Finite Volume Methods for Hyperbolic Problems

Acoustics in Heterogeneous Media

- One space dimension
- Reflection and transmission at interfaces
- Non-conservative form, Riemann problems
- Two space dimensions
- Transverse Riemann solver
- Some examples

One-dimensional Elasticity

Compressional waves similar to acoustic waves in gas.
Notation:

$$
\begin{aligned}
X(x, t)= & \text { location of particle indexed by } x \text { in the } \\
& \text { reference (undeformed) configuration } \\
X(x, 0)= & x \text { if initially undeformed } \\
\epsilon(x, t)= & X_{x}(x, t)-1=\text { strain } \\
u(x, t)= & \text { velocity of particle indexed by } x \\
\sigma(\epsilon)= & \text { stress-strain relation } \\
\rho= & \text { density }
\end{aligned}
$$

Linear elasticity

Hyperbolic conservation law:

$$
\begin{array}{ll}
\epsilon_{t}-u_{x}=0 & \text { since } \epsilon_{t}=X_{x t}=X_{t x}=u_{x} \\
\rho u_{t}-\sigma_{x}=0 & \text { conservation of momentum, } F=m a
\end{array}
$$

Linear stress-strain relation (Hooke's law):

$$
\sigma(\epsilon)=K \epsilon
$$

where K is the bulk modulus of compressibility.
Then

$$
\begin{aligned}
& \sigma_{t}-K u_{x}=0 \\
& u_{t}-(1 / \rho) \sigma_{x}=0
\end{aligned} \quad A=\left[\begin{array}{cc}
0 & -K \\
-1 / \rho & 0
\end{array}\right]
$$

Eigenvalues: $\lambda= \pm \sqrt{K / \rho}$ as in acoustics.
(Equivalent to acoustics with $\sigma=-p$)

Elasticity in heterogeneous material

Suppose $\rho(x), \sigma(\epsilon, x)$ vary with x
Conservative form:

$$
\begin{aligned}
& \epsilon_{t}-u_{x}=0 \\
& (\rho(x) u)_{t}-\sigma(\epsilon, x)_{x}=0
\end{aligned}
$$

Elasticity in heterogeneous material

Suppose $\rho(x), \sigma(\epsilon, x)$ vary with x
Conservative form:

$$
\begin{aligned}
& \epsilon_{t}-u_{x}=0 \\
& (\rho(x) u)_{t}-\sigma(\epsilon, x)_{x}=0
\end{aligned}
$$

Linear stress-strain relation (Hooke's law):

$$
\sigma(\epsilon, x)=K(x) \epsilon
$$

Non-conservative variable-coefficient linear system:

$$
\begin{aligned}
& \sigma_{t}-K(x) u_{x}=0 \\
& u_{t}-(1 / \rho(x)) \sigma_{x}=0
\end{aligned} \quad A=\left[\begin{array}{cc}
0 & -K(x) \\
-1 / \rho(x) & 0
\end{array}\right]
$$

Elasticity in heterogeneous material

Suppose $\rho(x), \sigma(\epsilon, x)$ vary with x
Conservative form:

$$
\begin{aligned}
& \epsilon_{t}-u_{x}=0 \\
& (\rho(x) u)_{t}-\sigma(\epsilon, x)_{x}=0
\end{aligned}
$$

Linear stress-strain relation (Hooke's law):

$$
\sigma(\epsilon, x)=K(x) \epsilon
$$

Non-conservative variable-coefficient linear system:

$$
\begin{aligned}
& \sigma_{t}-K(x) u_{x}=0 \\
& u_{t}-(1 / \rho(x)) \sigma_{x}=0
\end{aligned} \quad A=\left[\begin{array}{cc}
0 & -K(x) \\
-1 / \rho(x) & 0
\end{array}\right]
$$

Variable coefficient acoustics: $p=-\sigma$

Wave propagation in heterogeneous medium

Multiply system

$$
q_{t}+A(x) q_{x}=0
$$

by $R^{-1}(x)$ on left to obtain

$$
R^{-1}(x) q_{t}+R^{-1}(x) A(x) R(x) R^{-1}(x) q_{x}=0
$$

or

$$
\left(R^{-1}(x) q\right)_{t}+\Lambda(x)\left[\left(R^{-1}(x) q\right)_{x}-R_{x}^{-1}(x) q\right]=0
$$

Wave propagation in heterogeneous medium

Multiply system

$$
q_{t}+A(x) q_{x}=0
$$

by $R^{-1}(x)$ on left to obtain

$$
R^{-1}(x) q_{t}+R^{-1}(x) A(x) R(x) R^{-1}(x) q_{x}=0
$$

or

$$
\left(R^{-1}(x) q\right)_{t}+\Lambda(x)\left[\left(R^{-1}(x) q\right)_{x}-R_{x}^{-1}(x) q\right]=0
$$

Let $w(x, t)=R^{-1}(x) q(x, t)$ (characteristic variable).
There is a coupling term on the right: Note typo in (9.51)

$$
w_{t}+\Lambda(x) w_{x}=\Lambda(x) R_{x}^{-1}(x) R(x) w
$$

If the eigenvectors vary with x (i.e. if $R_{x} \neq 0$)
then waves in other families are generated (e.g. reflections)

Wave propagation in heterogeneous medium

Linear system $q_{t}+A(x) q_{x}=0$. For acoustics:

$$
A=\left[\begin{array}{cc}
0 & K(x) \\
1 / \rho(x) & 0
\end{array}\right] \quad q=\left[\begin{array}{l}
p \\
u
\end{array}\right] .
$$

eigenvalues: $\quad \lambda^{1}=-c(x), \quad \lambda^{2}=+c(x)$,
where $c(x)=\sqrt{K(x) / \rho(x)}=$ local speed of sound.
eigenvectors: $\quad r^{1}(x)=\left[\begin{array}{c}-Z(x) \\ 1\end{array}\right], \quad r^{2}(x)=\left[\begin{array}{c}Z(x) \\ 1\end{array}\right]$
where $Z(x)=\rho c=\sqrt{\rho K}=$ impedance.

Transmission and reflection coefficients

Consider an interface between two materials with constant properties in each.

$$
\begin{aligned}
& \rho_{\ell}, K_{\ell} \Longrightarrow c_{\ell}=\sqrt{\rho_{\ell} / K_{\ell}}, Z_{\ell}=\sqrt{\rho_{\ell} K_{\ell}} \\
& \rho_{r} K_{r} \Longrightarrow c_{r}=\sqrt{\rho_{r} / K_{r}}, Z_{r}=\sqrt{\rho_{r} K_{r}}
\end{aligned}
$$

Transmission and reflection coefficients

Consider an interface between two materials with constant properties in each.

$$
\begin{aligned}
& \rho_{\ell}, K_{\ell} \Longrightarrow c_{\ell}=\sqrt{\rho_{\ell} / K_{\ell}}, Z_{\ell}=\sqrt{\rho_{\ell} K_{\ell}} \\
& \rho_{r} K_{r} \Longrightarrow c_{r}=\sqrt{\rho_{r} / K_{r}}, Z_{r}=\sqrt{\rho_{r} K_{r}}
\end{aligned}
$$

If impedance $Z_{\ell}=Z_{r}$ then $r_{\ell}^{p}=r_{r}^{p}$ and waves are transmitted through interface with no generation of other waves

Transmission and reflection coefficients

Consider an interface between two materials with constant properties in each.

$$
\begin{aligned}
& \rho_{\ell}, K_{\ell} \Longrightarrow c_{\ell}=\sqrt{\rho_{\ell} / K_{\ell}}, Z_{\ell}=\sqrt{\rho_{\ell} K_{\ell}} \\
& \rho_{r} K_{r} \Longrightarrow c_{r}=\sqrt{\rho_{r} / K_{r}}, Z_{r}=\sqrt{\rho_{r} K_{r}}
\end{aligned}
$$

If impedance $Z_{\ell}=Z_{r}$ then $r_{\ell}^{p}=r_{r}^{p}$ and waves are transmitted through interface with no generation of other waves

More generally, wave is partly transmitted and partly reflected,

$$
C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}}, \quad C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}
$$

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Right-going simple wave with $Z_{\ell}=Z_{r}$

Note p and u are not conserved, but they are always continuous.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

$$
\begin{gathered}
C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}}=\frac{4}{3} \\
C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}=\frac{1}{3}
\end{gathered}
$$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

$$
C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}}=\frac{4}{3}
$$

$$
C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}=\frac{1}{3}
$$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

$$
\begin{gathered}
C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}}=\frac{4}{3} \\
C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}=\frac{1}{3}
\end{gathered}
$$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

$$
\begin{gathered}
C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}}=\frac{4}{3} \\
C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}=\frac{1}{3}
\end{gathered}
$$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.
Looks like Riemann problem data at $t=0$

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.
Looks like Riemann problem data at $t=0$

Transmitted/reflected wave with $Z_{\ell} \neq Z_{r}$

Note that p and u remain continuous at the interface.
Looks like Riemann problem data at $t=0$

Riemann problem for heterogeneous medium

Jump discontinuity in $q(x, 0)$ and in $K(x)$ and $\rho(x)$.
Decompose jump in q as linear combination of eigenvectors:

- left-going waves: eigenvectors for material on left,
- right-going waves: eigenvectors for material on right.

Riemann problem for heterogeneous medium

Jump discontinuity in $q(x, 0)$ and in $K(x)$ and $\rho(x)$.
Decompose jump in q as linear combination of eigenvectors:

- left-going waves: eigenvectors for material on left,
- right-going waves: eigenvectors for material on right.

$$
R(x)=\left[\begin{array}{cc}
-Z(x) & Z(x) \\
1 & 1
\end{array}\right], \quad R^{-1}(x)=\frac{1}{2 Z(x)}\left[\begin{array}{cc}
-1 & Z(x) \\
1 & Z(x)
\end{array}\right]
$$

Riemann problem for heterogeneous medium

Jump discontinuity in $q(x, 0)$ and in $K(x)$ and $\rho(x)$.
Decompose jump in q as linear combination of eigenvectors:

- left-going waves: eigenvectors for material on left,
- right-going waves: eigenvectors for material on right.

$$
R(x)=\left[\begin{array}{cc}
-Z(x) & Z(x) \\
1 & 1
\end{array}\right], \quad R^{-1}(x)=\frac{1}{2 Z(x)}\left[\begin{array}{cc}
-1 & Z(x) \\
1 & Z(x)
\end{array}\right]
$$

Riemann solution: decompose

$$
q_{r}-q_{l}=\alpha^{1}\left[\begin{array}{c}
-Z_{l} \\
1
\end{array}\right]+\alpha^{2}\left[\begin{array}{c}
Z_{r} \\
1
\end{array}\right]=\mathcal{W}^{1}+\mathcal{W}^{2}
$$

The waves propagate with speeds $s^{1}=-c_{l}$ and $s^{2}=c_{r}$.

Wave propagation in heterogeneous medium

Riemann solution: decompose

$$
q_{r}-q_{l}=\alpha^{1}\left[\begin{array}{c}
-Z_{l} \\
1
\end{array}\right]+\alpha^{2}\left[\begin{array}{c}
Z_{r} \\
1
\end{array}\right]=\mathcal{W}^{1}+\mathcal{W}^{2}
$$

The waves propagate with speeds $s^{1}=-c_{l}$ and $s^{2}=c_{r}$.

Riemann problem for interface

$$
q_{r}-q_{\ell}=\alpha^{1}\left[\begin{array}{c}
-Z_{\ell} \\
1
\end{array}\right]+\alpha^{2}\left[\begin{array}{c}
Z_{r} \\
1
\end{array}\right]
$$

gives the linear system

$$
R_{\ell r} \alpha=q_{r}-q_{\ell}
$$

where

$$
R_{\ell r}=\left[\begin{array}{cc}
-Z_{\ell} & Z_{r} \\
1 & 1
\end{array}\right] \quad \Longrightarrow R_{\ell r}^{-1}=\frac{1}{Z_{\ell}+Z_{r}}\left[\begin{array}{cc}
-1 & Z_{r} \\
1 & Z_{\ell}
\end{array}\right]
$$

So

$$
\left[\begin{array}{c}
\alpha^{1} \\
\alpha^{2}
\end{array}\right]=\frac{1}{Z_{\ell}+Z_{r}}\left[\begin{array}{rr}
-1 & Z_{r} \\
1 & Z_{\ell}
\end{array}\right]\left[\begin{array}{l}
p_{r}-p_{\ell} \\
u_{r}-u_{\ell}
\end{array}\right] .
$$

2-wave hitting interface as a Riemann problem

Incident wave:

$$
q_{r}-q_{\ell}=\beta r_{\ell}^{2}=\beta\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right]
$$

then Riemann solution gives

$$
\begin{aligned}
\alpha & =R_{l r}^{-1}\left(q_{r}-q_{\ell}\right) \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{cc}
-1 & Z_{r} \\
1 & Z_{\ell}
\end{array}\right]\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right] \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{c}
Z_{r}-Z_{\ell} \\
2 Z_{\ell}
\end{array}\right] .
\end{aligned}
$$

2-wave hitting interface as a Riemann problem

Incident wave:

$$
q_{r}-q_{\ell}=\beta r_{\ell}^{2}=\beta\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right]
$$

then Riemann solution gives

$$
\begin{aligned}
\alpha & =R_{l r}^{-1}\left(q_{r}-q_{\ell}\right) \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{cc}
-1 & Z_{r} \\
1 & Z_{\ell}
\end{array}\right]\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right] \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{c}
Z_{r}-Z_{\ell} \\
2 Z_{\ell}
\end{array}\right] . \\
\Longrightarrow \alpha^{1}= & \left(\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}\right) \beta \quad \text { and } \quad \alpha^{2}=\left(\frac{2 Z_{\ell}}{Z_{\ell}+Z_{r}}\right) \beta
\end{aligned}
$$

2-wave hitting interface as a Riemann problem

Incident wave:

$$
q_{r}-q_{\ell}=\beta r_{\ell}^{2}=\beta\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right]
$$

then Riemann solution gives

$$
\begin{aligned}
\alpha & =R_{l r}^{-1}\left(q_{r}-q_{\ell}\right) \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{cc}
-1 & Z_{r} \\
1 & Z_{\ell}
\end{array}\right]\left[\begin{array}{c}
Z_{\ell} \\
1
\end{array}\right] \\
& =\frac{\beta}{Z_{\ell}+Z_{r}}\left[\begin{array}{c}
Z_{r}-Z_{\ell} \\
2 Z_{\ell}
\end{array}\right] . \\
\Longrightarrow \alpha^{1}= & \left(\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}}\right) \beta \quad \text { and } \quad \alpha^{2}=\left(\frac{2 Z_{\ell}}{Z_{\ell}+Z_{r}}\right) \beta
\end{aligned}
$$

Pressure jump in reflected wave: $c_{R} \beta Z_{\ell}$
Pressure jump in transmitted wave: $c_{T} \beta Z_{\ell}$

Godunov's method - variable coefficient acoustics

$$
\begin{aligned}
Q_{i}-Q_{i-1} & =\left[\begin{array}{l}
p_{i}-p_{i-1} \\
u_{i}-u_{i-1}
\end{array}\right] \\
& =\alpha_{i-1 / 2}^{1}\left[\begin{array}{c}
-\rho_{i-1} c_{i-1} \\
1
\end{array}\right]+\alpha_{i-1 / 2}^{2}\left[\begin{array}{c}
\rho_{i} c_{i} \\
1
\end{array}\right] \\
& =\alpha_{i-1 / 2}^{1} r_{i-1}^{1}+\alpha_{i-1 / 2}^{2} r_{i}^{2} \\
& =\mathcal{W}_{i-1 / 2}^{1}+\mathcal{W}_{i-1 / 2}^{2}
\end{aligned}
$$

2D Acoustics in Heterogeneous Media

$$
\begin{gathered}
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \\
q=\left[\begin{array}{l}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K(x, y) & 0 \\
1 / \rho(x, y) & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K(x, y) \\
0 & 0 & 0 \\
1 / \rho(x, y) & 0 & 0
\end{array}\right] .
\end{gathered}
$$

2D Acoustics in Heterogeneous Media

$$
\begin{gathered}
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \\
q=\left[\begin{array}{c}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K(x, y) & 0 \\
1 / \rho(x, y) & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K(x, y) \\
0 & 0 & 0 \\
1 / \rho(x, y) & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Riemann problem in x :

$$
\begin{gathered}
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right], \\
\alpha^{1}=\left(-\Delta Q^{1}+Z_{i j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
\alpha^{2}=\Delta Q^{3}, \\
\alpha^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{gathered}
$$

2D Acoustics in Heterogeneous Media

$$
\begin{gathered}
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \\
q=\left[\begin{array}{c}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K(x, y) & 0 \\
1 / \rho(x, y) & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K(x, y) \\
0 & 0 & 0 \\
1 / \rho(x, y) & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Riemann problem in x :

$$
\begin{gathered}
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right] \\
\alpha^{1}=\left(-\Delta Q^{1}+Z_{i j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
\alpha^{2}=\Delta Q^{3} \\
\alpha^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{gathered}
$$

Wave speeds: $\quad s^{1}=-c_{i-1, j}, \quad s^{2}=0, \quad s^{3}=c_{i j}$
Only need to propagate and apply limiters to $\mathcal{W}^{1}, \mathcal{W}^{3}$.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.
Transverse Riemann solver rpt2.f
Decomposes $\mathcal{A}^{+} \Delta Q$ into $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q$ by splitting this vector into eigenvectors of B.
(Or splits vector into eigenvectors of A if $\mathrm{ixy}=2$.)

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want downward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want downward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right]
$$

with speeds $-c_{i, j-1}, 0, c_{i j}$ respectively.

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want downward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right]
$$

with speeds $-c_{i, j-1}, 0, c_{i j}$ respectively.
Only use downward-going part:

$$
\beta^{1}=\left(-\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i j}\right) /\left(Z_{i, j-1}+Z_{i j}\right)
$$

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want downward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right]
$$

with speeds $-c_{i, j-1}, 0, c_{i j}$ respectively.
Only use downward-going part:

$$
\begin{gathered}
\beta^{1}=\left(-\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i j}\right) /\left(Z_{i, j-1}+Z_{i j}\right), \\
\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=-c_{i, j-1} \beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want upward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want upward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right]
$$

with speeds $-c_{i j}, 0, c_{i, j+1}$ respectively.

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want upward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right]
$$

with speeds $-c_{i j}, 0, c_{i, j+1}$ respectively.
Only use upward-going part:

$$
\beta^{3}=\left(\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i, j+1}\right) /\left(Z_{i j}+Z_{i, j+1}\right)
$$

Transverse solver for 2D Acoustics

Solving Riemann problem in x gives waves and fluctuations

$$
\mathcal{A}^{-} \Delta Q_{i-1 / 2, j}, \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}
$$

For $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ we want upward-going part of $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$, (partly transmitted an partly reflected at y-interface)

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right],
$$

with speeds $-c_{i j}, 0, c_{i, j+1}$ respectively.
Only use upward-going part:

$$
\begin{gathered}
\beta^{3}=\left(\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i, j+1}\right) /\left(Z_{i j}+Z_{i, j+1}\right) \\
\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=c_{i, j+1} \beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Cell averaging material parameters

To solve a variable coefficient problem on a grid, need to average material parameters onto grid cell.

For acoustics with $\rho(x, y), K(x, y)$, on Cartesian grid:
Can use mean value of density:

$$
\rho_{i j}=\frac{1}{\Delta x \Delta y} \iint \rho(x, y) d x, d y
$$

Cell averaging material parameters

To solve a variable coefficient problem on a grid, need to average material parameters onto grid cell.

For acoustics with $\rho(x, y), K(x, y)$, on Cartesian grid:
Can use mean value of density:

$$
\rho_{i j}=\frac{1}{\Delta x \Delta y} \iint \rho(x, y) d x, d y
$$

But need to use harmonic average of bulk modulus:

$$
K_{i j}=\left(\frac{1}{\Delta x \Delta y} \iint \frac{1}{K(x, y)} d x, d y\right)^{-1}
$$

Cell averaging material parameters

To solve a variable coefficient problem on a grid, need to average material parameters onto grid cell.

For acoustics with $\rho(x, y), K(x, y)$, on Cartesian grid:
Can use mean value of density:

$$
\rho_{i j}=\frac{1}{\Delta x \Delta y} \iint \rho(x, y) d x, d y
$$

But need to use harmonic average of bulk modulus:

$$
K_{i j}=\left(\frac{1}{\Delta x \Delta y} \iint \frac{1}{K(x, y)} d x, d y\right)^{-1}
$$

Then $c_{i j}=\sqrt{K_{i j} / \rho_{i j}}, \quad Z_{i j}=\sqrt{K_{i j} \rho_{i j}}$

Acoustic wave hitting an interface in 2D

Example from Figure 21.1:

$$
\begin{aligned}
& \rho_{\ell}=1 \quad \rho_{r}=1 \\
& K_{\ell}=1 \quad K_{r}=0.25 \\
& c_{\ell}=1 \quad c_{r}=0.5 \\
& Z_{\ell}=1 \quad Z_{r}=0.5 \\
& C_{T}=\frac{2 Z_{r}}{Z_{\ell}+Z_{r}} \\
& =2 / 3 \\
& C_{R}=\frac{Z_{r}-Z_{\ell}}{Z_{\ell}+Z_{r}} \\
& =-1 / 3
\end{aligned}
$$

Acoustic wave hitting an interface in 2D

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting an interface in 2D

With nearly-incompressible material on right (\approx solid wall)

Acoustic wave hitting circular inclusions

u at time $t=0.00000000$

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

Acoustic wave hitting circular inclusions

$\left[\begin{array}{l}0.20 \\ -0.15 \\ -0.10 \\ -0.05 \\ -0.00 \\ -0.05 \\ -0.10 \\ -0.15 \\ -0.20\end{array}\right.$

$$
\left[\begin{array}{c}
0.20 \\
-0.15 \\
-0.10 \\
-0.05 \\
-0.00 \\
-0.05 \\
-0.10 \\
-0.15 \\
-0.20
\end{array}\right.
$$

Acoustic wave hitting circular inclusions

R. J. LeVeque, University of Washington

FVMHP Chap. 21

