Finite Volume Methods for Hyperbolic Problems

Fractional Step Methods

- Dimensional splitting (Chapter 19)
- Fractional steps for source terms (Chapter 17)
- Godunov and Strang splitting
- Cross-derivatives in 2D hyperbolic problems
- Upwind splitting of $A B q_{y x}$ and $B A q_{x y}$

Fractional steps for source terms

Conservation law with source term (balance law):

$$
q_{t}(x, t)+f(q(x, t))_{x}=\psi(q(x, t))
$$

ψ could depend on (x, t) explicitly too.

Fractional steps for source terms

Conservation law with source term (balance law):

$$
q_{t}(x, t)+f(q(x, t))_{x}=\psi(q(x, t))
$$

ψ could depend on (x, t) explicitly too.
Fractional step (time splitting) method:
To advance full solution by Δt, alternate between:

- $q_{t}(x, t)+f(q(x, t))_{x}=0$ with high-resolution method,
- $q_{t}(x, t)=\psi(q(x, t)$, an ODE in each grid cell

Fractional steps for source terms

Conservation law with source term (balance law):

$$
q_{t}(x, t)+f(q(x, t))_{x}=\psi(q(x, t))
$$

ψ could depend on (x, t) explicitly too.
Fractional step (time splitting) method:
To advance full solution by Δt, alternate between:

- $q_{t}(x, t)+f(q(x, t))_{x}=0$ with high-resolution method,
- $q_{t}(x, t)=\psi(q(x, t)$, an ODE in each grid cell

Source term in Clawpack: Provide src1.f90 in 1d or src2.f90 in 2d that advances Q in each cell by time Δt.

Set clawdata.src_split $=1$ (or $=2$ for Strang splitting)

Dimensional Splitting

Hyperbolic system in 2d: $\quad q_{t}+A q_{x}+B q_{y}=0$
Use Cartesian grid and alternate between:
x-sweeps: $\quad q_{t}+A q_{x}=0$
y-sweeps : $\quad q_{t}+B q_{y}=0$.
Use one-dimensional high-resolution methods for each.

Dimensional Splitting

Hyperbolic system in 2d: $\quad q_{t}+A q_{x}+B q_{y}=0$
Use Cartesian grid and alternate between:
x-sweeps: $\quad q_{t}+A q_{x}=0$
y-sweeps : $\quad q_{t}+B q_{y}=0$.
Use one-dimensional high-resolution methods for each.

- Easy to extend good 1D methods to 2D or 3D.
- Often very effective and efficient.
- May suffer from lack of isotropy.
- May be hard to use with AMR, complex geometry.

Dimensional Splitting

Hyperbolic system in 2d: $\quad q_{t}+A q_{x}+B q_{y}=0$
Use Cartesian grid and alternate between:
x-sweeps: $\quad q_{t}+A q_{x}=0$
y-sweeps : $\quad q_{t}+B q_{y}=0$.
Use one-dimensional high-resolution methods for each.

- Easy to extend good 1D methods to 2D or 3D.
- Often very effective and efficient.
- May suffer from lack of isotropy.
- May be hard to use with AMR, complex geometry.

Alternative: Unsplit methods.

Fractional step method for a linear PDE

$$
q_{t}=(\mathcal{A}+\mathcal{B}) q \quad \text { dimensional splitting: } \mathcal{A}=A \partial_{x}, \quad \mathcal{B}=B \partial_{y} .
$$

Then

$$
q_{t t}=(\mathcal{A}+\mathcal{B}) q_{t}=(\mathcal{A}+\mathcal{B})^{2} q
$$

and so

$$
\begin{aligned}
q(x, \Delta t) & =q(x, 0)+\Delta t(\mathcal{A}+\mathcal{B}) q(x, 0)+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2} q(x, 0)+\cdots \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2}+\cdots\right) q(x, 0)
\end{aligned}
$$

Solution operator: $q(x, \Delta t)=e^{\Delta t(\mathcal{A}+\mathcal{B})} q(x, 0)$.

Fractional step method for a linear PDE

$$
q_{t}=(\mathcal{A}+\mathcal{B}) q \quad \text { dimensional splitting: } \mathcal{A}=A \partial_{x}, \quad \mathcal{B}=B \partial_{y} .
$$

Then

$$
q_{t t}=(\mathcal{A}+\mathcal{B}) q_{t}=(\mathcal{A}+\mathcal{B})^{2} q
$$

and so

$$
\begin{aligned}
q(x, \Delta t) & =q(x, 0)+\Delta t(\mathcal{A}+\mathcal{B}) q(x, 0)+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2} q(x, 0)+\cdots \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2}+\cdots\right) q(x, 0)
\end{aligned}
$$

Solution operator: $q(x, \Delta t)=e^{\Delta t(\mathcal{A}+\mathcal{B})} q(x, 0)$.
With the fractional step method, we instead compute

$$
q^{*}(x, \Delta t)=e^{\Delta t \cdot \mathcal{A}} q(x, 0)
$$

and then

$$
q^{* *}(x, \Delta t)=e^{\Delta t \mathcal{B}} q^{*}(x, \Delta t)=e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}} q(x, 0) .
$$

Splitting error

$$
q(x, \Delta t)-q^{* *}(x, \Delta t)=\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0)
$$

Combining 2 steps gives:

$$
\begin{aligned}
q^{* *}(x, \Delta t) & =\left(I+\Delta t \mathcal{B}+\frac{1}{2} \Delta t^{2} \mathcal{B}^{2}+\cdots\right)\left(I+\Delta t \mathcal{A}+\frac{1}{2} \Delta t^{2} \mathcal{A}^{2}+\cdots\right) q(x, 0) \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}\left(\mathcal{A}^{2}+2 \mathcal{B} \mathcal{A}+\mathcal{B}^{2}\right)+\cdots\right) q(x, 0) .
\end{aligned}
$$

In true solution operator,

$$
\begin{aligned}
(\mathcal{A}+\mathcal{B})^{2} & =(\mathcal{A}+\mathcal{B})(\mathcal{A}+\mathcal{B}) \\
& =\mathcal{A}^{2}+\mathcal{A B}+\mathcal{B} \mathcal{A}+\mathcal{B}^{2}
\end{aligned}
$$

Splitting error

$$
\begin{aligned}
q(x, \Delta t)-q^{* *}(x, \Delta t) & =\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0) \\
& =\frac{1}{2} \Delta t^{2}(\mathcal{A B}-\mathcal{B A}) q(x, 0)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

There is a splitting error unless the two operators commute.

Splitting error

$$
\begin{aligned}
q(x, \Delta t)-q^{* *}(x, \Delta t) & =\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0) \\
& =\frac{1}{2} \Delta t^{2}(\mathcal{A B}-\mathcal{B A}) q(x, 0)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

There is a splitting error unless the two operators commute.
No splitting error for constant coefficient advection:

$$
\mathcal{A}=u \partial_{x}, \quad \mathcal{B}=v \partial_{y} \quad \mathcal{A B} q=\mathcal{B} \mathcal{A} q=u v q_{x y}
$$

Splitting error

$$
\begin{aligned}
q(x, \Delta t)-q^{* *}(x, \Delta t) & =\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0) \\
& =\frac{1}{2} \Delta t^{2}(\mathcal{A B}-\mathcal{B} \mathcal{A}) q(x, 0)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

There is a splitting error unless the two operators commute.
No splitting error for constant coefficient advection:

$$
\mathcal{A}=u \partial_{x}, \quad \mathcal{B}=v \partial_{y} \quad \mathcal{A B} q=\mathcal{B} \mathcal{A} q=u v q_{x y}
$$

There is a splitting error if u, v are varying:

$$
\begin{aligned}
& \mathcal{A B} q=u(x, y) \partial_{x}\left(v(x, y) \partial_{y} q\right)=u v q_{x y}+u v_{x} q_{y} \\
& \mathcal{B A} q=v(x, y) \partial_{y}\left(u(x, y) \partial_{x} q\right)=v u q_{x y}+v u_{y} q_{x}
\end{aligned}
$$

Splitting error

$$
\begin{aligned}
q(x, \Delta t)-q^{* *}(x, \Delta t) & =\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0) \\
& =\frac{1}{2} \Delta t^{2}(\mathcal{A B}-\mathcal{B A}) q(x, 0)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

There is a splitting error unless the two operators commute.
No splitting error for constant coefficient advection:

$$
\mathcal{A}=u \partial_{x}, \quad \mathcal{B}=v \partial_{y} \quad \mathcal{A B} q=\mathcal{B} \mathcal{A} q=u v q_{x y}
$$

There is a splitting error if u, v are varying:

$$
\begin{aligned}
& \mathcal{A B} q=u(x, y) \partial_{x}\left(v(x, y) \partial_{y} q\right)=u v q_{x y}+u v_{x} q_{y} \\
& \mathcal{B A} q=v(x, y) \partial_{y}\left(u(x, y) \partial_{x} q\right)=v u q_{x y}+v u_{y} q_{x}
\end{aligned}
$$

There is a splitting error for acoustics since $A B q_{x y} \neq B A q_{x y}$.

Commuting operators

Note that if A and B are simultaneously diagonalizable,

$$
A=R \Lambda R^{-1}, \quad B=R M R^{-1}
$$

then

$$
A B=R \Lambda M R^{-1}=R M \Lambda R^{-1}=B A
$$

Commuting operators

Note that if A and B are simultaneously diagonalizable,

$$
A=R \Lambda R^{-1}, \quad B=R M R^{-1}
$$

then

$$
A B=R \Lambda M R^{-1}=R M \Lambda R^{-1}=B A
$$

and conversely, if two diagonalizable matrices commute, then they are simultaneously diagonalizable.

Commuting operators

Note that if A and B are simultaneously diagonalizable,

$$
A=R \Lambda R^{-1}, \quad B=R M R^{-1}
$$

then

$$
A B=R \Lambda M R^{-1}=R M \Lambda R^{-1}=B A
$$

and conversely, if two diagonalizable matrices commute, then they are simultaneously diagonalizable.

So matrices arising from isotropic PDEs do not commute.

Splitting error

$$
q(x, \Delta t)-q^{* *}(x, \Delta t)=\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0)
$$

Combining 2 steps gives:

$$
\begin{aligned}
q^{* *}(x, \Delta t) & =\left(I+\Delta t \mathcal{B}+\frac{1}{2} \Delta t^{2} \mathcal{B}^{2}+\cdots\right)\left(I+\Delta t \mathcal{A}+\frac{1}{2} \Delta t^{2} \mathcal{A}^{2}+\cdots\right) q(x, 0) \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}\left(\mathcal{A}^{2}+2 \mathcal{B} \mathcal{A}+\mathcal{B}^{2}\right)+\cdots\right) q(x, 0) .
\end{aligned}
$$

In true solution operator,

$$
\begin{aligned}
(\mathcal{A}+\mathcal{B})^{2} & =(\mathcal{A}+\mathcal{B})(\mathcal{A}+\mathcal{B}) \\
& =\mathcal{A}^{2}+\mathcal{A B}+\mathcal{B} \mathcal{A}+\mathcal{B}^{2}
\end{aligned}
$$

Strang splitting

Advance the PDE by time step Δt by...

- Time step $\Delta t / 2$ on A-problem,
- Time step Δt on B-problem,
- Time step $\Delta t / 2$ on A-problem.

Formally second order if each solution method is.

$$
\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}}\right) q(x, 0)=O\left(\Delta t^{3}\right)
$$

Strang splitting

Advance the PDE by time step Δt by...

- Time step $\Delta t / 2$ on A-problem,
- Time step Δt on B-problem,
- Time step $\Delta t / 2$ on A-problem.

Formally second order if each solution method is.

$$
\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}}\right) q(x, 0)=O\left(\Delta t^{3}\right) .
$$

In practice often little difference from "first order Godunov splitting" since after N steps,

$$
\begin{gathered}
q^{N}=e^{\frac{1}{2} \Delta t \cdot \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \cdot \mathcal{A}} e^{\frac{1}{2} \Delta t \cdot \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} \ldots \\
e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \cdot \mathcal{A}} q^{0}
\end{gathered}
$$

Strang splitting

Advance the PDE by time step Δt by...

- Time step $\Delta t / 2$ on A-problem,
- Time step Δt on B-problem,
- Time step $\Delta t / 2$ on A-problem.

Formally second order if each solution method is.

$$
\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}}\right) q(x, 0)=O\left(\Delta t^{3}\right) .
$$

In practice often little difference from "first order Godunov splitting" since after N steps,

$$
\begin{aligned}
q^{N}= & e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} \ldots \\
& e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}} q^{0} \\
= & e^{\frac{1}{2} \Delta t \mathcal{A}}\left(e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right)^{N} e^{\frac{1}{2} \Delta t \mathcal{A}} q^{0}
\end{aligned}
$$

Example of splitting error for source term

Advection-reaction equation: $\quad q_{t}+u q_{x}=-\beta(x) q$
Then

$$
\frac{d}{d t} q(X(t), t)=-\beta(X(t)) q(X(t), t) \quad \text { (exponential decay) }
$$

along characteristic $X(t)=x_{0}+u t$.

Example of splitting error for source term

Advection-reaction equation: $\quad q_{t}+u q_{x}=-\beta(x) q$
Then

$$
\frac{d}{d t} q(X(t), t)=-\beta(X(t)) q(X(t), t) \quad \text { (exponential decay) }
$$

along characteristic $X(t)=x_{0}+u t$.

Splitting: Take $\mathcal{A}=-u \partial_{x}$ and $\mathcal{B}=-\beta(x)$.
Then:

$$
\begin{aligned}
\mathcal{A B} q & =u \partial_{x}(\beta(x) q)=u \beta(x) q_{x}+u \beta^{\prime}(x) q \\
\mathcal{B} \mathcal{A} q & =\beta(x) u q_{x}
\end{aligned}
$$

Splitting error unless $\beta(x)=$ constant

Splitting error in advection-reaction (decay)

$q_{t}+u q_{x}=-\beta(x) q \quad$ with $\beta(x)$ decreasing as x increases

Taylor series in 2d for dimensional splitting

Consider $q_{t}+A q_{x}+B q_{y}=0$.

$$
q_{t t}=-A q_{t x}-B q_{t y}=A^{2} q_{x x}+A B q_{y x}+B A q_{x y}+B^{2} q_{y y}
$$

Taylor series in 2d for dimensional splitting

Consider $q_{t}+A q_{x}+B q_{y}=0$.

$$
\begin{aligned}
& q_{t t}=-A q_{t x}-B q_{t y} \quad=A^{2} q_{x x}+A B q_{y x}+B A q_{x y}+B^{2} q_{y y} \\
& q(x, y, t+\Delta t)= q+\Delta t q_{t}+\frac{1}{2} \Delta t^{2} q_{t t}+\cdots \\
&= q-\Delta t\left(A q_{x}+B q_{y}\right) \\
&+\frac{1}{2} \Delta t^{2}\left[A^{2} q_{x x}+A B q_{y x}+B A q_{x y}+B^{2} q_{y y}\right]+\cdots
\end{aligned}
$$

Taylor series in 2d for dimensional splitting

Consider $q_{t}+A q_{x}+B q_{y}=0$.

$$
\begin{aligned}
q_{t t}=-A q_{t x}- & B q_{t y} \quad=A^{2} q_{x x}+A B q_{y x}+B A q_{x y}+B^{2} q_{y y} \\
q(x, y, t+\Delta t)= & q+\Delta t q_{t}+\frac{1}{2} \Delta t^{2} q_{t t}+\cdots \\
= & q-\Delta t\left(A q_{x}+B q_{y}\right) \\
& +\frac{1}{2} \Delta t^{2}\left[A^{2} q_{x x}+A B q_{y x}+B A q_{x y}+B^{2} q_{y y}\right]+\cdots \\
= & q-\Delta t A q_{x}+\frac{1}{2} \Delta t^{2} A^{2} q_{x x} \\
& -\Delta t B q_{y}+\frac{1}{2} \Delta t^{2} B^{2} q_{y y} \\
& +\frac{1}{2} \Delta t^{2}\left[A B q_{y x}+B A q_{x y}\right] \quad \text { cross derivatives }
\end{aligned}
$$

Dimensional splitting of upwind on $q_{t}+A q_{x}+B q_{y}=0$

$$
\begin{aligned}
Q_{i j}^{*} & =Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left[B^{+}\left(Q_{i j}^{n}-Q_{i, j-1}^{n}\right)+B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}\right)\right] \\
Q_{i j}^{n+1} & =Q_{i j}^{*}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i j}^{*}-Q_{i-1, j}^{*}\right)+A^{-}\left(Q_{i+1, j}^{*}-Q_{i j}^{*}\right)\right.
\end{aligned}
$$

Dimensional splitting of upwind on $q_{t}+A q_{x}+B q_{y}=0$

$$
\begin{aligned}
Q_{i j}^{*} & =Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left[B^{+}\left(Q_{i j}^{n}-Q_{i, j-1}^{n}\right)+B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}\right)\right] \\
Q_{i j}^{n+1} & =Q_{i j}^{*}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i j}^{*}-Q_{i-1, j}^{*}\right)+A^{-}\left(Q_{i+1, j}^{*}-Q_{i j}^{*}\right)\right.
\end{aligned}
$$

Consider one term, e.g. the one in blue above

$$
\begin{gathered}
\frac{\Delta t}{\Delta x} A^{+}\left(Q_{i j}^{*}-Q_{i-1, j}^{*}\right)=\frac{\Delta t}{\Delta x} A^{+}\left[Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left(B^{+}\left(Q_{i j}^{n}-Q_{i, j-1}^{n}\right)+B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}\right)\right)\right] \\
\quad-A^{+}\left[Q_{i-1, j}^{n}-\frac{\Delta t}{\Delta x}\left(B^{+}\left(Q_{i-1, j}^{n}-Q_{i-1, j-1}^{n}\right)+B^{-}\left(Q_{i-1, j+1}^{n}-Q_{i-1, j}^{n}\right)\right)\right]
\end{gathered}
$$

Dimensional splitting of upwind on $q_{t}+A q_{x}+B q_{y}=0$

$$
\begin{aligned}
Q_{i j}^{*} & =Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left[B^{+}\left(Q_{i j}^{n}-Q_{i, j-1}^{n}\right)+B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}\right)\right] \\
Q_{i j}^{n+1} & =Q_{i j}^{*}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i j}^{*}-Q_{i-1, j}^{*}\right)+A^{-}\left(Q_{i+1, j}^{*}-Q_{i j}^{*}\right)\right.
\end{aligned}
$$

Consider one term, e.g. the one in blue above

$$
\begin{gathered}
\frac{\Delta t}{\Delta x} A^{+}\left(Q_{i j}^{*}-Q_{i-1, j}^{*}\right)=\frac{\Delta t}{\Delta x} A^{+}\left[Q_{i j}^{n}-\frac{\Delta t}{\Delta x}\left(B^{+}\left(Q_{i j}^{n}-Q_{i, j-1}^{n}\right)+B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}\right)\right)\right] \\
-A^{+}\left[Q_{i-1, j}^{n}-\frac{\Delta t}{\Delta x}\left(B^{+}\left(Q_{i-1, j}^{n}-Q_{i-1, j-1}^{n}\right)+B^{-}\left(Q_{i-1, j+1}^{n}-Q_{i-1, j}^{n}\right)\right)\right]
\end{gathered}
$$

Includes, e.g.:
$\left(\frac{\Delta t}{\Delta x}\right)^{2} A^{+} B^{-}\left(Q_{i, j+1}^{n}-Q_{i j}^{n}-Q_{i-1, j+1}^{n}+Q_{i-1, j}^{n}\right) \approx \frac{\Delta t^{2} \Delta y}{\Delta x \Delta y} A^{+} B^{-} q_{x y}\left(x_{i}, y_{j}\right)$

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

In 2D the unsplit generalization uses

$$
\begin{aligned}
& A B=\left(A^{+}+A^{-}\right)\left(B^{+}+B^{-}\right)=A^{+} B^{+}+A^{+} B^{-}+A^{-} B^{+}+B^{-} A^{-}, \\
& B A=\left(B^{+}+A^{-}\right)\left(B^{+}+A^{-}\right)=B^{+} A^{+}+B^{+} A^{-}+B^{-} A^{+}+B^{-} A^{-} .
\end{aligned}
$$

Upwind splitting of matrix product

In 1D, the upwind method is

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
$$

where

$$
A=R \Lambda R^{-1}=R \Lambda^{+} R^{-1}+R \Lambda^{-} R^{-1}=A^{+}+A^{-}
$$

In 2D the unsplit generalization uses
$A B=\left(A^{+}+A^{-}\right)\left(B^{+}+B^{-}\right)=A^{+} B^{+}+A^{+} B^{-}+A^{-} B^{+}+B^{-} A^{-}$,
$B A=\left(B^{+}+A^{-}\right)\left(B^{+}+A^{-}\right)=B^{+} A^{+}+B^{+} A^{-}+B^{-} A^{+}+B^{-} A^{-}$.

Scalar advection: only one term is nonzero in each product,

$$
\text { e.g. } u>0, v<0 \Longrightarrow u v=v u=u^{+} v^{-}
$$

