Finite Volume Methods for Hyperbolic Problems

Multidimensional Finite Volume Methods

- Integral form on a rectangular grid cell
- Flux differencing form
- Scalar advection: donor cell upwind
- Corner transport upwind and transverse waves
- Wave propagation algorithms for systems
- Transverse Riemann solver

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s
$$

where $\vec{f}(q)=(f(q), g(q))$, fluxes in x - and y-directions.

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s
$$

where $\vec{f}(q)=(f(q), g(q))$, fluxes in x - and y-directions.
If Ω is a rectangular grid cell $\left[x_{i-1 / 2}, x_{i+1 / 2}\right] \times\left[y_{j-1 / 2}, y_{j+1 / 2}\right]$
Then flux in normal directioni \vec{n} is

$$
\vec{n} \cdot \vec{f}(q)= \begin{cases}\mp f(q) & \text { at } x_{i \pm 1 / 2} \\ \mp g(q) & \text { at } y_{j \pm 1 / 2}\end{cases}
$$

2D finite volume method for $q_{t}+f(q)_{x}+g(q)_{y}=0$

Evolution of total mass due to fluxes through cell edges:

$$
\begin{aligned}
\frac{d}{d t} \iint_{\mathcal{C}_{i j}} q(x, y, t) d x d y= & \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i+1 / 2}, y, t\right) d y\right. \\
& -\int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i-1 / 2}, y, t\right) d y\right. \\
& +\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j+1 / 2}, t\right) d x\right. \\
& -\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j-1 / 2}, t\right) d x\right.
\end{aligned}
$$

2D finite volume method for $q_{t}+f(q)_{x}+g(q)_{y}=0$

Evolution of total mass due to fluxes through cell edges:

$$
\begin{aligned}
\frac{d}{d t} \iint_{\mathcal{C}_{i j}} q(x, y, t) d x d y= & \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i+1 / 2}, y, t\right) d y\right. \\
& -\int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i-1 / 2}, y, t\right) d y\right. \\
& +\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j+1 / 2}, t\right) d x\right. \\
& -\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j-1 / 2}, t\right) d x\right.
\end{aligned}
$$

Suggests:

$$
\begin{aligned}
\frac{\Delta x \Delta y Q_{i j}^{n+1}-\Delta x \Delta y Q_{i j}^{n}}{\Delta t}=- & \Delta y\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\Delta x\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right]
\end{aligned}
$$

2D finite volume method for $q_{t}+f(q)_{x}+g(q)_{y}=0$

$$
\begin{aligned}
\Delta x \Delta y Q_{i j}^{n+1}= & \Delta x \Delta y Q_{i j}^{n}-\Delta t \Delta y\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\Delta t \Delta x\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right]
\end{aligned}
$$

Where we define numerical fluxes:

$$
\begin{aligned}
& F_{i-1 / 2, j}^{n} \approx \frac{1}{\Delta t \Delta y} \int_{t_{n}}^{t_{n+1}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i-1 / 2}, y, t\right)\right) d y d t \\
& G_{i, j-1 / 2}^{n} \approx \frac{1}{\Delta t \Delta x} \int_{t_{n}}^{t_{n+1}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j-1 / 2}, t\right)\right) d x d t
\end{aligned}
$$

2D finite volume method for $q_{t}+f(q)_{x}+g(q)_{y}=0$

$$
\begin{gathered}
\Delta x \Delta y Q_{i j}^{n+1}=\Delta x \Delta y Q_{i j}^{n}-\Delta t \Delta y\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
-\Delta t \Delta x\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right]
\end{gathered}
$$

Where we define numerical fluxes:

$$
\begin{aligned}
& F_{i-1 / 2, j}^{n} \approx \frac{1}{\Delta t \Delta y} \int_{t_{n}}^{t_{n+1}} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(q\left(x_{i-1 / 2}, y, t\right)\right) d y d t \\
& G_{i, j-1 / 2}^{n} \approx \frac{1}{\Delta t \Delta x} \int_{t_{n}}^{t_{n+1}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} g\left(q\left(x, y_{j-1 / 2}, t\right)\right) d x d t
\end{aligned}
$$

Rewrite by dividing by $\Delta x \Delta y \Longrightarrow$ FV method in conservation form:

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j}^{n} & -\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right] .
\end{aligned}
$$

Dimensional splitting vs. unsplit FV method

Hyperbolic system in 2d: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Split method:

$$
\begin{aligned}
Q_{i j}^{*} & =Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
Q_{i j}^{n+1} & =Q_{i j}^{*}-\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{*}-G_{i, j-1 / 2}^{*}\right] .
\end{aligned}
$$

Dimensional splitting vs. unsplit FV method

Hyperbolic system in 2d: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Split method:

$$
\begin{aligned}
Q_{i j}^{*} & =Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
Q_{i j}^{n+1} & =Q_{i j}^{*}-\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{*}-G_{i, j-1 / 2}^{*}\right] .
\end{aligned}
$$

Unsplit method:

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j}^{n} & -\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right] .
\end{aligned}
$$

2D finite volume method for $q_{t}+f(q)_{x}+g(q)_{y}=0$

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j}^{n} & -\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right] .
\end{aligned}
$$

Fluctuation form:

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j} & -\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}+\mathcal{A}^{-} \Delta Q_{i+1 / 2, j}\right) \\
& -\frac{\Delta t}{\Delta y}\left(\mathcal{B}^{+} \Delta Q_{i, j-1 / 2}+\mathcal{B}^{-} \Delta Q_{i, j+1 / 2}\right) \\
& -\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2, j}-\tilde{F}_{i-1 / 2, j}\right)-\frac{\Delta t}{\Delta y}\left(\tilde{G}_{i, j+1 / 2}-\tilde{G}_{i, j-1 / 2}\right)
\end{aligned}
$$

The \tilde{F} and \tilde{G} are correction fluxes to go beyond Godunov's upwind method.

Incorporate approximations to second derivative terms in each direction ($q_{x x}$ and $q_{y y}$) and mixed term $q_{x y}$.

Advection: Donor Cell Upwind

With no correction fluxes, Godunov's method for advection is Donor Cell Upwind:

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j} & -\frac{\Delta t}{\Delta x}\left[u^{+}\left(Q_{i j}-Q_{i-1, j}\right)+u^{-}\left(Q_{i+1, j}-Q_{i j}\right)\right] \\
& -\frac{\Delta t}{\Delta y}\left[v^{+}\left(Q_{i j}-Q_{i, j-1}\right)+v^{-}\left(Q_{i, j+1}-Q_{i j}\right)\right]
\end{aligned}
$$

Stable only if $\left|\frac{u \Delta t}{\Delta x}\right|+\left|\frac{v \Delta t}{\Delta y}\right| \leq 1$.

Advection: Corner Transport Upwind (CTU)

Correction fluxes can be added to advect waves correctly.
Corner Transport Upwind:

Stable for max $\left(\left|\frac{u \Delta t}{\Delta x}\right|,\left|\frac{v \Delta t}{\Delta y}\right|\right) \leq 1$.

Advection: Corner Transport Upwind (CTU)

Need to transport triangular region from cell (i, j) to $(i, j+1)$:

$$
\text { Area }=\frac{1}{2}(u \Delta t)(v \Delta t) \Longrightarrow\left(\frac{\frac{1}{2} u v(\Delta t)^{2}}{\Delta x \Delta y}\right)\left(Q_{i j}-Q_{i-1, j}\right)
$$

Accomplished by correction flux:

$$
\tilde{G}_{i, j+1 / 2}=-\frac{1}{2} \frac{\Delta t}{\Delta x} u v\left(Q_{i j}-Q_{i-1, j}\right)
$$

$\frac{\Delta t}{\Delta y}\left(\tilde{G}_{i, j+1 / 2}-\tilde{G}_{i, j-1 / 2}\right)$ gives approximation to $\frac{1}{2} \Delta t^{2} u v q_{x y}$.
$\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2, j}-\tilde{F}_{i-1 / 2, j}\right)$ gives similar approximation.

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

In 2D the unsplit generalization uses

$$
\begin{aligned}
& A B=\left(A^{+}+A^{-}\right)\left(B^{+}+B^{-}\right)=A^{+} B^{+}+A^{+} B^{-}+A^{-} B^{+}+B^{-} A^{-}, \\
& B A=\left(B^{+}+A^{-}\right)\left(B^{+}+A^{-}\right)=B^{+} A^{+}+B^{+} A^{-}+B^{-} A^{+}+B^{-} A^{-} .
\end{aligned}
$$

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

In 2D the unsplit generalization uses
$A B=\left(A^{+}+A^{-}\right)\left(B^{+}+B^{-}\right)=A^{+} B^{+}+A^{+} B^{-}+A^{-} B^{+}+B^{-} A^{-}$,
$B A=\left(B^{+}+A^{-}\right)\left(B^{+}+A^{-}\right)=B^{+} A^{+}+B^{+} A^{-}+B^{-} A^{+}+B^{-} A^{-}$.

Scalar advection: only one term is nonzero in each product,

$$
\text { e.g. } u>0, v<0 \Longrightarrow u v=v u=u^{+} v^{-}
$$

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

Acoustics near a cell corner

Solve 2D acoustics with $\rho=K=c=Z=1$
$u=v \equiv 0$ and $p=4$ in lower left quadrant, $p=0$ elsewhere

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

2D Riemann problem for Euler

Values in 4 quadrants chosen to give single shock between each

Clawpack Gallery: euler_2d_quadrants

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.
Transverse Riemann solver rpt2.f
Decomposes $\mathcal{A}^{+} \Delta Q$ into $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q$ by splitting this vector into eigenvectors of B.
(Or splits vector into eigenvectors of A if $\mathrm{ixy}=2$.)

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.
Note: there is also a parameter ixy:
ixy $=1$ means normal solve was in x-direction,
ixy $=2$ means normal solve was in y-direction, In this case asdq represents $\mathcal{B}^{-} \Delta Q$ or $\mathcal{B}^{+} \Delta Q$ and the routine must return $\mathcal{A}^{-} \mathcal{B}^{*} \Delta Q$ and $\mathcal{A}^{+} \mathcal{B}^{*} \Delta Q$.

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

1D equation in $x: q_{t}+f(q)_{x}=0$ is:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0 \\
(\rho v)_{t}+(\rho u v)_{x} & =0 \Longrightarrow v_{t}+u v_{x}=0
\end{aligned}
$$

These are just 1D equations for ($\rho, \rho u$) along with an advected quantity v

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

1D equation in $y: q_{t}+g(q)_{y}=0$ is:

$$
\begin{aligned}
\rho_{t}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+(\rho u v)_{y} & =0 \Longrightarrow u_{t}+v u_{y}=0 \\
(\rho v)_{t}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

These are just 1D equations for $(\rho, \rho v)$ along with an advected quantity u

Gas dynamics in 2D - transverse solver

If Roe solver is used for normal Riemann problems:
Eigenvectors of $\hat{A} \approx f^{\prime}(q)$ are used for splitting in x,

$$
\hat{\rho}=\frac{1}{2}\left(\rho_{i-1, j}+\rho_{i, j}\right), \quad \hat{u}=\frac{\sqrt{\rho_{i-1, j}} u_{i-1, j}+\sqrt{\rho_{i, j}} u_{i, j}}{\sqrt{\rho_{i-1, j}}+\sqrt{\rho_{i, j}}}
$$

Gas dynamics in 2D - transverse solver

If Roe solver is used for normal Riemann problems:
Eigenvectors of $\hat{A} \approx f^{\prime}(q)$ are used for splitting in x,

$$
\hat{\rho}=\frac{1}{2}\left(\rho_{i-1, j}+\rho_{i, j}\right), \quad \hat{u}=\frac{\sqrt{\rho_{i-1, j}} u_{i-1, j}+\sqrt{\rho_{i, j}} u_{i, j}}{\sqrt{\rho_{i-1, j}}+\sqrt{\rho_{i, j}}}
$$

Use the same Roe averages for this interface to also define $\hat{B} \approx g^{\prime}(q)$ near this interface.

Split $\mathcal{A}^{*} \Delta Q$ into eigenvectors of \hat{B} to define

$$
\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q \text { and } \mathcal{B}^{+} \mathcal{A}^{*} \Delta Q
$$

Gas dynamics in 2D - transverse solver

If Roe solver is used for normal Riemann problems:
Eigenvectors of $\hat{A} \approx f^{\prime}(q)$ are used for splitting in x,

$$
\hat{\rho}=\frac{1}{2}\left(\rho_{i-1, j}+\rho_{i, j}\right), \quad \hat{u}=\frac{\sqrt{\rho_{i-1, j}} u_{i-1, j}+\sqrt{\rho_{i, j}} u_{i, j}}{\sqrt{\rho_{i-1, j}}+\sqrt{\rho_{i, j}}}
$$

Use the same Roe averages for this interface to also define $\hat{B} \approx g^{\prime}(q)$ near this interface.

Split $\mathcal{A}^{*} \Delta Q$ into eigenvectors of \hat{B} to define

$$
\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q \text { and } \mathcal{B}^{+} \mathcal{A}^{*} \Delta Q
$$

Many normal and transverse solvers available in \$CLAW/riemann/src

Wave propagation algorithm on a quadrilateral grid

Example: \$CLAW/amrclaw/examples/advection_2d_annulus

Wave propagation algorithm on a quadrilateral grid

Example: \$CLAW/amrclaw/examples/advection_2d_annulus

