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• The Euler equations
• Conservative vs. primitive variables
• Contact discontinuities
• Projecting phase space to p–u plane
• Hugoniot loci and integral curves
• Solving the Riemann problem
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Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

Same as shallow water if P (ρ) = 1
2gρ

2 (with ρ ≡ h).

Isothermal: P (ρ) = a2ρ (since T proportional to p/ρ).

Isentropic: P (ρ) = κ̂ργ (γ ≈ 1.4 for air)

Jacobian matrix:

f ′(q) =

[
0 1

P ′(ρ)− u2 2u

]
, λ = u±

√
P ′(ρ).
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Gas dynamics variables

ρ = density
u⃗ = velocity (just u in 1D, [u, v] in 2D, [u, v, w] in 3D)
hu⃗ = momentum
p = pressure
e = internal energy (vibration, heat) = p

(γ−1)ρ for polytropic
1
2ρ∥u⃗∥

2
2 = kinetic energy

E = total energy
cp, cv = specific heat at constant pressure or volume
T = temperature = e/cv = p

cv(γ−1)ρ for polytropic

γ = cp/cv = adiabatic exponent for polytropic, 1 < γ ≤ 5/3

h = e+ p/ρ = specific enthalpy
H = E+p

ρ = h+ 1
2u

2 = total specific enthalpy
s = cv log(p/ρ

γ) + const = specific entropy for polytropic
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Equations of state

Polytropic: E = e+ 1
2ρu

2 and e = p
(γ−1)ρ , so

p = ρe(γ − 1)

= (γ − 1)

(
E − 1

2
ρu2
)

= P (ρ, ρu,E)

Isothermal: T = p
cv(γ−1)ρ for polytropic, so

p = Tcv(γ − 1)ρ ≡ a2ρ = P (ρ)

Isentropic: s = cv log(p/ρ
γ) + const

p = ĉργ = P (ρ)
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Euler equations of gas dynamics

Conservation of mass, momentum, energy: qt + f(q)x = 0 with

q =

 ρ
ρu
E

 , f(q) =

 ρu
ρu2 + p
u(E + p)


where E = ρe+ 1

2ρu
2

Equation of state: p = pressure = p(ρ,E)

Ideal gas, polytropic EOS: p = ρe(γ − 1) = (γ − 1)
(
E − 1

2ρu
2
)

γ ≈ 7/5 = 1.4 for air, γ = 5/3 for monatomic gas

The Jacobian f ′(q) has eigenvalues u− c, u, u+ c where

c =

√
dp

dρ

∣∣∣∣∣
at constant entropy

=

√
γp

ρ
for polytropic
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Euler equations in primitive variables

Can rewrite the conservation laws in quasilinear form: ρ
u
p


t

+

 u ρ 0
0 u 1/ρ
0 γp u

 ρ
u
p


x

= 0.

Eigenvalues and eigenvectors:

λ1 = u− c, λ2 = u, λ3 = u+ c,

r1 =

 −ρ/c
1

−ρc

 , r2 =

 1
0
0

 , r3 =

 ρ/c
1
ρc

 ,
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Euler equations in primitive variables

∇λ1 =

 −∂c/∂ρ
1

−∂c/∂p

 =

 c/2ρ
1

−c/2p

 =⇒ ∇λ1 · r1 = 1
2(γ + 1),

∇λ2 =

 0
1
0

 =⇒ ∇λ2 · r2 = 0,

∇λ3 =

 ∂c/∂ρ
1

∂c/∂p

 =

 −c/2ρ
1

c/2p

 =⇒ ∇λ3 · r3 = 1
2(γ + 1).

1-waves and 3-waves are genuinely nonlinear,
2-waves are linearly degenerate (contact discontinuity).

R. J. LeVeque, University of Washington FVMHP Sec. 14.7



Euler equations in primitive variables

∇λ1 =

 −∂c/∂ρ
1

−∂c/∂p

 =

 c/2ρ
1

−c/2p

 =⇒ ∇λ1 · r1 = 1
2(γ + 1),

∇λ2 =

 0
1
0

 =⇒ ∇λ2 · r2 = 0,

∇λ3 =

 ∂c/∂ρ
1

∂c/∂p

 =

 −c/2ρ
1

c/2p

 =⇒ ∇λ3 · r3 = 1
2(γ + 1).

1-waves and 3-waves are genuinely nonlinear,
2-waves are linearly degenerate (contact discontinuity).

R. J. LeVeque, University of Washington FVMHP Sec. 14.7



Contact discontinuities

Consider Riemann problem for conservative variables:

q =

 ρ
ρu
E

 , f(q) =

 ρu
ρu2 + p
u(E + p)


Suppose pℓ = pr and uℓ = ur ≡ u,

Then the Rankine-Hugoniot condition s∆q = ∆f becomes:

s

 ∆ρ
u∆ρ
∆E

 =

 u∆ρ
u2∆ρ
u∆E


Satisfied with s = u, for any jump in density ∆ρ.

And for any equation of state.
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Euler in conservation form

Jacobian:

f ′(q) =

 0 1 0
1
2(γ − 3)u2 (3− γ)u (γ − 1)

1
2(γ − 1)u3 − uH H − (γ − 1)u2 γu

 ,

H =
E + p

ρ
= h+

1

2
u2 = total specific enthalpy

Eigenvalues and eigenvectors:

λ1 = u− c, λ2 = u, λ3 = u+ c,

r1 =

 1
u− c
H − uc

 , r2 =

 1
u

1
2u

2

 , r3 =

 1
u+ c
H + uc

 .
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Riemann invariants for Euler (polytropic gas)

1-Riemann invariants: s, u+
2

γ − 1

√
γp

ρ
,

2-Riemann invariants: u, p,

3-Riemann invariants: s, u− 2

γ − 1

√
γp

ρ
.

Note: The entropy s is constant through any (smooth) simple
1-wave or 3-wave.

In particular, linear acoustic waves are isentropic.

Note: u and p constant across in any simple 2-wave,
and across a contact discontinuity (check R-H condition).

Since λ2 = u, this says characteristics are parallel
(the field is linearly degenerate)
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Riemann Problem for Euler equations

Initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water
equations.

R. J. LeVeque, University of Washington FVMHP Sec. 14.11



Riemann Problem for Euler equations

Initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water
equations.

R. J. LeVeque, University of Washington FVMHP Sec. 14.11



Riemann Problem for Euler equations

Initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water
equations.

R. J. LeVeque, University of Washington FVMHP Sec. 14.11



Riemann Problem for Euler equations

Initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water
equations.

R. J. LeVeque, University of Washington FVMHP Sec. 14.11



Riemann Problem for Euler equations

Initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water
equations.

R. J. LeVeque, University of Washington FVMHP Sec. 14.11



Riemann Problem for gas dynamics

Waves propagating in x–t space:

Similarity solution
(function of x/t alone)

In primitive variables:

q∗ℓ =

 ρ∗l
p∗

u∗



q∗r =

 ρ∗r
p∗

u∗


Only ρ jumps across 2-wave

Waves can be approximated by discontinuties:
High-resolution wave-propagation methods
Approximate Riemann solvers

R. J. LeVeque, University of Washington FVMHP Sec. 14.11
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Riemann Problem for gas dynamics

Any jump in ρ is allowed across contact discontinuity

General Riemann solver:

• Project 3D phase space to p–u plane,
Hugoniot loci and integral curves can be written as
u = ϕ(p), (and ρ = ρ(p))

• Find intersection
(p∗, u∗),

• Compute ρ∗ℓ and ρ∗r .
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Integral curves for gas dynamics

In 1-wave, we know the Riemann invariants are constant,

s = cv log(p/ρ
γ) and u+

2

γ − 1
c with c =

√
γp

ρ

Given values in left state qℓ, can then compute integral curve as:

u = uℓ +

(
2 cℓ
γ − 1

)(
1− (p/pℓ)

(γ−1)/(2γ)
)
≡ ϕℓ(p) for p ≤ pℓ.

Note that ρ does not appear!
Since s is constant, ρ = (p/pℓ)

1/γρℓ.

Can find similar expression for 3-wave integral curve,

u = ur +

(
2 cr
γ − 1

)(
1− (p/pr)

(γ−1)/(2γ)
)
≡ ϕr(p) for p ≤ pr.
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Hugoniot locus for gas dynamics

From Rankine-Hugoniot conditions, can deduce that (1-wave):

u = uℓ +
2 cℓ√

2γ(γ − 1)

(
1− p/pℓ√
1 + βp/pℓ

)
≡ ϕℓ(p) for p ≥ pℓ.

where β = (γ + 1)/(γ − 1).

Again note that ρ does not appear!

For any p on this Hugoniot locus, we also find that:

ρ =

(
1 + βp/pℓ
p/pℓ + β

)
ρℓ.

Similar expression for 3-wave, u = ϕr(p) for p ≥ pr.
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Euler equations phase plane

Note these are curves in (p, u, ρ) space projected to plane.
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Euler equations phase plane

Note these are curves in (p, u, ρ) space projected to plane.
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Solving the Euler Riemann problem

Solve ϕl(p)− ϕr(p) = 0 for pm

um = ϕl(pm) = ϕr(pm)

ρmℓ = ρ(pm) across 1-wave

ρmr = ρ(pm) across 2-wave

Red curve is displaced from blue
in ρ direction (into page).

blue = integral curve, red = Hugoniot locus, dashed = nonphysical
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Solving the Euler Riemann problem
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Euler equations at atmospheric conditions

With parameters for air at T ∗ = 20◦ C, Density ρ∗ = 1.225 kg/m3.
Pressure p∗ = 101, 325 Pa = 1 atm, Speed of sound: c∗ = 340.3 m/s

from ≈ 0.5 atm to 2 atm
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Euler equations at atmospheric conditions

With parameters for air at T ∗ = 20◦ C, Density ρ∗ = 1.225 kg/m3.
Pressure p∗ = 101, 325 Pa, Speed of sound: c∗ = 340.3 m/s

from ≈ 0.1 atm to 10 atm
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Shallow water equations phase plane

In the h–hu phase plane (the conserved quantities):

R. J. LeVeque, University of Washington FVMHP Chap. 13



Shallow water equations phase plane

Replot in the h–u phase plane (primitive variables):
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