~* | 4.7518 || 9.3387 x 10~ | 3.9971 || 2.0270 x 10~° | 4.0012
640 || 6.7189 x 10> | 5.2914 || 2.3357 x 10~6 | 3.9982 || 5.0671 x 10~7 | 4.0003
1280 || 3.5602 x 10> | 1.7626 || 5.8414 x 10~7 | 3.9985 || 1.2667 x 10~ | 4.0000
2560 || 2.0199 x 10— | 1.7626 || 1.4607 x 10~7 | 3.9990 || 3.1668 x 10~% | 4.0000
5120 || 1.3454 x 10> | 1.5013 || 3.6540 x 10~% | 3.9975 || 7.9172 x 10~ | 4.0000
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Figure 5.5: The error plot for Example 5.2 at ¢t = 0.1 with N = 40, k = h/2, when u(a,1)

is known.

Table 5.4: Numerical results for Example 5.3 at { = 0.1 with N = 40, £ = h. The mixed
interface condition: u,(a—,?) + u(a—,1t) is given.

N TN || rate I En |l rate | Eal rate
40 || 4.4010 x 1073 4.1399 x 10~¢ 3.9243 x 10~¢

80 || 1.4157 x 10=2 | 3.1086 || 7.4926 x 10~> | 5.5253 || 8.1050 x 10~> | 4.8418
160 || 1.4910 x 10> | 0.9495 || 2.2238 x 10~° | 3.3692 || 2.5377 x 10> | 3.1938
320 || 4.2727 x 10~* | 3.4896 || 6.1500 x 10~° | 3.6160 || 6.2013 x 10~ | 4.0922
640 || 1.0325 x 10~* | 4.1381 || 1.1984 x 107 | 5.1316 || 1.5761 x 107 | 3.9344
1280 || 8.3619 x 107> | 1.2348 || 4.7471 x 10~7 | 2.5246 || 4.6013 x 107 | 3.4255
2560 || 3.0763 x 107> | 1.1522 || 7.6285 x 1078 | 6.2229 || 9.8304 x 10~3 | 4.6807
5120 || 2.6699 x 107> | 1.1522 || 3.5189 x 10~7 | 2.1679 || 3.3159 x 10~8 | 2.9647
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x10-4 Error plot for MBC: N =40,k =h/4,t=0.1
4.5 T T T T T T T

error plot: true - approx.

Figure 5.6: The error plot for example 5.3 at ¢t = 0.1 with N = 40, k = h/4. Mixed interface
condition: uz(a—,t)+ u(a—,1t) is given.

Table 5.4 shows the results when N = 40,k = h/4. Figure 5.6 shows the error plot for this
case. The error does not decrease smoothly. But it exhibits roughly second order accuracy.

In summary we have developed a second order accurate immersed interface method
for the 1D heat equation with a moving a interface for three different types of interface
conditions: (i) a derivative jump condition (ii) a Dirichlet conditions (iii) a mixed interface
condition. Numerical experiments have confirmed the efficiency of the methods proposed
in this chapter. In the near future we are planning to study similar numerical method for
discontinuous coefficients, e.g., the Stefan problem for phase transition, and also higher
dimensional problems.



Chapter 6
THESIS CONTRIBUTION AND FUTURE RESEARCH PLAN

6.1 Thesis contribution

6.1.1  The Immersed interface method.

In this thesis a new approach, which we call the immersed interface method, for solving
interface problems has been proposed and studied. This approach can handle quite com-
plicated problems including the following: discontinuous coefficients, singular sources or
dipoles across interfaces, fixed or moving interfaces which can be arbitrary and usually
are not aligned with the grid lines. The approach is also robust in the sense that when
the singularities disappear, the approach reduces to a conventional method for a regular
problem.

The key idea of this approach is to use the jump conditions across the interface and
the differential equation itself to derive appropriate numerical schemes. In this thesis,
the basic computational framework is finite difference schemes on uniform Cartesian grids.
The convergence discussion is based on local truncation error analysis. For the interface
problems discussed in this thesis we are able to get second order accuracy in the infinity
norm even if the solution is discontinuous. We believe that the ideas discussed in this thesis
can be used in other computational frameworks such as adaptive methods, or finite element
methods as well.

In the process of implementing the immersed interface methods for the problems dis-
cussed in this thesis, we also derived the interface relations for the solution and its derivatives
across the interface based on the given jump conditions, coordinates transformation and the
differential equation itself. Those interface relations are very useful for not only deriving
efficient numerical schemes but also for revealing better understanding of the problem.

Also in this thesis, a number of interpolation formulas for the solution with discontinu-
ities have been proposed. For example, in Chapter 4 we interpolated the grid function of
the pressure p;;, which is discontinuous across the interface to get (pg);; and (py);;, and the
grid function of velocity ;;, which is non-smooth, to get the velocity of the interface Xp.

In solving the interface problems described in this thesis, a number of advanced numeri-
cal techniques have been applied which include: cubic spline interpolation in expressing the
interface, fast Fourier transformations, optimization approaches, and a predictor-corrector
method for solving nonlinear equations etc.

6.1.2  The application of the immersed inlerface method

The immersed interface method has been successfully applied to several important interface
problems.

In Chapter 2, we discussed the general elliptic interface problems in one, two and three
dimensions. We have written a Fortran package (DIIM) for such problems in two dimensions

(see Appendix A).
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The immersed interface method for heat equations in two space dimensions with fixed
interfaces is discussed in Chapter 3. When the singularities of the problem are due to
singular sources or dipoles rather than the coefficients, we have derived the modified ADI
method which only requires solving a set of tridiagonal systems at each time step.

In Chapter 4, we solved two dimensional Stokes flow with moving interfaces. We need to
determine the pressure, velocity components in the z and y direction as well as the velocity
of the interface. So it is a multi-variable and non-linear problem due to the moving interface.
We derived the jump conditions for the pressure, the velocity and their normal derivatives
by manipulating the two dimensional delta function and its derivative using distribution
theory. A quasi-Newton method is used for solving the nonlinear equations when the fully
implicit method is used.

In Chapter 5, we studied the immersed interface method for the one-dimensional heat
equation with singular source terms and non-smooth solutions across some interface, which
is also moving with time. Unlike the Stokes flow discussed in Chapter 4, the u; term is
present and the differential equation determining the movement of the interface has a more
complicated form. Special care has to be taken to handle the discontinuity in u; when the
interface crosses the grid line.

6.2 Future research plan

6.2.1 Theoretical analysis for the immersed interface method

The immersed interface method discussed in this thesis seems to be very promising for
interface problems. There are many possibilities for extending this thesis work.

Theoretically, we hope to develop more rigorous analysis of the convergence of the
immersed interface method. For the problems discussed in this thesis, the local truncation
errors near the interface are one order lower than that at most of the grid points on the
whole region. It is commonly believed, and for some problems has been proved, that the
convergence rate of the global error will not be affected. For different interface problems,
it is still a challenge to find out the conditions under which the claim above is true.

Several computational issues have been raised for the immersed interface method. For
example, when we solve the elliptic interface problem we may have a large sparse system of
equations which may be neither symmetric nor diagonally dominant. Techniques to solve
such systems efficiently are important for the success of the immersed interface method. It
is not clear how to modify some of the state-of-the-art techniques such as the multi-grid
method, GMRES, QMR, etc. for the linear system derived from our method.

Peskin’s immersed boundary method is usually only first order accurate and will smooth
the solution near the interface. However, the error distribution in the computed solution
changes in a continuous manner. So his approach usually has better stability. In our
approach, because the truncation error analysis is based on each grid point, we usually can
get high order accuracy but the errors have random distribution near the interface. For
the moving interface problem, such distributions can cause an aliasing instability. This
is a commonly observed phenomenon for non-smooth high order methods (see [30]). In
our numerical experiments we have used a filtering technique to control such an aliasing
instability when it is necessary. It is desirable to have a high order method while the error
has a smoother distribution. This will be another research project.



110

It is also worthwhile to combine other computational techniques such as adaptive or/and
composite grids, variational principles, finite element methods etc. with the immersed
interface method.

In this thesis, we use cubic splines to express the interface. This approach is simple and
the cost is very low. Theoretically this approach can handle the singular interface when
the interfaces develop cusps and spikes, or break or merge in two dimensions. However, it
may be difficult to implement. Another possible approach is to use level sets, where the
interface is modeled as the zero set of a function ¢ defined on the entire domain. Each time
we need to solve an additional differential equation for the evolution of ¢ and must then
determine the level set. So this approach costs more and sometimes it is difficult to extend
the velocity of the interface to the whole domain. However, this approach makes it easier
to handle cases when interfaces become singular as mentioned above. We want to combine
the immersed interface method with the level set approach to solve some interface problems
where the interface may develop singularities.

6.2.2  Application of the immersed interface method

There are a number of interface problems in computational fluid mechanics that we want
to solve using the immersed interface method.

o The Slefan problem in one and two dimensions. Stefan problems are heat equations
with discontinuous conductions and moving fronts.

du; .
O—Z:V(ﬂzvuz)v 121727"'7
0
Fk<tvrvulau27"'7.ﬂ7”'7):Ov k:1727"'7
(9901

where I' is the interface. These problems have a lot of applications. In Chapter 5
we have discussed the simple case where we only have one variable and continuous
coeflicients.

o Hele-Shaw flow. In 1958, Saffman and Taylor performed experiments replacing a
viscous fluid from between two closely spaced plates with a less viscous fluid. The
shape of the interface exhibited a fingering phenomenon. The non-dimensional form
of the governing equation is

&y
l

_ﬁvp7

V- ¢7

£y
|

where 3 is discontinuous coefficients, and ¢ is the source term, the jump conditions
are

[p] = 7k; [Bpn] =0,

where 7 is the surface tension and x is the curvature of the interface. The difficulty
in solving Hele-Shaw flow is that the interface is unstable.
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o ADI methods for elliptic and heat equations with discontinuous coefficients.
o Fxtending the work for Stokes flow with discontinuous coefficients such as density or
viscosily. This work allows modeling free boundaries between different liquids, such

as the surface of a bubble. Surface tension provides the singular forcing term.

o Full Navier-Stokes equations with moving interfaces. This will require handling the
nonlinear term and also the nonsmoothness of u; as the boundary crosses a grid line.
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Appendix A

PROLOGUE OF THE PACKAGE DIIM-A FORTRAN PACKAGE
FOR SOLVING ELLIPTIC INTERFACE PROBLEMS

subroutine diim(m,n,ni,ki,infoj,ijump,a,b,c,d,bin,bout,amega,

f,fin,fout,uj,unj,u,ul,u2,xyjump,tol2)

C ok 3k 3k %k 5k ok 3 ok ok sk ok ok sk ok ok o ok ok sk ok ok ok sk ok ok ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk skok ok sk ok ok ok sk sk ok ok skok ok skok ok ok skoskok ok skok sk sk sk sk sk skk sk sk skoskok

C
C
C

C

IMMERSED INTERFACE METHOD PACKAGE C

C
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diim solves the following interface problems in double precision for an
arbitrary interface

\beta ( u_xx + u_yy ) = £ a<=x<=b

c <=y <=d

where \beta, f, u, u_n, ... may be discontinuous across some
general closed interface which is determined by the user supplied
control points (x1(i),y1(i)), i = 1, ...,nl.

The interface conditions are jump condition in the solution

[ u] and in the flux [ \beta u_n ] which are supplied by

the user on the control points. The boundary condition on the
rectangular is Dirichlet condition which should be specified in
u(i,0), u(i,n), i = 0,...m, and u(0,j),ulm,j), j = 0,1,...,n.

On INPUTS:

m, n The numbers of grids on x and y direction.
ni The numbers of control points on the interface.
infoj  infoj(5) is the flag for the different problems.

infoj (1)
infoj(2)

infoj(3)

infoj(4)

0:

N = O O =

= O

Regular Poisson problem on the rectangular.

Interface problem.

[ul] =0, i.e. The solution is continuous.

There is a jump in the solution.

[\beta un] =0

[\beta u_n ] is not equal zero.

[\betal = 0, So the coefficients are standard central
formula.

The right hand side f(x,y) is continuous.

f is not continuous but we know the values

of £ (at control points) from the both

sides of the interface.

f is not continuous and only given at grid points £(i,j).
We call subroutine spreaf.f to determine the values
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of £ (at control points) from the both
sides of the interface.
infoj(5) The choice for iterative method. When [\betal] = O,
i.e. infoj(3) = 2, we use the optimal parameter,
so amega is not needed.

infoj(5) = 1: Use sor iteration.i
infoj(5) = 2: Use line sor (lsor) iteratiom.
infoj(5) = 3: Use line ADI iteration, recommend only when [\betal] = 0.
a,b,c,d: The end points for the rectangle: a <= x <= b;
¢ <=y <= d. We suppose (b-a)/m = (d-c)/n.
bin, bout The coefficients of \beta inside and outside
the interface respectively.
amega Over-relaxation parameter for lsor or sor methods.

x1(ni1+1),y1(n1+1) The coordinates of the control points.
x1(1) = x1(ni+1) and y1(1) = yi(ni+l).
f(m,n) The right hand side in discrete form.
fin(ni+1),fout(ni+1) If infoj(4) = 1, we need the values of
f(x,y) at the control points from inside and
outside the interface. fin(1) = fin(ni+1) and so on.

uj(ni+1) The jump in the solution on the control points when
infoj(2) = 1. uj(1) = uj(ni+1).

unj(ni+1) The jump in the flux [\beta u_n] on the control
control points when infoj(3) = 1. unj(1) = unj(ni+1).

tol2 The tolerance for the lsor iteration.

On OUTPUTS:
u2(0:m,0:n) The computed solution at grid points.
ki The number of iterations used in solving the linear system

WORKING SPACES:

ijump  ijump(m,n,3). ijump contains the index information of the
grid points (see subroutine index for the detail).

xyjump xyjump(m,n,9). see subroutine irreg for the detail.

u, ul, u2 u(0:m+1,0:n+1),ul1(0:m+1,0:n+1),u2(0:m+1,0:n+1)
working spaces for different iterative methods.

LIBRARY CALLED: LINPACK

Subroutines called:



118

splcl: The periodic spline interpolation package.

spread: Determining the approximation of inner and outside limit of a
function at the control points of the interface. So later we
can use spline interpolation.

index Indexing grid points and record the other informations for
irregular grid points.

irreg Determine the coefficients for the difference scheme at
irregular grid points.

adi adi iterative method in double precision.
sor sor iterative method in double precision.
lsor: Line sor iterative method in double precision.

rootp3 rootp3 finder for cubic polynomial.

s EsEsEsEsErsEs s N Es s N s NN N e IR S

blas: Basic linear algebra computation routines:
PO PP
C
C Written by Zhilin Li, February, 1993
C
Ck—k—k—k—k—k—k— sk —k—k— sk —k— sk —ok —k— sk —k—k—sk—k— sk —k—k— sk —sk —k—k —k— k— sk —k—k—k—k—k—k—k—k—k— %
C
C END OF DOCUMENTATION FOR DIIM
C
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Appendix B

PROLOGUE OF THE PACKAGE PPACK - A FORTRAN PACKAGE
FOR SOLVING THE POISSON EQUATIONS ON IRREGULAR
REGIONS

C subroutine ppack(m,n,ni,info,a,b,c,d,x,y,x1,yl,ijump,xyjunmp,
C 1 ub,fub,rhsf,f,u,ul,u2,scale,tol,tu)

C ok 3k ok % 5k ok 3k ok ok sk ok ok %k ok ok ok ok ok sk ok ok ok sk ok ok ok ok skook ok sk ok ok ok sk ok ok sk sk sk ok sk skok ok sk ok sk ok sk ok ok ok skok sk skok ok ok sk okok sk skok sk ko k sk sk sk kokk

C C

C POISSON PACKAGE PPACK FOR IRREGULAR REGION C

C C

Coskoksk koo sk koo koo skokok ok ook sk sk sk o o o ook o e seokeok ks sk sk sk sk sk sk s s sk ook ok ek sk sk sk skl sk sk o sk sk s sk ko ok ok okokoke ok

C

C ppack solves the POISSON equation u_xx + u_yy = £(x,y) with Dirichlet

C boundary condition on arbitrary closed region in double precision.

C

C This package uses a smallest rectangular to enclose the domain and

C uses the periodic spline interpolation to express the boundary. it

C uses a uniform grid so the step size is the same both in x and y

C direction.

G s e e e
On INPUTS:

info info(4) are flags for different input options.

info(1) Rectangular problem.

= 1: The region is irregular.

info(2) = 0: The boundary condition is supplied by function fub(x,y).
= 1: The boundary condition is given discretely at control points.

info(3) = 0: The right hand side f(x,y) is supplied by function rhsf(x,y).
= 1: The right hand side is given discretely at grid points.

info(4) = 1: use sor iteration.
= 2: use lsor iteration.
= 3: use adi iteration.

m, n The numbers of grid points on x and y directions. If the regiom is
irregular (i.e. not a rectangle), and the maximum extent of
the domain in x/y direction is longer than that in y/x
direction, then we should take (m >= n)/(n >= m). Be make sure
that the shorter integer is taken so that the domain is

QOO0 0000000
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indeed inclosed in the rectangular. The safest way is to take
m = n. This only affects the speed of the iterative methods.

a,b,c,d: If the domain is rectangular (info(0) = 0), a and b (a<b)
are two ends in x direction, ¢ and d (c< d) are two ends
in y direction. Now the fastest method would be adi iteration
(info(4) = 3) with scale = 1.0.

£ f(m,n) Not needed when external function rhsf is provided.
The discrete right hand side on the grid points. For
irregular region only needed inside the region (see the
comments below) .

u u(0:m+1,0:n+1) If the region is rectangular (info(0) = 0),
u(0,j), u(m+1,j) j = 0, 1, ..., n+l are the boundary
condition on x = a and x = b. And u(i,0), u(i,n+1) are
the boundary condition on y = c and y =d, 1 =0, ..., m+l.

Not needed when external function fub is provided
( i.e. info(2) = 0).

scale DNeeded when info(4) = 3. The scale parameter for adi iteration.
For the rectangular region (info(1) = 0), scale = 1.
For the irregular region, scale can varies from problems
(see the comments below).

tol The tolerance for the iterative method.

fub Needed when info(2) = 0. The fub must be declared in an
external statement in the user calling program, and should
be written as follows:

double precision function fub(x,y)
double precision x,y
fub =

rhsf Needed when info(3) = 0. The rhsf must be declared in an
external statement in the user calling program, and should
be written as follows:

double precision function rhsf(x,y)
double precision x,y
rhsf =

The following inputs are for irregular region:

ni The numbers of control points on the irregular boundary. If
the boundary condition is given in exact form fub(x,y), we
can take nl close to max(m,n). But if the boundary is not
smooth or has complicated shape, and the boundary condition
is only given on the control points and changes rapidly on
the boundary we should take enough points so the spline
interpolation for the boundary condition gives appropriate
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accuracy. The magnitude of nl has little effect on the
computation cost.
x1,y1  x1(ni+1), yi(ni+1) The coordinates of control points for
the boundary. x1(ni+1) = x1(1); yi(ni+1l) = y1(1). Not
needed when info(0) = 0.
ub ub(ni+1) The Dirichlet boundary condition on the control
points. Not needed when info(2) = 0. ub(1) = ub(ni+l).
On OUTPUTS:
1u2(0:m,0:n) u2(i,j) i =1, ..., m; j =1, ..., n are the
computed solution at grid points.
............................................................................... C
WORKING SPACES:
X,y x(m), y(n) After calling regset when info(1) = O or extreme
when info(1) = 1 they contain grid lines in x and y direction.
ijump ijump(m,n,4). ijump contains the index information of the
grid points (see subroutine index for the detail).
xyjump xyjump(m,n,8). see subroutine irreg for the detail.
u, ul, u2 u(0:m+1,0:n+1),ul1(0:m+1,0:n+1),u2(0:m+1,0:n+1)
working spaces for different iterative methods.
LIBRARY CALLED LINPACK
Subroutines called:
regset: If the domain is rectangular (info(1) = 0). Set up process.
splcl: The periodic spline interpolation package.
extreme: The subroutine determine the extreme values for each spline
interval and return the smallest rectangular region and
step size h.
index Indexing grid points and record the other informations for

irreg

irregular grid points.

Determine the coefficients for the difference scheme at
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irregular grid points.
dadi adi iterative method in double precision.
sor sor iterative method in double precision.
lsor: Line sor iterative method in double precision.

rootp3 rootp3 finder for cubic polynomial.

blas: Basic linear algebra computation routines:
copymatl; checkp; dgltsl, copyvec

COMMENTS:
1. The ppack is very easily generalized to a more general elliptic problem:
a(x,y)*(u_xx + u_yy) + b(x)*u_x + c(x,y)*u_y + d(x,y)*u = £(x,y)

with Dirichlet boundary condition. The convergence speed is
pretty much the same.

2. The subroutine ppack.f is the collection of several other routines.
The user can get different information by other routines.
For example if you want to get N points (more than the
control points on the spline), you can do

open(50,file="d.m’,status=’"unknown’)

ds = hsi(ni1+1)/N

do i=1,N+1
s = (i-1.0d0)*ds
call splval(ni,s,x1,yl,coxl,coyl,hsl, hs2,x3,y3,info)
write(50,%*)x3,y3

enddo

after calling splcl (the spline interpolation package).
Then the file d.m will contains the information of the coordinates
of the points on the spline.

The other example is that when the right hand side f is given in
discrete form (info(3) = 1), we only need to specify those £(i,])
inside the domain instead of the entire rectangular region. After
calling index subroutine we are able to know which grid points
are inside the domain (ijump(i,j,1) .eq. 2 .or. 1) and
(ijump(i,j,3) .eq. 2 .or. 1). We can specify f(i,j) accordingly.

3. Generally all three iterative methods sor, lsor and adi converge
pretty fast. For sor and lsor methods, they converge faster than
the methods applied to the same rectangular region (less
iterations). Besides these methods only compute the iteration
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inside the region so they are cheaper per iteration than the
methods used for the rectangular region. The sor method seems to
be better than lsor method.

Generally adi method is a faster solver for POISSON problems on
rectangular regions. In our approach, the adi method is still
faster than sor and lsor method if we choose right parameters.
Usually the parameters will vary for different geometries. But
with the parameter chosen from the smallest rectangular and
multiply it with some scale, we find that the right scale is
very close for different mesh size corresponding to the same
geometry. So we can test the best scale for space mesh size and
then increase it a little bit as the mesh size get finer.
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END OF DOCUMENTATION FOR PPACK



