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Approximate Riemann Solvers

For flux-differencing methods: Compute approximation to flux
at interface between cells.

Obtain high resolution via higher-order time stepping with flux
limiter.

For wave-propagation algorithm: Approximate true Riemann
solution by set of waves consisting of finite jumps propagating
at constant speeds.

Can then apply high-resolution wave limiters.

May require entropy fix if a wave should be transonic
rarefaction.

R. J. LeVeque, University of Washington Sec. 15.3



Approximate Riemann Solvers

For flux-differencing methods: Compute approximation to flux
at interface between cells.

Obtain high resolution via higher-order time stepping with flux
limiter.

For wave-propagation algorithm: Approximate true Riemann
solution by set of waves consisting of finite jumps propagating
at constant speeds.

Can then apply high-resolution wave limiters.

May require entropy fix if a wave should be transonic
rarefaction.

R. J. LeVeque, University of Washington Sec. 15.3



Approximate Riemann Solvers

For flux-differencing methods: Compute approximation to flux
at interface between cells.

Obtain high resolution via higher-order time stepping with flux
limiter.

For wave-propagation algorithm: Approximate true Riemann
solution by set of waves consisting of finite jumps propagating
at constant speeds.

Can then apply high-resolution wave limiters.

May require entropy fix if a wave should be transonic
rarefaction.

R. J. LeVeque, University of Washington Sec. 15.3



Wave propagation methods

• Solving Riemann problem gives waves Wp
i−1/2,

Qi −Qi−1 =
∑
p

Wp
i−1/2

and speeds spi−1/2. (Usually approximate solver used.)

• These waves update neighboring cell averages depending
on sign of sp (Godunov’s method) via fluctuations.

• Waves also give (characteristic) decomposition of slopes:

qx(xi−1/2, t) ≈
Qi −Qi−1

∆x
=

1

∆x

∑
p

Wp
i−1/2

• Apply limiter to each wave to obtain W̃p
i−1/2.

• Use limited waves in second-order correction terms.

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14
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Approximate Riemann Solvers

Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate
states.

Harten – Lax – van Leer (HLL): Use only 2 waves with speeds
and intermediate state chosen to be conservative.

Local linearization: Replace qt + f(q)x = 0 by

qt + Âqx = 0, where Â = Â(ql, qr) ≈ f ′(qave).

Eigenvectors give waves. Roe solver =⇒ conservative

R. J. LeVeque, University of Washington Sec. 15.3
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HLL Solver

Harten – Lax – van Leer (1983): Given Qℓ, Qr ∈ lRm for m ≥ 2,
Use only 2 waves with a single interediate state Q∗.

s1 ≈ minimum characteristic speed
s2 ≈ maximum characteristic speed

W1 = Q∗ −Qℓ, W2 = Qr −Q∗

Conservation implies unique value for middle state Q∗:

s1W1 + s2W2 = f(Qr)− f(Qℓ)

=⇒ Q∗ =
f(Qr)− f(Qℓ)− s2Qr + s1Qℓ

s1 − s2
.

Choice of speeds:
• Max and min of expected speeds over entire problem,
• Max and min of eigenvalues of f ′(Qℓ) and f ′(Qr).
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HLL Solver for Shallow Water Equations

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0

Choose e.g.

s1 = uℓ −
√

ghℓ,

s2 = ur +
√
ghr

Then

Q∗ =
f(Qr)− f(Qℓ)− s2Qr + s1Qℓ

s1 − s2

=
1

s1 − s2

[
hrur − hℓuℓ − s2hr + s1hℓ(

hru
2
r +

1
2gh

2
r

)
−
(
hℓu

2
ℓ +

1
2gh

2
ℓ

)
− s2hrur + s1hℓuℓ

]
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HLL solver for shallow water

If we use the shock speeds from the exact two-shock solution,
looks perfect:
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HLL solver for shallow water

Using s1 = λ1(qℓ) and s2 = λ2(qr):
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HLL solver for shallow water

Using different choice of s1, s2:
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HLL solver for shallow water

If ∆Q = Qr −Qℓ is small, then eigenvalues nearly constant.
For smooth flow, HLL is very accurate (for m = 2).

R. J. LeVeque, University of Washington Sec. 15.3



Approximate Riemann Solvers — Local Linearization

Approximate true Riemann solution by set of waves consisting
of finite jumps propagating at constant speeds.

Local linearization:

Replace qt + f(q)x = 0 by

qt + Âqx = 0,

where Â = Â(ql, qr) ≈ f ′(qave).

Then decompose

qr − ql = α1r̂1 + · · ·αmr̂m

to obtain waves Wp = αpr̂p with speeds sp = λ̂p.

R. J. LeVeque, University of Washington Sec. 15.3



Approximate Riemann Solvers

How to use?

One approach: determine Q∗ = state along x/t = 0,

Q∗ = Qi−1 +
∑

p:sp<0

Wp, Fi−1/2 = f(Q∗),

A−∆Q = Fi−1/2 − f(Qi−1), A+∆Q = f(Qi)− Fi−1/2.

Or, sometimes can use:

A−∆Q =
∑

p:sp<0

spWp, A+∆Q =
∑

p:sp>0

spWp.

Conservative only if A−∆Q+A+∆Q = f(Qi)− f(Qi−1).

This holds for Roe solver.

R. J. LeVeque, University of Washington Sec. 15.3
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Roe Solver

Given qℓ, qr, solve qt + Âqx = 0 where Â chosen to satisfy

Â(qr − qℓ) = f(qr)− f(qℓ).

Then:

• Good approximation for weak waves (smooth flow)

• Single shock captured exactly:

f(qr)− f(qℓ) = s(qr − qℓ) =⇒ qr − qℓ is an eigenvector of Â

• Wave-propagation algorithm is conservative since

A−∆Qi−1/2 =
∑

(spi−1/2)
−Wp

i−1/2,

A+∆Qi+1/2 =
∑

(spi+1/2)
+Wp

i+1/2, =⇒

A−∆Qi−1/2 +A+∆Qi−1/2 =
∑

spi−1/2W
p
i−1/2 = Â

∑
Wp

i−1/2

= Â(qr − qℓ) = f(qr)− f(qℓ).
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Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0

Jacobian matrix:

f ′(q) =

[
0 1

gh− u2 2u

]
, λ = u±

√
gh.

R. J. LeVeque, University of Washington FVMHP Sec. 13.1



Roe solver for Shallow Water

Given hℓ, uℓ, hr, ur, define

h̄ =
hℓ + hr

2
, û =

√
hℓuℓ +

√
hrur√

hℓ +
√
hr

Then

Â = Jacobian matrix evaluated at this average state

satisfies
Â(qr − qℓ) = f(qr)− f(qℓ).

• Roe condition is satisfied,
• Isolated shock modeled well,
• Wave propagation algorithm is conservative,
• High resolution methods obtained using corrections with

limited waves.
R. J. LeVeque, University of Washington FVMHP Sec. 15.3.3



Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Eigenvalues of Â = f ′(q̂) are:

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, ĉ =

√
gh̄.

Eigenvectors:

r̂1 =

[
1

û− ĉ

]
, r̂2 =

[
1

û+ ĉ

]
.
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Roe solver for shallow water
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Roe solver for shallow water
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Dam break problem with Roe solver

Note that rarefaction
replaced by jump.

Example from RpJs

Widgets can be used
to experiment.

R. J. LeVeque, University of Washington FVMHP Sec. 15.3.3

http://www.clawpack.org/riemann_book/html/Shallow_water_approximate.html


Nonphyiscal solution with Roe solver

For data that gives
near dry state in Qm,
Roe solver may give
negative depth.

Example from RpJs

R. J. LeVeque, University of Washington FVMHP Sec. 15.3.3

http://www.clawpack.org/riemann_book/html/Shallow_water_approximate.html


HLLE preserves positivity

For data that gives
near dry state in Qm,
Roe solver may give
negative depth.

Choosing s1, s2 as
characteristic speeds
in HLL does much
better in this case.

Example from RpJs

R. J. LeVeque, University of Washington FVMHP Sec. 15.3.3

http://www.clawpack.org/riemann_book/html/Shallow_water_approximate.html


HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water)
that guarantees positivity.

Based on characteristic speeds and Roe averages:

s1i−1/2 = min
p

(min(λp
i , λ̂

p
i−1/2)),

s2i−1/2 = max
p

(max(λp
i+1, λ̂

p
i−1/2)).

where

λp
i is the pth eigenvalue of the Jacobian f ′(Qi),

λ̂p
i−1/2 is the pth eigenvalue using Roe average f ′(Q̂i−1/2)

R. J. LeVeque, University of Washington Sec. 15.3



HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water)
that guarantees positivity.

Can also show that:
• If Riemann solution consists of single shock,

then Roe speed is used =⇒ exact solution in this case.

• No entropy fix needed.
(More diffusive than Roe solver.)

R. J. LeVeque, University of Washington Sec. 15.3
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Harten-Hyman entropy fix

For any wave splitting Qi −Qi−1 =
∑

Wp, with speeds λ̂p.

Define

qkℓ = Qi−1 +

k−1∑
p=1

Wp, qkr = qkℓ +Wk

If λk
ℓ ≡ λk(qkℓ ) < 0 < λk(qkr ) ≡ λk

r then replace Wk by

Wk
ℓ = βWk, speed = λk

ℓ < 0,

Wk
r = (1− β)Wk, speed = λk

r > 0.

Conservation requires:

λk
ℓWk

ℓ + λk
rWk

r = λ̂kWk, =⇒ β =
λk
r − λ̂k

λk
r − λk

ℓ
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Harten-Hyman entropy fix

In wave propagation algorithm, leave Wk alone for
high-resolution correction terms (with limiters).

Similar to entopy fix for scalar problem:

Only need to modify the fluctuations in the “Godunov update”

A−∆Q =
m∑
p=1

(λp)−Wp, A+∆Q =
m∑
p=1

(λp)+Wp,

Usually (λp)− = min(λp, 0), (λp)+ = max(λp, 0).

Modify for field k:

(λk)− = βλk
ℓ < 0, (λk)+ = (1− β)λk

r > 0,

so that

(λk)−Wk = λk
ℓβWk (λk)+Wk = λk

r (1− β)Wk

R. J. LeVeque, University of Washington Sec. 15.3
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