
Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods

for Nonlinear Systems

• Wave propagation method for systems
• High-resolution methods using wave limiters
• Example for shallow water equations
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds spi−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at tn+1,

2. Compute fluxes at interfaces and flux-difference:

Qn+1
i = Qn

i − ∆t

∆x
[Fn

i+1/2 − Fn
i−1/2]

3. Update cell averages by contributions from all waves entering cell:

Qn+1
i = Qn

i − ∆t

∆x
[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =

m∑
i=1

(spi−1/2)
±Wp

i−1/2.
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Approximate Riemann solver

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

For scalar advection m = 1, only one wave.
Wi−1/2 = ∆Qi−1/2 = Qi −Qi−1 and si−1/2 = u,

A−∆Qi−1/2 = s−i−1/2Wi−1/2,

A+∆Qi−1/2 = s+i−1/2Wi−1/2.

For scalar nonlinear: Use same formulas with

Wi−1/2 = ∆Qi−1/2, si−1/2 = (f(Qi)− f(Qi−1))/(Qi −Qi−1).

This is exact solution for shock.

Replacing rarefaction with shock: also exact (after averaging),
except in case of transonic rarefaction.
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Wave limiters for scalar nonlinear

For qt + f(q)x = 0 , just one wave: Wi−1/2 = Qn
i −Qn

i−1.

Godunov:

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

“Lax-Wendroff”:

Qn+1
i = Qn

i −
∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
−∆t

∆x
(F̃i+1/2−F̃i−1/2)

F̃i−1/2 =
1

2

(
1−

∣∣∣∣si−1/2∆t

∆x

∣∣∣∣) |si−1/2|Wi−1/2

High-resolution method:

F̃i−1/2 =
1

2

(
1−

∣∣∣∣si−1/2∆t

∆x

∣∣∣∣) |si−1/2|W̃i−1/2

W̃i−1/2 = ϕ(θ)Wi−1/2, where θi−1/2 = WI−1/2/Wi−1/2.
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Extension to constant coefficient linear systems

Approach 1: Diagonalize the system to

qt +Aqx =⇒ wt + Λwx = 0, q = Rw

Wn = R−1Qn, Apply scalar algorithm, Set Qn+1 = RWn+1.

Approach 2:

Solve the linear Riemann problem to decompose Qn
i −Qn

i−1

into waves Wp
i−1/2 = αp

i−1/2r
p.

Apply a wave limiter to each wave (comparing scalars αp
i−1/2).

For constant-coefficient linear problems these are equivalent.

For nonlinear problems Approach 2 generalizes!

Note: Limiters are applied to waves or characteristic
components, not to original variables.

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14
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Wave-propagation form of high-resolution method

Qn+1
i = Qn

i − ∆t

∆x

 m∑
p=1

(spi−1/2)
+Wp

i−1/2 +

m∑
p=1

(spi+1/2)
−Wp

i+1/2


− ∆t

∆x
(F̃i+1/2 − F̃i−1/2)

Correction flux:

F̃i−1/2 =
1

2

Mw∑
p=1

|spi−1/2|
(
1− ∆t

∆x
|spi−1/2|

)
W̃p

i−1/2

where W̃p
i−1/2 is a limited version of Wp

i−1/2 to avoid oscillations.

(Unlimited W̃p = Wp =⇒ Lax-Wendroff for a linear system.)
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Approximate Riemann Solvers

Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate
states.

Harten – Lax – van Leer (HLL): Use only 2 waves with speeds
and intermediate state chosen to be conservative.

Local linearization: Replace qt + f(q)x = 0 by

qt + Âqx = 0, where Â = Â(ql, qr) ≈ f ′(qave).

Eigenvectors give waves. Roe solver =⇒ conservative

R. J. LeVeque, University of Washington Sec. 15.3
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Wave limiters for linear system

Qi −Qi−1 is split into waves Wp
i−1/2 = αp

i−1/2r
p ∈ lRm.

For constant coefficient linear system: rp is constant vector,
Only the scalar αp varies.

Replace by W̃p
i−1/2 = Φ(θpi−1/2)W

p
i−1/2 where

θpi−1/2 =
αp
I−1/2

αp
i−1/2

where

I =

{
i− 1 if spi−1/2 > 0

i+ 1 if spi−1/2 < 0.

In the scalar case this reduces to

θ1i−1/2 =
W1

I−1/2

W1
i−1/2

=
QI −QI−1

Qi −Qi−1

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14



Wave limiters for system
Qi −Qi−1 is split into waves Wp

i−1/2 ∈ lRm with speeds spi−1/2.
Upwind cell in family p:

I =

{
i− 1 if spi−1/2 > 0

i+ 1 if spi−1/2 < 0.

To compare Wp
i−1/2 to Wp

I−1/2 we want to reduce to a scalar
θpi−1/2 ≈ 1 where the solution is smooth,
negative near extreme points of this wave component.

Use projection of Wp
I−1/2 onto Wp

i−1/2:(
Wp

i−1/2 · W
p
I−1/2

Wp
i−1/2 · W

p
i−1/2

)
Wp

i−1/2 compared to Wp
i−1/2

Ratio of coefficients: θpi−1/2 =
Wp

i−1/2 · W
p
I−1/2

Wp
i−1/2 · W

p
i−1/2

Replace Wp
i−1/2 by W̃p

i−1/2 = ϕ(θpi−1/2)W
p
i−1/2. (ϕ(θ) = limiter)

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 9.13
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Wave limiters for system with eigendecomposition

Qi −Qi−1 is split into waves Wp
i−1/2 = αp

i−1/2r
p
i−1/2 ∈ lRm.

Replace by W̃p
i−1/2 = ϕ(θpi−1/2)W

p
i−1/2 where

constant-coefficient:

θpi−1/2 =
Wp

i−1/2 · W
p
I−1/2

Wp
i−1/2 · W

p
i−1/2

=
αp
I−1/2

αp
i−1/2

if rpi−1/2 = rpI−1/2

where

I =

{
i− 1 if spi−1/2 > 0

i+ 1 if spi−1/2 < 0.

Scalar case: this reduces to

θ1i−1/2 =
W1

I−1/2

W1
i−1/2

=
QI −QI−1

Qi −Qi−1
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Limiters – shallow water equation

Note that speeds are s = ∆(hu)/∆(h) = slope between states.
R. J. LeVeque, University of Washington FVMHP Sec. 15.4, 9.13



Wave propagation methods

• Solving Riemann problem gives waves Wp
i−1/2,

Qi −Qi−1 =
∑
p

Wp
i−1/2

and speeds spi−1/2. (Usually approximate solver used.)

• These waves update neighboring cell averages depending
on sign of sp (Godunov’s method) via fluctuations.

• Waves also give (characteristic) decomposition of slopes:

qx(xi−1/2, t) ≈
Qi −Qi−1

∆x
=

1

∆x

∑
p

Wp
i−1/2

• Apply limiter to each wave to obtain W̃p
i−1/2.

• Use limited waves in second-order correction terms.

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14
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∑
p

Wp
i−1/2

and speeds spi−1/2. (Usually approximate solver used.)

• These waves update neighboring cell averages depending
on sign of sp (Godunov’s method) via fluctuations.

• Waves also give (characteristic) decomposition of slopes:

qx(xi−1/2, t) ≈
Qi −Qi−1

∆x
=

1

∆x

∑
p

Wp
i−1/2

• Apply limiter to each wave to obtain W̃p
i−1/2.

• Use limited waves in second-order correction terms.
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