Finite Volume Methods for Hyperbolic Problems

Multidimensional Hyperbolic Problems

- Derivation of conservation law
- Hyperbolicity
- Advection
- Gas dynamics and acoustics
- Shear waves

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=\text { net flux across } \partial \Omega
$$

Net flux is determined by integrating the flux of q normal to $\partial \Omega$ around this boundary.

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=\text { net flux across } \partial \Omega
$$

Net flux is determined by integrating the flux of q normal to $\partial \Omega$ around this boundary.
$f(q)=$ flux of q in the x-direction, $g(q)=$ flux of q in the y-direction,
(both per unit length in orthog direction, per unit time),

$$
\vec{f}(q)=(f(q), g(q))
$$

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=\text { net flux across } \partial \Omega
$$

Net flux is determined by integrating the flux of q normal to $\partial \Omega$ around this boundary.
$f(q)=$ flux of q in the x-direction, $g(q)=$ flux of q in the y-direction,
(both per unit length in orthog direction, per unit time),

$$
\vec{f}(q)=(f(q), g(q))
$$

$\vec{n}(s)=\left(n^{x}(s), n^{y}(s)\right)$ outward-pointing unit normal $(x(s), y(s))$.
Flux at $(x(s), y(s))$ in the direction $\vec{n}(s)$:

$$
\vec{n}(s) \cdot \vec{f}(q(x(s), y(s)))=f(q) n^{x}(s)+g(q) n^{y}(s)
$$

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s
$$

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s .
$$

If q is smooth: divergence theorem \Longrightarrow

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) d x d y
$$

where the divergence of \vec{f} is

$$
\vec{\nabla} \cdot \vec{f}(q)=f(q)_{x}+g(q)_{y} .
$$

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s
$$

If q is smooth: divergence theorem \Longrightarrow

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) d x d y
$$

where the divergence of \vec{f} is

$$
\vec{\nabla} \cdot \vec{f}(q)=f(q)_{x}+g(q)_{y}
$$

This leads to

$$
\iint_{\Omega}\left[q_{t}+\vec{\nabla} \cdot \vec{f}(q)\right] d x d y=0
$$

Derivation of conservation law

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) d s .
$$

If q is smooth: divergence theorem \Longrightarrow

$$
\frac{d}{d t} \iint_{\Omega} q(x, y, t) d x d y=-\iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) d x d y
$$

where the divergence of \vec{f} is

$$
\vec{\nabla} \cdot \vec{f}(q)=f(q)_{x}+g(q)_{y} .
$$

This leads to

$$
\iint_{\Omega}\left[q_{t}+\vec{\nabla} \cdot \vec{f}(q)\right] d x d y=0 .
$$

True for any $\Omega \Longrightarrow \quad q_{t}+\vec{\nabla} \cdot \vec{f}(q)=0$. (PDE form)

First order hyperbolic PDE in 2 space dimensions

General conservation law: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Quasi-linear form: $\quad q_{t}+f^{\prime}(q) q_{x}+g^{\prime}(q) q_{y}=0$

First order hyperbolic PDE in 2 space dimensions

General conservation law: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Quasi-linear form: $\quad q_{t}+f^{\prime}(q) q_{x}+g^{\prime}(q) q_{y}=0$
Constant coefficient linear system: $q_{t}+A q_{x}+B q_{y}=0$
where $q \in \mathbb{R}^{m}, f(q)=A q, g(q)=B q$ and $A, B \in \mathbb{R}^{m \times m}$.

First order hyperbolic PDE in 2 space dimensions

General conservation law: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Quasi-linear form: $\quad q_{t}+f^{\prime}(q) q_{x}+g^{\prime}(q) q_{y}=0$
Constant coefficient linear system: $q_{t}+A q_{x}+B q_{y}=0$

$$
\text { where } q \in \mathbb{R}^{m}, f(q)=A q, g(q)=B q \text { and } A, B \in \mathbb{R}^{m \times m} \text {. }
$$

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$

First order hyperbolic PDE in 2 space dimensions

General conservation law: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Quasi-linear form: $\quad q_{t}+f^{\prime}(q) q_{x}+g^{\prime}(q) q_{y}=0$
Constant coefficient linear system: $\quad q_{t}+A q_{x}+B q_{y}=0$

$$
\text { where } q \in \mathbb{R}^{m}, f(q)=A q, g(q)=B q \text { and } A, B \in \mathbb{R}^{m \times m} \text {. }
$$

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$

Hyperbolic if $\cos (\theta) f^{\prime}(q)+\sin (\theta) g^{\prime}(q)$ is diagonalizable with real eigenvalues, for all angles θ.

First order hyperbolic PDE in 2 space dimensions

General conservation law: $\quad q_{t}+f(q)_{x}+g(q)_{y}=0$
Quasi-linear form: $\quad q_{t}+f^{\prime}(q) q_{x}+g^{\prime}(q) q_{y}=0$
Constant coefficient linear system: $q_{t}+A q_{x}+B q_{y}=0$

$$
\text { where } q \in \mathbb{R}^{m}, f(q)=A q, g(q)=B q \text { and } A, B \in \mathbb{R}^{m \times m} \text {. }
$$

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$

Hyperbolic if $\cos (\theta) f^{\prime}(q)+\sin (\theta) g^{\prime}(q)$ is diagonalizable with real eigenvalues, for all angles θ.

Then plane wave propagating in any direction satisfies 1D hyperbolic equation.

Plane wave solutions

Suppose

$$
\begin{aligned}
q(x, y, t) & =\breve{q}(x \cos \theta+y \sin \theta, t) \\
& =\breve{q}(\xi, t) .
\end{aligned}
$$

Plane wave solutions

Suppose

$$
\begin{aligned}
q(x, y, t) & =\breve{q}(x \cos \theta+y \sin \theta, t) \\
& =\breve{q}(\xi, t)
\end{aligned}
$$

Then:

$$
\begin{aligned}
& q_{x}(x, y, t)=\cos \theta \breve{q}_{\xi}(\xi, t) \\
& q_{y}(x, y, t)=\sin \theta \breve{q}_{\xi}(\xi, t)
\end{aligned}
$$

SO

$$
q_{t}+A q_{x}+B q_{y}=\breve{q}_{t}+(A \cos \theta+B \sin \theta) \breve{q}_{\xi}
$$

and the 2 d problem reduces to the 1 d hyperbolic equation

$$
\breve{q}_{t}(\xi, t)+(A \cos \theta+B \sin \theta) \breve{q}_{\xi}(\xi, t)=0 .
$$

Advection in 2 dimensions

Constant coefficient: $\quad q_{t}+u q_{x}+v q_{y}=0$
In this case solution for arbitrary initial data is easy:

$$
q(x, y, t)=q(x-u t, y-v t, 0)
$$

Data simply shifts at constant velocity (u, v) in $x-y$ plane.

Advection in 2 dimensions

Constant coefficient: $\quad q_{t}+u q_{x}+v q_{y}=0$
In this case solution for arbitrary initial data is easy:

$$
q(x, y, t)=q(x-u t, y-v t, 0)
$$

Data simply shifts at constant velocity (u, v) in $x-y$ plane.
Variable coefficient:
Conservation form: $\quad q_{t}+(u(x, y, t) q)_{x}+(v(x, y, t) q)_{y}=0$
Advective form (color eqn): $\quad q_{t}+u(x, y, t) q_{x}+v(x, y, t) q_{y}=0$

Advection in 2 dimensions

Constant coefficient: $\quad q_{t}+u q_{x}+v q_{y}=0$
In this case solution for arbitrary initial data is easy:

$$
q(x, y, t)=q(x-u t, y-v t, 0)
$$

Data simply shifts at constant velocity (u, v) in $x-y$ plane.
Variable coefficient:
Conservation form: $\quad q_{t}+(u(x, y, t) q)_{x}+(v(x, y, t) q)_{y}=0$
Advective form (color eqn): $\quad q_{t}+u(x, y, t) q_{x}+v(x, y, t) q_{y}=0$
Equivalent only if flow is divergence-free (incompressible):

$$
\nabla \cdot \vec{u}=u_{x}(x, y, t)+v_{y}(x, y, t)=0 \quad \forall t \geq 0
$$

Gas dynamics in 2D

$$
\begin{aligned}
& \rho(x, y, t)=\text { mass density } \\
& \rho(x, y, t) u(x, y, t)=x \text {-momentum density } \\
& \rho(x, y, t) v(x, y, t)=y \text {-momentum density }
\end{aligned}
$$

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

For any θ, the matrix $f^{\prime}(q) \cos \theta+g^{\prime}(q) \sin \theta$ has eigenvalues

$$
\breve{u}-c, \breve{u}, \breve{u}+c
$$

where $c=\sqrt{P^{\prime}(\rho)}$ and $\breve{u}=u \cos \theta+v \sin \theta$.

Gas dynamics in 2D

$\rho(x, y, t)=$ mass density
$\rho(x, y, t) u(x, y, t)=x$-momentum density
$\rho(x, y, t) v(x, y, t)=y$-momentum density
If pressure $=P(\rho)$, e.g. isothermal or isentropic:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y} & =0 \\
(\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y} & =0
\end{aligned}
$$

Full Euler equations: 1 more equation for Energy
For any θ, the matrix $f^{\prime}(q) \cos \theta+g^{\prime}(q) \sin \theta$ has eigenvalues

$$
\breve{u}-c, \breve{u}, \breve{u}+c \quad \text { Euler: another wave with } \lambda=\breve{u}
$$

where $c=\sqrt{P^{\prime}(\rho)}$ and $\breve{u}=u \cos \theta+v \sin \theta$.

Solution of plane wave Riemann problem in 2D

Jump in v from v_{ℓ} to v_{r} propagates with the contact discontinuity

Acoustics in 2 dimensions

Linearize about $u=0, v=0$ and $p=$ perturbation in pressure:

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

Note: pressure responds to compression or expansion and so p_{t} is proportional to divergence of velocity.

Second and third equations are $F=m a$.

Acoustics in 2 dimensions

Linearize about $u=0, v=0$ and $p=$ perturbation in pressure:

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

Note: pressure responds to compression or expansion and so p_{t} is proportional to divergence of velocity.

Second and third equations are $F=m a$.
Gives hyperbolic system $q_{t}+A q_{x}+B q_{y}=0$ with
$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$.

Acoustics in 2 dimensions

$$
q=\left[\begin{array}{l}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] .
$$

Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Acoustics in 2 dimensions

$$
q=\left[\begin{array}{l}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] .
$$

Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Eigenvalues: $\lambda^{1}=-c_{0}, \quad \lambda^{2}=0, \quad \lambda^{3}=+c_{0}$
where $c_{0}=\sqrt{K_{0} / \rho_{0}}$ is independent of angle θ.
Isotropic: sound propagates at same speed in any direction.

Acoustics in 2 dimensions

$$
q=\left[\begin{array}{l}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] .
$$

Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Eigenvalues: $\lambda^{1}=-c_{0}, \quad \lambda^{2}=0, \quad \lambda^{3}=+c_{0}$
where $c_{0}=\sqrt{K_{0} / \rho_{0}}$ is independent of angle θ.
Isotropic: sound propagates at same speed in any direction.
Note: Zero wave speed for "shear wave" with variation only in velocity in direction $(-\sin \theta, \cos \theta)$.

Diagonalization 2 dimensions

Can we diagonalize system $q_{t}+A q_{x}+B q_{y}=0$ to decouple?

Diagonalization 2 dimensions

Can we diagonalize system $q_{t}+A q_{x}+B q_{y}=0$ to decouple?
Only if A and B have the same eigenvectors!
If $A=R \Lambda R^{-1}$ and $B=R M R^{-1}$, then let $w=R^{-1} q$ and

$$
w_{t}+\Lambda w_{x}+M w_{y}=0
$$

Diagonalization 2 dimensions

Can we diagonalize system $q_{t}+A q_{x}+B q_{y}=0$ to decouple?
Only if A and B have the same eigenvectors!
If $A=R \Lambda R^{-1}$ and $B=R M R^{-1}$, then let $w=R^{-1} q$ and

$$
w_{t}+\Lambda w_{x}+M w_{y}=0
$$

In this case, decouples into scalar advection equation for each component of w :
$w_{t}^{p}+\lambda^{p} w_{x}^{p}+\mu^{p} w_{y}^{p}=0 \Longrightarrow w^{p}(x, y, t)=w^{p}\left(x-\lambda^{p} t, y-\mu^{p} t, 0\right)$.
Note: In this case information propagates only in a finite number of directions $\left(\lambda^{p}, \mu^{p}\right)$ for $p=1, \ldots, m$.

Diagonalization 2 dimensions

Can we diagonalize system $q_{t}+A q_{x}+B q_{y}=0$ to decouple?
Only if A and B have the same eigenvectors!
If $A=R \Lambda R^{-1}$ and $B=R M R^{-1}$, then let $w=R^{-1} q$ and

$$
w_{t}+\Lambda w_{x}+M w_{y}=0
$$

In this case, decouples into scalar advection equation for each component of w :
$w_{t}^{p}+\lambda^{p} w_{x}^{p}+\mu^{p} w_{y}^{p}=0 \Longrightarrow w^{p}(x, y, t)=w^{p}\left(x-\lambda^{p} t, y-\mu^{p} t, 0\right)$.
Note: In this case information propagates only in a finite number of directions $\left(\lambda^{p}, \mu^{p}\right)$ for $p=1, \ldots, m$.

This is not true for most coupled systems, e.g. acoustics.

Acoustics in 2 dimensions

$$
\begin{aligned}
& p_{t}+K_{0}\left(u_{x}+v_{y}\right)=0 \\
& \rho_{0} u_{t}+p_{x}=0 \\
& \rho_{0} v_{t}+p_{y}=0 \\
& A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u).

Acoustics in 2 dimensions

$$
\begin{aligned}
& p_{t}+K_{0}\left(u_{x}+v_{y}\right)=0 \\
& \rho_{0} u_{t}+p_{x}=0 \\
& \rho_{0} v_{t}+p_{y}=0 \\
& A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u).

$$
B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] \quad R^{y}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Solving $q_{t}+B q_{y}=0$ gives pressure waves in (p, v).

