Finite Volume Methods for Hyperbolic Problems

Gas Dynamics and Euler Equations

- The Euler equations
- Conservative vs. primitive variables
- Contact discontinuities
- Projecting phase space to $p-u$ plane
- Hugoniot loci and integral curves
- Solving the Riemann problem

Riemann Problems and Jupyter Solutions

Theory and Approximate Solvers for Hyperbolic PDEs
David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

In particular see: Euler.ipynb

Compressible gas dynamics

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Equation of state:

$$
p=P(\rho)
$$

Same as shallow water if $P(\rho)=\frac{1}{2} g \rho^{2}$ (with $\rho \equiv h$). Isothermal: $P(\rho)=a^{2} \rho \quad$ (since T proportional to p / ρ). Isentropic: $P(\rho)=\hat{\kappa} \rho^{\gamma} \quad(\gamma \approx 1.4$ for air $)$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
0 & 1 \\
P^{\prime}(\rho)-u^{2} & 2 u
\end{array}\right], \quad \lambda=u \pm \sqrt{P^{\prime}(\rho)}
$$

Gas dynamics variables

$\rho=$ density
$\vec{u}=$ velocity (just u in 1D, $[u, v]$ in 2D, $[u, v, w]$ in 3D)
$h \vec{u}=$ momentum
$p=$ pressure
$e=$ internal energy (vibration, heat) $=\frac{p}{(\gamma-1) \rho}$ for polytropic
$\frac{1}{2} \rho\|\vec{u}\|_{2}^{2}=$ kinetic energy
$E=$ total energy
$c_{p}, c_{v}=$ specific heat at constant pressure or volume
$T=$ temperature $=e / c_{v}=\frac{p}{c_{v}(\gamma-1) \rho}$ for polytropic
$\gamma=c_{p} / c_{v}=$ adiabatic exponent for polytropic, $1<\gamma \leq 5 / 3$
$h=e+p / \rho=$ specific enthalpy
$H=\frac{E+p}{\rho}=h+\frac{1}{2} u^{2}=$ total specific enthalpy
$s=c_{v} \log \left(p / \rho^{\gamma}\right)+$ const $=$ specific entropy for polytropic

Equations of state

Polytropic: $E=e+\frac{1}{2} \rho u^{2}$ and $e=\frac{p}{(\gamma-1) \rho}$, so

$$
\begin{aligned}
p & =\rho e(\gamma-1) \\
& =(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right) \\
& =P(\rho, \rho u, E)
\end{aligned}
$$

Equations of state

Polytropic: $E=e+\frac{1}{2} \rho u^{2}$ and $e=\frac{p}{(\gamma-1) \rho}$, so

$$
\begin{aligned}
p & =\rho e(\gamma-1) \\
& =(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right) \\
& =P(\rho, \rho u, E)
\end{aligned}
$$

Isothermal: $T=\frac{p}{c_{v}(\gamma-1) \rho}$ for polytropic, so

$$
p=T c_{v}(\gamma-1) \rho \equiv a^{2} \rho=P(\rho)
$$

Equations of state

Polytropic: $E=e+\frac{1}{2} \rho u^{2}$ and $e=\frac{p}{(\gamma-1) \rho}$, so

$$
\begin{aligned}
p & =\rho e(\gamma-1) \\
& =(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right) \\
& =P(\rho, \rho u, E)
\end{aligned}
$$

Isothermal: $T=\frac{p}{c_{v}(\gamma-1) \rho}$ for polytropic, so

$$
p=T c_{v}(\gamma-1) \rho \equiv a^{2} \rho=P(\rho)
$$

Isentropic: $s=c_{v} \log \left(p / \rho^{\gamma}\right)+$ const

$$
p=\hat{c} \rho^{\gamma}=P(\rho)
$$

Euler equations of gas dynamics

Conservation of mass, momentum, energy: $q_{t}+f(q)_{x}=0$ with

$$
q=\left[\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(E+p)
\end{array}\right]
$$

where $E=\rho e+\frac{1}{2} \rho u^{2}$
Equation of state: $p=$ pressure $=p(\rho, E)$
Ideal gas, polytropic EOS: $p=\rho e(\gamma-1)=(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right)$
$\gamma \approx 7 / 5=1.4$ for air, $\quad \gamma=5 / 3$ for monatomic gas

Euler equations of gas dynamics

Conservation of mass, momentum, energy: $q_{t}+f(q)_{x}=0$ with

$$
q=\left[\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(E+p)
\end{array}\right]
$$

where $E=\rho e+\frac{1}{2} \rho u^{2}$
Equation of state: $p=$ pressure $=p(\rho, E)$
Ideal gas, polytropic EOS: $p=\rho e(\gamma-1)=(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right)$
$\gamma \approx 7 / 5=1.4$ for air, $\gamma=5 / 3$ for monatomic gas
The Jacobian $f^{\prime}(q)$ has eigenvalues $u-c, u, u+c$ where

$$
c=\left.\sqrt{\frac{d p}{d \rho}}\right|_{\text {at constant entropy }}=\sqrt{\frac{\gamma p}{\rho}} \text { for polytropic }
$$

Euler equations in primitive variables

Can rewrite the conservation laws in quasilinear form:

$$
\left[\begin{array}{l}
\rho \\
u \\
p
\end{array}\right]_{t}+\left[\begin{array}{ccc}
u & \rho & 0 \\
0 & u & 1 / \rho \\
0 & \gamma p & u
\end{array}\right]\left[\begin{array}{l}
\rho \\
u \\
p
\end{array}\right]_{x}=0
$$

Eigenvalues and eigenvectors:

$$
\begin{array}{lll}
\lambda^{1}=u-c, & \lambda^{2}=u, & \lambda^{3}=u+c, \\
r^{1}=\left[\begin{array}{c}
-\rho / c \\
1 \\
-\rho c
\end{array}\right], & r^{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], & r^{3}=\left[\begin{array}{c}
\rho / c \\
1 \\
\rho c
\end{array}\right],
\end{array}
$$

Euler equations in primitive variables

$$
\begin{aligned}
& \nabla \lambda^{1}=\left[\begin{array}{c}
-\partial c / \partial \rho \\
1 \\
-\partial c / \partial p
\end{array}\right]=\left[\begin{array}{c}
c / 2 \rho \\
1 \\
-c / 2 p
\end{array}\right] \Longrightarrow \quad \nabla \lambda^{1} \cdot r^{1}=\frac{1}{2}(\gamma+1), \\
& \nabla \lambda^{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \nabla \lambda^{3}=\left[\begin{array}{c}
\partial c / \partial \rho \\
1 \\
\partial c / \partial p
\end{array}\right]=\left[\begin{array}{c}
-c / 2 \rho \\
1 \\
c / 2 p
\end{array}\right] \quad \Longrightarrow \quad \nabla \lambda^{2} \cdot r^{2}=0,
\end{aligned}
$$

Euler equations in primitive variables

$$
\begin{aligned}
& \nabla \lambda^{1}=\left[\begin{array}{c}
-\partial c / \partial \rho \\
1 \\
-\partial c / \partial p
\end{array}\right]=\left[\begin{array}{c}
c / 2 \rho \\
1 \\
-c / 2 p
\end{array}\right] \quad \Longrightarrow \quad \nabla \lambda^{1} \cdot r^{1}=\frac{1}{2}(\gamma+1), \\
& \nabla \lambda^{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \nabla \lambda^{3}=\left[\begin{array}{c}
\partial c / \partial \rho \\
1 \\
\partial c / \partial p
\end{array}\right]=\left[\begin{array}{c}
-c / 2 \rho \\
1 \\
c / 2 p
\end{array}\right] \quad \Longrightarrow \quad \nabla \lambda^{2} \cdot r^{2}=0,
\end{aligned}
$$

1-waves and 3-waves are genuinely nonlinear,
2-waves are linearly degenerate (contact discontinuity).

Contact discontinuities

Consider Riemann problem for conservative variables:

$$
q=\left[\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(E+p)
\end{array}\right]
$$

Suppose $p_{\ell}=p_{r}$ and $u_{\ell}=u_{r} \equiv u$,
Then the Rankine-Hugoniot condition $s \Delta q=\Delta f$ becomes:

$$
s\left[\begin{array}{c}
\Delta \rho \\
u \Delta \rho \\
\Delta E
\end{array}\right]=\left[\begin{array}{c}
u \Delta \rho \\
u^{2} \Delta \rho \\
u \Delta E
\end{array}\right]
$$

Satisfied with $s=u$, for any jump in density $\Delta \rho$.

Contact discontinuities

Consider Riemann problem for conservative variables:

$$
q=\left[\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(E+p)
\end{array}\right]
$$

Suppose $p_{\ell}=p_{r}$ and $u_{\ell}=u_{r} \equiv u$,
Then the Rankine-Hugoniot condition $s \Delta q=\Delta f$ becomes:

$$
s\left[\begin{array}{c}
\Delta \rho \\
u \Delta \rho \\
\Delta E
\end{array}\right]=\left[\begin{array}{c}
u \Delta \rho \\
u^{2} \Delta \rho \\
u \Delta E
\end{array}\right]
$$

Satisfied with $s=u$, for any jump in density $\Delta \rho$.
And for any equation of state.

Euler in conservation form

Jacobian:

$$
\begin{gathered}
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2}(\gamma-3) u^{2} & (3-\gamma) u & (\gamma-1) \\
\frac{1}{2}(\gamma-1) u^{3}-u H & H-(\gamma-1) u^{2} & \gamma u
\end{array}\right], \\
H=\frac{E+p}{\rho}=h+\frac{1}{2} u^{2}=\text { total specific enthalpy }
\end{gathered}
$$

Eigenvalues and eigenvectors:

$$
\begin{array}{ccc}
\lambda^{1}=u-c, & \lambda^{2}=u, & \lambda^{3}=u+c, \\
r^{1}=\left[\begin{array}{c}
1 \\
u-c \\
H-u c
\end{array}\right], & r^{2}=\left[\begin{array}{c}
1 \\
u \\
\frac{1}{2} u^{2}
\end{array}\right], \quad r^{3}=\left[\begin{array}{c}
1 \\
u+c \\
H+u c
\end{array}\right]
\end{array}
$$

Riemann invariants for Euler (polytropic gas)

1-Riemann invariants: $\quad s, \quad u+\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$,
2-Riemann invariants: $u, \quad p$,
3-Riemann invariants: $s, \quad u-\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$.

Riemann invariants for Euler (polytropic gas)

1-Riemann invariants: $s, u+\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$,
2-Riemann invariants: $u, \quad p$,
3-Riemann invariants: $s, u-\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$.
Note: The entropy s is constant through any (smooth) simple 1 -wave or 3 -wave.

In particular, linear acoustic waves are isentropic.

Riemann invariants for Euler (polytropic gas)

1-Riemann invariants: $s, u+\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$,
2-Riemann invariants: $u, \quad p$,
3-Riemann invariants: $s, u-\frac{2}{\gamma-1} \sqrt{\frac{\gamma p}{\rho}}$.
Note: The entropy s is constant through any (smooth) simple 1 -wave or 3 -wave.
In particular, linear acoustic waves are isentropic.
Note: u and p constant across in any simple 2-wave, and across a contact discontinuity (check R-H condition).
Since $\lambda^{2}=u$, this says characteristics are parallel (the field is linearly degenerate)

Riemann Problem for Euler equations

Initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Shock tube problem: $u_{l}=u_{r}=0$, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water equations.

Riemann Problem for Euler equations

Initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Shock tube problem: $u_{l}=u_{r}=0$, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water equations.

Riemann Problem for Euler equations

Initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Shock tube problem: $u_{l}=u_{r}=0$, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water equations.

Riemann Problem for Euler equations

Initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Shock tube problem: $u_{l}=u_{r}=0$, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water equations.

Riemann Problem for Euler equations

Initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Shock tube problem: $u_{l}=u_{r}=0$, jump in ρ and p.

Pressure:

Similar to solution of dam break problem for shallow water equations.

Riemann Problem for gas dynamics

Waves propagating in $x-t$ space:
In primitive variables:

$$
\begin{aligned}
& q_{\ell}^{*}=\left[\begin{array}{l}
\rho_{l}^{*} \\
p^{*} \\
u^{*}
\end{array}\right] \\
& q_{r}^{*}=\left[\begin{array}{c}
\rho_{r}^{*} \\
p^{*} \\
u^{*}
\end{array}\right]
\end{aligned}
$$

Only ρ jumps across 2-wave

Riemann Problem for gas dynamics

Waves propagating in $x-t$ space:
In primitive variables:

$$
\begin{aligned}
& q_{\ell}^{*}=\left[\begin{array}{l}
\rho_{l}^{*} \\
p^{*} \\
u^{*}
\end{array}\right] \\
& q_{r}^{*}=\left[\begin{array}{l}
\rho_{r}^{*} \\
p^{*} \\
u^{*}
\end{array}\right]
\end{aligned}
$$

Similarity solution
Only ρ jumps across 2-wave (function of x / t alone)

Waves can be approximated by discontinuties: High-resolution wave-propagation methods Approximate Riemann solvers

Riemann Problem for gas dynamics

Any jump in ρ is allowed across contact discontinuity
General Riemann solver:

- Project 3D phase space to $p-u$ plane, Hugoniot loci and integral curves can be written as

$$
u=\phi(p), \quad(\text { and } \rho=\rho(p))
$$

- Find intersection

$$
\left(p^{*}, u^{*}\right)
$$

- Compute ρ_{ℓ}^{*} and ρ_{r}^{*}.

Integral curves for gas dynamics

In 1-wave, we know the Riemann invariants are constant,

$$
s=c_{v} \log \left(p / \rho^{\gamma}\right) \quad \text { and } \quad u+\frac{2}{\gamma-1} c \quad \text { with } c=\sqrt{\frac{\gamma p}{\rho}}
$$

Given values in left state q_{ℓ}, can then compute integral curve as:

$$
u=u_{\ell}+\left(\frac{2 c_{\ell}}{\gamma-1}\right)\left(1-\left(p / p_{\ell}\right)^{(\gamma-1) /(2 \gamma)}\right) \equiv \phi_{\ell}(p) \quad \text { for } p \leq p_{\ell}
$$

Note that ρ does not appear! Since s is constant, $\rho=\left(p / p_{\ell}\right)^{1 / \gamma} \rho_{\ell}$.

Integral curves for gas dynamics

In 1-wave, we know the Riemann invariants are constant,

$$
s=c_{v} \log \left(p / \rho^{\gamma}\right) \quad \text { and } \quad u+\frac{2}{\gamma-1} c \quad \text { with } c=\sqrt{\frac{\gamma p}{\rho}}
$$

Given values in left state q_{ℓ}, can then compute integral curve as:

$$
u=u_{\ell}+\left(\frac{2 c_{\ell}}{\gamma-1}\right)\left(1-\left(p / p_{\ell}\right)^{(\gamma-1) /(2 \gamma)}\right) \equiv \phi_{\ell}(p) \quad \text { for } p \leq p_{\ell} .
$$

Note that ρ does not appear!

$$
\text { Since } s \text { is constant, } \rho=\left(p / p_{\ell}\right)^{1 / \gamma} \rho_{\ell} \text {. }
$$

Can find similar expression for 3-wave integral curve,

$$
u=u_{r}+\left(\frac{2 c_{r}}{\gamma-1}\right)\left(1-\left(p / p_{r}\right)^{(\gamma-1) /(2 \gamma)}\right) \equiv \phi_{r}(p) \quad \text { for } p \leq p_{r} .
$$

Hugoniot locus for gas dynamics

From Rankine-Hugoniot conditions, can deduce that (1-wave):

$$
u=u_{\ell}+\frac{2 c_{\ell}}{\sqrt{2 \gamma(\gamma-1)}}\left(\frac{1-p / p_{\ell}}{\sqrt{1+\beta p / p_{\ell}}}\right) \equiv \phi_{\ell}(p) \quad \text { for } p \geq p_{\ell}
$$

where $\beta=(\gamma+1) /(\gamma-1)$.
Again note that ρ does not appear!

Hugoniot locus for gas dynamics

From Rankine-Hugoniot conditions, can deduce that (1-wave):

$$
u=u_{\ell}+\frac{2 c_{\ell}}{\sqrt{2 \gamma(\gamma-1)}}\left(\frac{1-p / p_{\ell}}{\sqrt{1+\beta p / p_{\ell}}}\right) \equiv \phi_{\ell}(p) \quad \text { for } p \geq p_{\ell}
$$

where $\beta=(\gamma+1) /(\gamma-1)$.
Again note that ρ does not appear!
For any p on this Hugoniot locus, we also find that:

$$
\rho=\left(\frac{1+\beta p / p_{\ell}}{p / p_{\ell}+\beta}\right) \rho_{\ell}
$$

Hugoniot locus for gas dynamics

From Rankine-Hugoniot conditions, can deduce that (1-wave):

$$
u=u_{\ell}+\frac{2 c_{\ell}}{\sqrt{2 \gamma(\gamma-1)}}\left(\frac{1-p / p_{\ell}}{\sqrt{1+\beta p / p_{\ell}}}\right) \equiv \phi_{\ell}(p) \quad \text { for } p \geq p_{\ell}
$$

where $\beta=(\gamma+1) /(\gamma-1)$.
Again note that ρ does not appear!
For any p on this Hugoniot locus, we also find that:

$$
\rho=\left(\frac{1+\beta p / p_{\ell}}{p / p_{\ell}+\beta}\right) \rho_{\ell}
$$

Similar expression for 3-wave, $u=\phi_{r}(p)$ for $p \geq p_{r}$.

Euler equations phase plane

Note these are curves in (p, u, ρ) space projected to plane.

Euler equations phase plane

Note these are curves in (p, u, ρ) space projected to plane.

Solving the Euler Riemann problem

```
In [71]: left_state = State(Density = 3., Velocity = 0., Pressure = 3.)
right_state = State(Density = 1.,Velocity = 0.,Pressure = 1.)
euler.phase_plane_plot(left_state, right_state)
grid(True)
```


blue $=$ integral curve, red = Hugoniot locus, \quad dashed $=$ nonphysical

Solving the Euler Riemann problem

```
left_state = State(Density = 3., Velocity = 0., Pressure = 3.)
right_state = State(Density = 1.,Velocity = 0.,Pressure = 1.)
euler.phase_plane_plot(left_state, right_state)
grid(True)
```


Solve $\phi_{l}(p)-\phi_{r}(p)=0$ for p_{m}
$u_{m}=\phi_{l}\left(p_{m}\right)=\phi_{r}\left(p_{m}\right)$
$\rho_{m \ell}=\rho\left(p_{m}\right)$ across 1-wave $\rho_{m r}=\rho\left(p_{m}\right)$ across 2-wave

Red curve is displaced from blue in ρ direction (into page).
blue $=$ integral curve, red = Hugoniot locus, dashed = nonphysical

Solving the Euler Riemann problem

Euler equations at atmospheric conditions

With parameters for air at $T^{*}=20^{\circ} \mathrm{C}$, Density $\rho^{*}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$.
Pressure $p^{*}=101,325 \mathrm{~Pa}=1 \mathrm{~atm}$, Speed of sound: $c^{*}=340.3 \mathrm{~m} / \mathrm{s}$

from $\approx 0.5 \mathrm{~atm}$ to 2 atm

Euler equations at atmospheric conditions

With parameters for air at $T^{*}=20^{\circ} \mathrm{C}$, Density $\rho^{*}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$. Pressure $p^{*}=101,325 \mathrm{~Pa}$, Speed of sound: $c^{*}=340.3 \mathrm{~m} / \mathrm{s}$

from $\approx 0.1 \mathrm{~atm}$ to 10 atm

Shallow water equations phase plane

In the $h-h u$ phase plane (the conserved quantities):

Shallow water equations phase plane

Replot in the $h-u$ phase plane (primitive variables):

