
Finite Volume Methods for Hyperbolic Problems

Multidimensional Hyperbolic Problems

• Derivation of conservation law
• Hyperbolicity
• Advection
• Gas dynamics and acoustics
• Shear waves
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Derivation of conservation law

d

dt

∫∫
Ω
q(x, y, t) dx dy = net flux across ∂Ω.

Net flux is determined by integrating the flux of q normal to ∂Ω
around this boundary.

f(q) = flux of q in the x-direction,
g(q) = flux of q in the y-direction,

(both per unit length in orthog direction, per unit time),

f⃗(q) = (f(q), g(q))

n⃗(s) = (nx(s), ny(s)) outward-pointing unit normal (x(s), y(s)).

Flux at (x(s), y(s)) in the direction n⃗(s):

n⃗(s) · f⃗(q(x(s), y(s))) = f(q)nx(s) + g(q)ny(s),
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Derivation of conservation law

d

dt

∫∫
Ω
q(x, y, t) dx dy = −

∫
∂Ω

n⃗ · f⃗(q) ds.

If q is smooth: divergence theorem =⇒

d

dt

∫∫
Ω
q(x, y, t) dx dy = −

∫∫
Ω
∇⃗ · f⃗(q) dx dy,

where the divergence of f⃗ is

∇⃗ · f⃗(q) = f(q)x + g(q)y.

This leads to ∫∫
Ω

[
qt + ∇⃗ · f⃗(q)

]
dx dy = 0.

True for any Ω =⇒ qt + ∇⃗ · f⃗(q) = 0. (PDE form)
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First order hyperbolic PDE in 2 space dimensions

General conservation law: qt + f(q)x + g(q)y = 0

Quasi-linear form: qt + f ′(q)qx + g′(q)qy = 0

Constant coefficient linear system: qt +Aqx +Bqy = 0

where q ∈ lRm, f(q) = Aq, g(q) = Bq and A,B ∈ lRm×m.

Advection equation: qt + uqx + vqy = 0

Hyperbolic if cos(θ)f ′(q) + sin(θ)g′(q) is diagonalizable with real
eigenvalues, for all angles θ.

Then plane wave propagating in any direction satisfies 1D
hyperbolic equation.
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Plane wave solutions

Suppose

q(x, y, t) = q̆(x cos θ + y sin θ, t)

= q̆(ξ, t).

Then:

qx(x, y, t) = cos θ q̆ξ(ξ, t)

qy(x, y, t) = sin θ q̆ξ(ξ, t)

so
qt +Aqx +Bqy = q̆t + (A cos θ +B sin θ)q̆ξ

and the 2d problem reduces to the 1d hyperbolic equation

q̆t(ξ, t) + (A cos θ +B sin θ)q̆ξ(ξ, t) = 0.
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Advection in 2 dimensions

Constant coefficient: qt + uqx + vqy = 0

In this case solution for arbitrary initial data is easy:

q(x, y, t) = q(x− ut, y − vt, 0).

Data simply shifts at constant velocity (u, v) in x-y plane.

Variable coefficient:

Conservation form: qt + (u(x, y, t)q)x + (v(x, y, t)q)y = 0

Advective form (color eqn): qt + u(x, y, t)qx + v(x, y, t)qy = 0

Equivalent only if flow is divergence-free (incompressible):

∇ · u⃗ = ux(x, y, t) + vy(x, y, t) = 0 ∀t ≥ 0.
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Gas dynamics in 2D

ρ(x, y, t) = mass density
ρ(x, y, t)u(x, y, t) = x-momentum density
ρ(x, y, t)v(x, y, t) = y-momentum density

If pressure = P (ρ), e.g. isothermal or isentropic:

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Full Euler equations: 1 more equation for Energy

For any θ, the matrix f ′(q) cos θ + g′(q) sin θ has eigenvalues

ŭ− c, ŭ, ŭ+ c

Euler: another wave with λ = ŭ

where c =
√
P ′(ρ) and ŭ = u cos θ + v sin θ.
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Solution of plane wave Riemann problem in 2D

Jump in v from vℓ to vr propagates with the contact discontinuity

R. J. LeVeque, University of Washington FVMHP Fig. 18.1



Acoustics in 2 dimensions

Linearize about u = 0, v = 0 and p = perturbation in pressure:

pt +K0(ux + vy) = 0

ρ0ut + px = 0

ρ0vt + py = 0

Note: pressure responds to compression or expansion and so
pt is proportional to divergence of velocity.

Second and third equations are F = ma.

Gives hyperbolic system qt +Aqx +Bqy = 0 with

q =

 p
u
v

 , A =

 0 K0 0
1/ρ0 0 0
0 0 0

 , B =

 0 0 K0

0 0 0
1/ρ0 0 0

 .
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Acoustics in 2 dimensions

q =

 p
u
v

 , A =

 0 K0 0
1/ρ0 0 0
0 0 0

 , B =

 0 0 K0

0 0 0
1/ρ0 0 0

 .

Plane waves:

A cos θ +B sin θ =

 0 K0 cos θ K0 sin θ
cos θ/ρ0 0 0
sin θ/ρ0 0 0

 .

Eigenvalues: λ1 = −c0, λ2 = 0, λ3 = +c0

where c0 =
√
K0/ρ0 is independent of angle θ.

Isotropic: sound propagates at same speed in any direction.

Note: Zero wave speed for “shear wave” with variation only in
velocity in direction (− sin θ, cos θ).
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Diagonalization 2 dimensions

Can we diagonalize system qt +Aqx +Bqy = 0 to decouple?

Only if A and B have the same eigenvectors!

If A = RΛR−1 and B = RMR−1, then let w = R−1q and

wt + Λwx +Mwy = 0

In this case, decouples into scalar advection equation
for each component of w:

wp
t +λpwp

x+µpwp
y = 0 =⇒ wp(x, y, t) = wp(x−λpt, y−µpt, 0).

Note: In this case information propagates only in a finite
number of directions (λp, µp) for p = 1, . . . , m.

This is not true for most coupled systems, e.g. acoustics.
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Acoustics in 2 dimensions

pt +K0(ux + vy) = 0

ρ0ut + px = 0

ρ0vt + py = 0

A =

 0 K0 0
1/ρ0 0 0
0 0 0

 , Rx =

 −Z0 0 Z0

1 0 1
0 1 0


Solving qt +Aqx = 0 gives pressure waves in (p, u).

B =

 0 0 K0

0 0 0
1/ρ0 0 0

 Ry =

 −Z0 0 Z0

0 1 0
1 0 1


Solving qt +Bqy = 0 gives pressure waves in (p, v).
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