
Finite Volume Methods for Hyperbolic Problems

Acoustics in Heterogeneous Media

• One space dimension
• Reflection and transmission at interfaces
• Non-conservative form, Riemann problems
• Two space dimensions
• Transverse Riemann solver
• Some examples
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One-dimensional Elasticity

Compressional waves similar to acoustic waves in gas.

Notation:

X(x, t) = location of particle indexed by x in the
reference (undeformed) configuration

X(x, 0) = x if initially undeformed

ϵ(x, t) = Xx(x, t)− 1 = strain

u(x, t) = velocity of particle indexed by x

σ(ϵ) = stress–strain relation

ρ = density
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Linear elasticity

Hyperbolic conservation law:

ϵt − ux = 0 since ϵt = Xxt = Xtx = ux
ρut − σx = 0 conservation of momentum, F = ma

Linear stress-strain relation (Hooke’s law):

σ(ϵ) = Kϵ

where K is the bulk modulus of compressibility.

Then

σt −Kux = 0
ut − (1/ρ)σx = 0

A =

[
0 −K

−1/ρ 0

]

Eigenvalues: λ = ±
√

K/ρ as in acoustics.

(Equivalent to acoustics with σ = −p)
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Elasticity in heterogeneous material

Suppose ρ(x), σ(ϵ, x) vary with x

Conservative form:

ϵt − ux = 0

(ρ(x)u)t − σ(ϵ, x)x = 0

Linear stress-strain relation (Hooke’s law):

σ(ϵ, x) = K(x)ϵ

Non-conservative variable-coefficient linear system:

σt −K(x)ux = 0
ut − (1/ρ(x))σx = 0

A =

[
0 −K(x)

−1/ρ(x) 0

]
Variable coefficient acoustics: p = −σ
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Wave propagation in heterogeneous medium

Multiply system
qt +A(x)qx = 0

by R−1(x) on left to obtain

R−1(x)qt +R−1(x)A(x)R(x)R−1(x)qx = 0

or
(R−1(x)q)t + Λ(x)

[
(R−1(x)q)x −R−1

x (x)q
]
= 0

Let w(x, t) = R−1(x)q(x, t) (characteristic variable).

There is a coupling term on the right: Note typo in (9.51)

wt + Λ(x)wx = Λ(x)R−1
x (x)R(x)w

If the eigenvectors vary with x (i.e. if Rx ̸= 0)
then waves in other families are generated (e.g. reflections)
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Wave propagation in heterogeneous medium

Linear system qt +A(x)qx = 0. For acoustics:

A =

[
0 K(x)

1/ρ(x) 0

]
q =

[
p
u

]
.

eigenvalues: λ1 = −c(x), λ2 = +c(x),

where c(x) =
√

K(x)/ρ(x) = local speed of sound.

eigenvectors: r1(x) =

[
−Z(x)

1

]
, r2(x) =

[
Z(x)
1

]
where Z(x) = ρc =

√
ρK = impedance.
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Transmission and reflection coefficients

Consider an interface between two materials with constant
properties in each.

ρℓ, Kℓ =⇒ cℓ =
√

ρℓ/Kℓ, Zℓ =
√
ρℓKℓ

ρr Kr =⇒ cr =
√
ρr/Kr, Zr =

√
ρrKr

If impedance Zℓ = Zr then rpℓ = rpr and waves are transmitted
through interface with no generation of other waves

More generally, wave is partly transmitted and partly reflected,

CT =
2Zr

Zℓ + Zr
, CR =

Zr − Zℓ

Zℓ + Zr
.
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Right-going simple wave with Zℓ = Zr

Note p and u are not conserved, but they are always continuous.
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Transmitted/reflected wave with Zℓ ̸= Zr

CT =
2Zr

Zℓ + Zr
=

4

3

CR =
Zr − Zℓ

Zℓ + Zr
=

1

3

Note that p and u remain continuous at the interface.
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Transmitted/reflected wave with Zℓ ̸= Zr

Note that p and u remain continuous at the interface.

Looks like Riemann problem data at t = 0
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Riemann problem for heterogeneous medium

Jump discontinuity in q(x, 0) and in K(x) and ρ(x).

Decompose jump in q as linear combination of eigenvectors:

• left-going waves: eigenvectors for material on left,
• right-going waves: eigenvectors for material on right.

R(x) =

[
−Z(x) Z(x)

1 1

]
, R−1(x) =

1

2Z(x)

[
−1 Z(x)
1 Z(x)

]
.

Riemann solution: decompose

qr − ql = α1

[
−Zl

1

]
+ α2

[
Zr

1

]
= W1 +W2

The waves propagate with speeds s1 = −cl and s2 = cr.
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Wave propagation in heterogeneous medium

Riemann solution: decompose

qr − ql = α1

[
−Zl

1

]
+ α2

[
Zr

1

]
= W1 +W2

The waves propagate with speeds s1 = −cl and s2 = cr.
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Riemann problem for interface

qr − qℓ = α1

[
−Zℓ

1

]
+ α2

[
Zr

1

]
.

gives the linear system

Rℓr α = qr − qℓ,

where

Rℓr =

[
−Zℓ Zr

1 1

]
=⇒ R−1

ℓr =
1

Zℓ + Zr

[
−1 Zr

1 Zℓ

]
So [

α1

α2

]
=

1

Zℓ + Zr

[
−1 Zr

1 Zℓ

] [
pr − pℓ
ur − uℓ

]
.
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2-wave hitting interface as a Riemann problem

Incident wave:

qr − qℓ = βr2ℓ = β

[
Zℓ

1

]
,

then Riemann solution gives

α = R−1
lr (qr − qℓ)

=
β

Zℓ + Zr

[
−1 Zr

1 Zℓ

] [
Zℓ

1

]
=

β

Zℓ + Zr

[
Zr − Zℓ

2Zℓ

]
.

=⇒ α1 =

(
Zr − Zℓ

Zℓ + Zr

)
β and α2 =

(
2Zℓ

Zℓ + Zr

)
β

Pressure jump in reflected wave: cRβZℓ

Pressure jump in transmitted wave: cTβZℓ
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Godunov’s method — variable coefficient acoustics

W2
i+3W2

i−1/2 W1
i+1/2W1

i−1/2 W2
i+1/2 W1

i+3/2

xi+1/2 xi+3/2xi−1/2

q = Qn
i

t

t = tn

q = Qn
i+1

Qi −Qi−1 =

[
pi − pi−1

ui − ui−1

]
= α1

i−1/2

[
−ρi−1ci−1

1

]
+ α2

i−1/2

[
ρici
1

]
= α1

i−1/2r
1
i−1 + α2

i−1/2r
2
i

= W1
i−1/2 +W2

i−1/2
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2D Acoustics in Heterogeneous Media

qt +A(x, y)qx +B(x, y)qy = 0,

q =

[
p
u
v

]
, A =

[
0 K(x, y) 0

1/ρ(x, y) 0 0
0 0 0

]
, B =

[
0 0 K(x, y)
0 0 0

1/ρ(x, y) 0 0

]
.

Riemann problem in x:

W1 = α1

[ −Zi−1,j
1
0

]
, W2 = α2

[
0
0
1

]
, W3 = α3

[
Zij
1
0

]
,

α1 = (−∆Q1 + Zij∆Q2)/(Zi−1,j + Zij),

α2 = ∆Q3,

α3 = (∆Q1 + Zi−1,j∆Q2)/(Zi−1,j + Zij).

Wave speeds: s1 = −ci−1,j , s2 = 0, s3 = cij

Only need to propagate and apply limiters to W1, W3.
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Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem qt +Aqx = 0
Decomposes ∆Q = Qij −Qi−1,j into A+∆Q and A−∆Q.
For qt +Aqx +Bqy = 0, split using eigenvalues, vectors:

A = RΛR−1 =⇒ A− = RΛ−R−1, A+ = RΛ+R−1

Input parameter ixy determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes A+∆Q into B−A+∆Q and B+A+∆Q by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if ixy=2.)

R. J. LeVeque, University of Washington FVMHP Chap. 19–21
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Wave propagation algorithm for qt + Aqx +Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :
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Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations
A−∆Qi−1/2,j , A+∆Qi−1/2,j .

For B−A+∆Qi−1/2,j we want downward-going part of A+∆Qi−1/2,j ,
(partly transmitted an partly reflected at y-interface)

A+∆Qi−1/2,j = β1

 −Zi,j−1

0
1

+ β2

 0
−1
0

+ β3

 Zij

0
1

 ,

with speeds −ci,j−1, 0, cij respectively.

Only use downward-going part:

β1 =
(
−(A+∆Qi−1/2,j)

1 + (A+∆Qi−1/2,j)
3Zij

)
/ (Zi,j−1 + Zij),

B−A+∆Qi−1/2,j = −ci,j−1β
1

 −Zi,j−1

0
1


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Cell averaging material parameters

To solve a variable coefficient problem on a grid,
need to average material parameters onto grid cell.

For acoustics with ρ(x, y), K(x, y), on Cartesian grid:

Can use mean value of density:

ρij =
1

∆x∆y

∫∫
ρ(x, y) dx, dy

But need to use harmonic average of bulk modulus:

Kij =

(
1

∆x∆y

∫∫
1

K(x, y)
dx, dy

)−1

Then cij =
√
Kij/ρij , Zij =

√
Kijρij

R. J. LeVeque, University of Washington FVMHP Sec. 9.14
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Acoustic wave hitting an interface in 2D

Example from Figure 21.1:

ρℓ = 1 ρr = 1
Kℓ = 1 Kr = 0.25
cℓ = 1 cr = 0.5
Zℓ = 1 Zr = 0.5

CT = 2Zr
Zℓ+Zr

= 2/3

CR = Zr−Zℓ
Zℓ+Zr

= −1/3

R. J. LeVeque, University of Washington FVMHP Fig. 21.1
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Acoustic wave hitting an interface in 2D

With nearly-incompressible
material on right (≈ solid wall)

ρℓ = 1 ρr = 104

Kℓ = 1 Kr = 10−8

cℓ = 1 cr = 10−6

Zℓ = 1 Zr = 0.01

CT = 2Zr
Zℓ+Zr

≈ 0.02

CR = Zr−Zℓ
Zℓ+Zr

≈ −0.98

R. J. LeVeque, University of Washington FVMHP Fig. 21.1
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