Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods
for Nonlinear Systems

¢ Wave propagation method for systems
¢ High-resolution methods using wave limiters
e Example for shallow water equations

R. J. LeVeque, University of Washington FVMHP Chap. 15
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1. Solve Riemann problems at all interfaces, yielding waves
sz—1/2 and speeds Sp—1/2! forp=1,2, ..., m.

i

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for ¢; + f(q), =0
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Then either: Qr

1. Compute new cell averages by integrating over cell at ¢, 1,
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Then either: &

1. Compute new cell averages by integrating over cell at ¢,,41,

2. Compute fluxes at interfaces and flux-difference:

Qiﬂ =Q7 - Im[ i+1/2 Fi—l/Q]
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Then either: &

1. Compute new cell averages by integrating over cell at ¢,,41,

2. Compute fluxes at interfaces and flux-difference:

Qiﬂ =Q7 - Ix[ i+1/2 Fi—l/Q]

3. Update cell averages by contributions from all waves entering cell:

. . A -
Q= QF = T ATAQi 12 + ATAQi )]
where A*AQ;_1 2 = Z(Sf_l/Q)iWip—l/Q'
i=1
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Approximate Riemann solver

At
Q?H Qn— [A AQi_1/2 +A” AQerl/Q]'

For scalar advection m = 1, only one wave.
Wis1/2 = AQi_1/2 = Qi — Qi—1 and s,_y /5 = u,

ATAQi—172 = 8,1 sWi-1/2,
A+AQ¢—1/2 = Sj_l/ZWi—uz-
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Approximate Riemann solver

At
Q?H Qn— [A AQi_1/2 +A” AQZJrl/Q]

For scalar advection m = 1, only one wave.
Wis1/2 = AQi_1/2 = Qi — Qi—1 and s,_y /5 = u,

ATAQi—172 = 8,1 sWi-1/2,
A+AQ¢—1/2 = Sj_l/gwi—l/Q-

For scalar nonlinear: Use same formulas with

Wisiy2 = AQi—1/2, si—12 = (f(Qi) — f(Qi-1))/(Qi — Qi—1).
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Approximate Riemann solver

At
QI = Qn— [A AQi_1/2 +A” AQZ+1/2]

For scalar advection m = 1, only one wave.
Wis1/2 = AQi_1/2 = Qi — Qi—1 and s,_y /5 = u,

ATAQi—172 = 8,1 sWi-1/2,
A+AQ¢—1/2 = Sj_l/gwi—l/Q-

For scalar nonlinear: Use same formulas with

Wisiy2 = AQi—1/2, si—12 = (f(Qi) — f(Qi-1))/(Qi — Qi—1).

This is exact solution for shock.
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Approximate Riemann solver

At
Q?H Qn— [A AQi_1/2 +A” AQZJrl/Q]

For scalar advection m = 1, only one wave.
Wis1/2 = AQi_1/2 = Qi — Qi—1 and s,_y /5 = u,
ATAQi—172 = 8,1 sWi-1/2,
A+AQ¢—1/2 = Sj_l/gwi—l/Q-

For scalar nonlinear: Use same formulas with
Wisiy2 = AQi—1/2, si—12 = (f(Qi) — f(Qi-1))/(Qi — Qi—1).
This is exact solution for shock.

Replacing rarefaction with shock: also exact (after averaging),
except in case of transonic rarefaction.
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Wave limiters for scalar nonlinear
For ¢: + f(¢)- =0 , justone wave: W;_,» = Qf — Q4

Godunov:

At
Qn+1 Qn— [«4 AQi_1/2 +A” AQ’LJrl/Q]
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Wave limiters for scalar nonlinear
For ¢: + f(¢)- =0 , justone wave: W;_,» = Qf — Q4

Godunov:

At
QnH Qn— [«4 AQi_1/2 +A” AQ’LJrl/Q]

“Lax- Wendroff”'

n n_ At
QI =Qp— [A AQ;1j2+ ATAQi4 /0] - s —(Fip12—Fi_1)2)

Si—1/2At
A/xD |Si—1/2|Wi—1/2

~ 1
Ficip =3 <1 -
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Wave limiters for scalar nonlinear
For ¢: + f(¢)- =0 , justone wave: W;_,» = Qf — Q4

Godunov:

At
QnH Qn— [«4 AQi_1/2 +A” AQ’LJrl/Q]

“Lax- Wendroff”'

n n_ At
QI =Qp— [A AQ;1j2+ ATAQi4 /0] - s —(Fip12—Fi_1)2)

~ 1 Si—l/QAt
Fi1)2= 3 <1 o |8i—1/2IWi—1/2

~ 1 Si—1 2At —~
= <1 - ﬁ > |si—1/2IWi—1/2

%71/2 = @) Wi_1/2, where 0,15 = Wr_1,2/W;_1 /5.
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Extension to constant coefficient linear systems
Approach 1: Diagonalize the system to
q + Aqr = wy+Aw, =0, ¢= Rw

W" = R~'Q", Apply scalar algorithm, Set Q"' = RW"+!,

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14



Extension to constant coefficient linear systems

Approach 1: Diagonalize the system to
q + Aqr = wy+Aw, =0, ¢= Rw

W" = R~'Q", Apply scalar algorithm, Set Q"' = RW"+!,
Approach 2:
Solve the linear Riemann problem to decompose Q7" — Q7" ,

H P _ P D
into waves W, 12 = Q197"

11—

Apply a wave limiter to each wave (comparing scalars a! | /2).
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Extension to constant coefficient linear systems

Approach 1: Diagonalize the system to

g+ Agy = wi + Aw, =0, ¢=Ruw
W" = R~'Q", Apply scalar algorithm, Set Q"' = RW"+!,
Approach 2:

Solve the linear Riemann problem to decompose Q7' — Q_;
i P _ P D
into waves Wi71/2 =g o1t

- . »
Apply a wave limiter to each wave (comparing scalars o, /2).
For constant-coefficient linear problems these are equivalent.

For nonlinear problems Approach 2 generalizes!
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Extension to constant coefficient linear systems
Approach 1: Diagonalize the system to
@+ Agy = wi+Aw, =0, ¢= Ruw
W" = R~'Q", Apply scalar algorithm, Set Q"' = RW"+!,
Approach 2:

Solve the linear Riemann problem to decompose Q7' — Q_;
i P _ P D
into waves Wi71/2 =g o1t

- . »
Apply a wave limiter to each wave (comparing scalars o, /2).
For constant-coefficient linear problems these are equivalent.
For nonlinear problems Approach 2 generalizes!

Note: Limiters are applied to waves or characteristic
components, not to original variables.
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Wave-propagation form of high-resolution method

m

Z Si— 1/2 1/2+Z z+1/2 z+l/2]

p=1

At ~ -
- E(FiJrl/Z —Fi_1)2)

1
Q= Q-

Correction flux:

Fi 1275 Z|Sz 1/2|< ‘Sz 1/2|> WZP—UQ

where Wp is a limited version of W? | . to avoid oscillations.

—-1/2 -1/2

(Unlimited WP = WP = Lax-Wendroff for a linear system.)
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Approximate Riemann Solvers

Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

R. J. LeVeque, University of Washington Sec. 15.3



Approximate Riemann Solvers
Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate
states.
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Approximate Riemann Solvers

Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate
states.

Harten — Lax — van Leer (HLL): Use only 2 waves with speeds
and intermediate state chosen to be conservative.
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Approximate Riemann Solvers

Some approaches to approximating Riemann solution
by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use
only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate
states.

Harten — Lax — van Leer (HLL): Use only 2 waves with speeds
and intermediate state chosen to be conservative.

Local linearization: Replace ¢; + f(g). = 0 by

g+ Ag, =0, where A = A(q, q) = f'(qave)-

Eigenvectors give waves. Roe solver — conservative

R. J. LeVeque, University of Washington Sec. 15.3



Wave limiters for linear system
Qi — Qi1 is split into waves WY 1= 2771/2740 e R™.

For constant coefficient linear system: r? is constant vector,
Only the scalar o? varies.

Replace by VNVf_/ ®(67_, )W, where
o 1/2
0y 12~ P
Qi _1/2

where

I 7—1 if s _1/2 >0
141 Ifs 1/2<O.

In the scalar case this reduces to

ol Wr_ /2 _ Qr—Qra
" 1/2 W,Ll 1/2 QZ - Qi—l
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Wave limiters for system

Qi — Qi—1 is splitinto waves W |, € R™ with speeds s, /,.
Upwind cell in family p:

I i—1 ifsy >0

i+1  if sf_1/2<0.

To compare Wy, ,, to W7, ,, we want to reduce to a scalar
07, ~ 1 where the solution is smooth,

negative near extreme points of this wave component.

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 9.13



Wave limiters for system

Qi — Qi—1 is splitinto waves W |, € R™ with speeds s, /,.
Upwind cell in family p:

I i—1 ifsy >0

i+1  if sf_1/2<0.

To compare Wy, ,, to W7, ,, we want to reduce to a scalar
07, ~ 1 where the solution is smooth,

negative near extreme points of this wave component.

Use projection of W, ,, onto W7 |

WP WP
i—1/2 1-1/2 p P
o | Wi comparedto W
<WP—1/2 ’ sz—l/Q 1z 1z

(3
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Wave limiters for system

Qi — Qi—1 is splitinto waves W |, € R™ with speeds s, /,.
Upwind cell in family p:

B EET E AP
i+1  if sf_1/2<0.

p P
To compare W}, ,, to W _, ,, we want to reduce to a scalar

07, ~ 1 where the solution is smooth,

negative near extreme points of this wave component.

Use projection of W, ,, onto W7 |

WP o WY
i—1/2 " "V1-1/2 » P
o | Wi comparedto W
<WP—1/2 ’ sz—l/Q 12 12

(3

2

> WP—l/Q ’ WP—1/2

K3 K2

WP WP
Ratio of coefficients: 95’71/ “1/z I-1/2
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Wave limiters for system

Qi — Qi—1 is splitinto waves W |, € R™ with speeds s, /,.
Upwind cell in family p:

B EET E AP
i+1  if sf_1/2<0.

p P
To compare W}, ,, to W _, ,, we want to reduce to a scalar

07, ~ 1 where the solution is smooth,

negative near extreme points of this wave component.

Use projection of W, ,, onto W7 |

WP o WY
i—1/2 " "V1-1/2 » P
o | Wi comparedto W
<WP—1/2 ’ sz—l/Q 12 12

(3

2

> WP—l/Q ’ WP—1/2

K3 K2

WP WP
Ratio of coefficients: 95’71/ “1/z I-1/2

Replace WY, , by WY, , = ¢(07_, ,)VP_, .. (6(6) = limiter)
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Wave limiters for system with eigendecomposition
Q; — Q;_1 is split into waves WP71/2 = 0‘?71/27“511/2 e R™.

1

Replace by sz—lﬂ = ¢(9f_1/2)wf_1/2 where

gP Wf—1/2 ' W?—1/2
’ WZP—1 /2

=1z Wip—l/Q

where
i1 iy >0
i+1 if 37?71/2<0.

)
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Wave limiters for system with eigendecomposition

Qi — Qi-1 is splitinto waves W} | , = af | 17 |, € R™.

Replace by sz—lﬂ = ¢(9f_1/2)wf_1/2 where
constant-coefficient:

W- 1 . W «
i—1/2 " "Vi-1/2 1-1/2
07 =P if 7’51—1/2 = T?—1/2

=1z Wip—l/Q ' sz—uz Q12

where
i1 iy >0
i+1 if sf71/2<0.

R. J. LeVeque, University of Washington FVMHP Sec. 6.13, 6.14



Wave limiters for system with eigendecomposition

Qi — Qi-1 is splitinto waves W} | , = af | 17 |, € R™.

Replace by sz—lﬂ = ¢(9f_1/2)wf_1/2 where
constant-coefficient:

W1'”—1/2 : W?—1/2 B aII)—l/Q

o = — = ifrd =7
12 Wip—l/Q : sz—uz af—l/Q V2 -1
where

i1 iy >0
i+1 if 3?—1/2 < 0.

Scalar case: this reduces to

o W}—1/2 _Qr—Qr
i-1/2 W11,1/2 QZ - Qi—l
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Limiters — shallow water equation

Hugoniot loci for 1-waves (blue) and 2-waves (red)

hu = momentum

1 Qi1

T T T T
0 1 2 3 1

h= (}epth

Note that speeds are s = A(hu)/A(h) = slope between states.
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Wave propagation methods

¢ Solving Riemann problem gives waves Wi'p_1/2’

Qi - Qi—l = ZW’LP—I/Q
p

and speeds Sf—l/z- (Usually approximate solver used.)

e These waves update neighboring cell averages depending
on sign of s? (Godunov’s method) via fluctuations.
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Wave propagation methods

¢ Solving Riemann problem gives waves Wi'p_1/2’

Qi - Qi—l - ZW’LP—I/Q
p
and speeds Sf—l/z- (Usually approximate solver used.)

e These waves update neighboring cell averages depending
on sign of s? (Godunov’s method) via fluctuations.

e Waves also give (characteristic) decomposition of slopes:

Qi — Qi1 1
Qe (Ti_1/2,t) = T Ar szwf—yz
p
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Wave propagation methods

P
e Solving Riemann problem gives waves W, 120

Qi - Qi—l = ZW’LP—I/Q
p

and speeds s (Usually approximate solver used.)

—1/2°

These waves update neighboring cell averages depending
on sign of s? (Godunov’s method) via fluctuations.

Waves also give (characteristic) decomposition of slopes:

Qi — Qi
Qe (Tio1)2,t) & 71 N Z —1/2

Azx

Apply limiter to each wave to obtain W 100

Use limited waves in second-order correction terms.
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