Finite Volume Methods for Hyperbolic Problems

Nonlinear Systems

Rarefaction Waves and Integral Curves

- Integral curves
- Genuine nonlinearity and rarefaction waves
- General Riemann solution for shallow water
- Riemann invariants
- Linear degeneracy and contact discontinuities

Shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x}=0 & \Longrightarrow h_{t}+\mu_{x}=0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}=0 & \Longrightarrow \mu_{t}+\phi(h, \mu)_{x}=0
\end{aligned}
$$

where $\mu=h u$ and $\phi=h u^{2}+\frac{1}{2} g h^{2}=\mu^{2} / h+\frac{1}{2} g h^{2}$.
Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{ll}
\partial \mu / \partial h & \partial \mu / \partial \mu \\
\partial \phi / \partial h & \partial \phi / \partial \mu
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
g h-u^{2} & 2 u
\end{array}\right]
$$

Eigenvalues:

$$
\lambda^{1}=u-\sqrt{g h}, \quad \lambda^{2}=u+\sqrt{g h}
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
1 \\
u-\sqrt{g h}
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
1 \\
u+\sqrt{g h}
\end{array}\right] .
$$

Integral curves of r^{p}

Curves in phase plane that are tangent to $r^{p}(q)$ at each q.

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfying $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{p}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

As initial data, can choose arbitrary smooth $h(x, 0)$, but then $u(x, 0)$ is determined.

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

Integral curve parameterized by $\tilde{q}(\xi)$.
So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

Integral curve parameterized by $\tilde{q}(\xi)$.
So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Not any $\xi(x, t)$ works. When is the PDE satisfied?
Assuming smooth, require $q_{t}+f^{\prime}(q) q_{x}=0$:

$$
\begin{aligned}
q_{t}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{t}(x, t) \\
q_{x}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t)
\end{aligned}
$$

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

Integral curve parameterized by $\tilde{q}(\xi) . \quad \tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{p}(\tilde{q}(\xi))$
So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Not any $\xi(x, t)$ works. When is the PDE satisfied?
Assuming smooth, require $q_{t}+f^{\prime}(q) q_{x}=0$:

$$
\begin{aligned}
q_{t}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{t}(x, t) \\
q_{x}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t) \\
f^{\prime}(q(x, t)) q_{x}(x, t) & =f^{\prime}\left(q(\xi(x, t)) \tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t)\right. \\
& =\lambda^{p}\left(q(\xi(x, t)) \tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t)\right.
\end{aligned}
$$

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

Integral curve parameterized by $\tilde{q}(\xi) . \quad \tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{p}(\tilde{q}(\xi))$
So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Not any $\xi(x, t)$ works. When is the PDE satisfied?
Assuming smooth, require $q_{t}+f^{\prime}(q) q_{x}=0$:

$$
\begin{aligned}
q_{t}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{t}(x, t) \\
q_{x}(x, t) & =\tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t) \\
f^{\prime}(q(x, t)) q_{x}(x, t) & =f^{\prime}\left(q(\xi(x, t)) \tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t)\right. \\
& =\lambda^{p}\left(q(\xi(x, t)) \tilde{q}^{\prime}(\xi(x, t)) \xi_{x}(x, t)\right.
\end{aligned}
$$

So $q_{t}+f^{\prime}(q) q_{x}=0 \Longrightarrow$

$$
\left[\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)\right] \tilde{q}^{\prime}(\xi(x, t))=0
$$

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Requiring $q_{t}+f^{\prime}(q) q_{x}=0 \Longrightarrow$

$$
\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)=0
$$

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Requiring $q_{t}+f^{\prime}(q) q_{x}=0 \Longrightarrow$

$$
\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)=0
$$

This is a scalar equation and $\tilde{q}(\xi(x, t))$ is constant along characteristic curves $X^{\prime}(t)=\lambda^{p}(\tilde{q}(\xi(x, t)))$ as long as the solution stays smooth.

Converging characteristics \Longrightarrow shock formation.

Simple waves

In a simple wave, the values $q(x, t)$ always lie along a single integral curve in some particular p th family.

So $q(x, t)=\tilde{q}(\xi(x, t))$ for some $\xi(x, t)$.
Requiring $q_{t}+f^{\prime}(q) q_{x}=0 \Longrightarrow$

$$
\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)=0
$$

This is a scalar equation and $\tilde{q}(\xi(x, t))$ is constant along characteristic curves $X^{\prime}(t)=\lambda^{p}(\tilde{q}(\xi(x, t)))$ as long as the solution stays smooth.

Converging characteristics \Longrightarrow shock formation.
Once a shock forms, no longer a simple wave in general (waves in other families can be generated).

Centered rarefaction waves

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{\ell} & \text { if } x / t \leq \lambda^{p}\left(q_{\ell}\right) \\ \tilde{q}(x / t) & \text { if } \lambda^{p}\left(q_{\ell}\right) \leq x / t \leq \lambda^{p}\left(q_{r}\right) \\ q_{r} & \text { if } x / t \geq \lambda^{p}\left(q_{r}\right)\end{cases}
$$

where q_{ℓ} and q_{r} are on same integral curve and $\lambda^{p}\left(q_{\ell}\right)<\lambda^{p}\left(q_{r}\right)$.

Centered rarefaction waves

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{\ell} & \text { if } x / t \leq \lambda^{p}\left(q_{\ell}\right) \\ \tilde{q}(x / t) & \text { if } \lambda^{p}\left(q_{\ell}\right) \leq x / t \leq \lambda^{p}\left(q_{r}\right) \\ q_{r} & \text { if } x / t \geq \lambda^{p}\left(q_{r}\right)\end{cases}
$$

where q_{ℓ} and q_{r} are on same integral curve and $\lambda^{p}\left(q_{\ell}\right)<\lambda^{p}\left(q_{r}\right)$.
Special case of simple wave with $\xi(x, t)=x / t$.
Then $\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)=0$ becomes

$$
-\frac{x}{t^{2}}+\lambda^{p}(\tilde{q}(x / t)) \frac{1}{t}=0 \quad \Longrightarrow \lambda^{p}(\tilde{q}(x / t))=x / t
$$

Centered rarefaction waves

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{\ell} & \text { if } x / t \leq \lambda^{p}\left(q_{\ell}\right) \\ \tilde{q}(x / t) & \text { if } \lambda^{p}\left(q_{\ell}\right) \leq x / t \leq \lambda^{p}\left(q_{r}\right) \\ q_{r} & \text { if } x / t \geq \lambda^{p}\left(q_{r}\right)\end{cases}
$$

where q_{ℓ} and q_{r} are on same integral curve and $\lambda^{p}\left(q_{\ell}\right)<\lambda^{p}\left(q_{r}\right)$.
Special case of simple wave with $\xi(x, t)=x / t$.
Then $\xi_{t}(x, t)+\lambda^{p}(\tilde{q}(\xi(x, t))) \xi_{x}(x, t)=0$ becomes

$$
-\frac{x}{t^{2}}+\lambda^{p}(\tilde{q}(x / t)) \frac{1}{t}=0 \quad \Longrightarrow \quad \lambda^{p}(\tilde{q}(x / t))=x / t
$$

So we need to solve $\lambda^{p}(\tilde{q}(\xi))=\xi$ for $\tilde{q}(\xi)$.
Generalizes the equation $f^{\prime}(\tilde{q}(\xi))=\xi$ for scalar PDE.

Centered rarefaction waves

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{\ell} & \text { if } x / t \leq \lambda^{p}\left(q_{\ell}\right) \\ \tilde{q}(x / t) & \text { if } \lambda^{p}\left(q_{\ell}\right) \leq x / t \leq \lambda^{p}\left(q_{r}\right) \\ q_{r} & \text { if } x / t \geq \lambda^{p}\left(q_{r}\right)\end{cases}
$$

where q_{ℓ} and q_{r} are on same integral curve and $\lambda^{p}\left(q_{\ell}\right)<\lambda^{p}\left(q_{r}\right)$.
Required so that characteristics spread out as time advances.

Centered rarefaction waves

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{\ell} & \text { if } x / t \leq \lambda^{p}\left(q_{\ell}\right) \\ \tilde{q}(x / t) & \text { if } \lambda^{p}\left(q_{\ell}\right) \leq x / t \leq \lambda^{p}\left(q_{r}\right) \\ q_{r} & \text { if } x / t \geq \lambda^{p}\left(q_{r}\right)\end{cases}
$$

where q_{ℓ} and q_{r} are on same integral curve and $\lambda^{p}\left(q_{\ell}\right)<\lambda^{p}\left(q_{r}\right)$.
Required so that characteristics spread out as time advances.
Also want $\lambda^{p}(q)$ monotonically increasing from q_{ℓ} to q_{r}.
Genuine nonlinearity: generalization of convexity for scalar flux.

Genuine nonlinearity

For scalar problem $q_{t}+f(q)_{x}=0$, want $f^{\prime \prime}(q) \neq 0 \forall q$ of interest.
This implies that $f^{\prime}(q)$ is monotonically increasing or decreasing between q_{l} and q_{r}.

Shock if decreasing, Rarefaction if increasing.

Genuine nonlinearity

For scalar problem $q_{t}+f(q)_{x}=0$, want $f^{\prime \prime}(q) \neq 0 \forall q$ of interest.
This implies that $f^{\prime}(q)$ is monotonically increasing or decreasing between q_{l} and q_{r}.

Shock if decreasing, Rarefaction if increasing.

For system we want $\lambda^{p}(q)$ to be monotonically varying along integral curve of $r^{p}(q)$.

If so then this field is genuinely nonlinear.

Genuine nonlinearity

For scalar problem $q_{t}+f(q)_{x}=0$, want $f^{\prime \prime}(q) \neq 0 \forall q$ of interest.
This implies that $f^{\prime}(q)$ is monotonically increasing or decreasing between q_{l} and q_{r}.

Shock if decreasing, Rarefaction if increasing.

For system we want $\lambda^{p}(q)$ to be monotonically varying along integral curve of $r^{p}(q)$.

If so then this field is genuinely nonlinear.
This requires: $\nabla \lambda^{p}(q) \cdot r^{p}(q) \neq 0$ for all q in region of interest. since

$$
\frac{d}{d \xi} \lambda^{p}(\tilde{q}(\xi))=\nabla \lambda^{p}(\tilde{q}(\xi)) \cdot \tilde{q}^{\prime}(\xi)
$$

Integral curve for one particular q_{*}

Green curves are contours of $\lambda^{1}=u-\sqrt{g h}$

Note: Increases monotonically in one direction along integral curve.

Shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x}=0 & \Longrightarrow h_{t}+\mu_{x}=0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}=0 & \Longrightarrow \mu_{t}+\phi(h, \mu)_{x}=0
\end{aligned}
$$

where $\mu=h u$ and $\phi=h u^{2}+\frac{1}{2} g h^{2}=\mu^{2} / h+\frac{1}{2} g h^{2}$.
Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{ll}
\partial \mu / \partial h & \partial \mu / \partial \mu \\
\partial \phi / \partial h & \partial \phi / \partial \mu
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
g h-u^{2} & 2 u
\end{array}\right]
$$

Eigenvalues:

$$
\lambda^{1}=u-\sqrt{g h}, \quad \lambda^{2}=u+\sqrt{g h}
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
1 \\
u-\sqrt{g h}
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
1 \\
u+\sqrt{g h}
\end{array}\right] .
$$

Genuine nonlinearity of shallow water equations

1-waves: Requires $\nabla \lambda^{1}(q) \cdot r^{1}(q) \neq 0$.

$$
\begin{aligned}
\lambda^{1} & =u-\sqrt{g h}=q^{2} / q^{1}-\sqrt{g q^{1}}, \\
\nabla \lambda^{1} & =\left[\begin{array}{c}
-q^{2} /\left(q^{1}\right)^{2}-\frac{1}{2} \sqrt{g / q^{1}} \\
1 / q^{1}
\end{array}\right]=\left[\begin{array}{c}
-u / h-\frac{1}{2} \sqrt{g / h} \\
1 / h
\end{array}\right] \\
r^{1} & =\left[\begin{array}{c}
1 \\
q^{2} / q^{1}-\sqrt{g q^{1}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
u-\sqrt{g h}
\end{array}\right]
\end{aligned}
$$

Genuine nonlinearity of shallow water equations

1-waves: Requires $\nabla \lambda^{1}(q) \cdot r^{1}(q) \neq 0$.

$$
\begin{aligned}
\lambda^{1} & =u-\sqrt{g h}=q^{2} / q^{1}-\sqrt{g q^{1}}, \\
\nabla \lambda^{1} & =\left[\begin{array}{c}
-q^{2} /\left(q^{1}\right)^{2}-\frac{1}{2} \sqrt{g / q^{1}} \\
1 / q^{1}
\end{array}\right]=\left[\begin{array}{c}
-u / h-\frac{1}{2} \sqrt{g / h} \\
1 / h
\end{array}\right] \\
r^{1} & =\left[\begin{array}{c}
1 \\
q^{2} / q^{1}-\sqrt{g q^{1}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
u-\sqrt{g h}
\end{array}\right]
\end{aligned}
$$

and hence

$$
\begin{aligned}
\nabla \lambda^{1} \cdot r^{1} & =-\frac{3}{2} \sqrt{g / q^{1}}=-\frac{3}{2} \sqrt{g / h} \\
& <0 \quad \text { for all } h>0
\end{aligned}
$$

1-waves: integral curves of r^{1}

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfies $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{1}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.
Choose $\alpha(\xi) \equiv 1$ and obtain

$$
\left[\begin{array}{c}
\left(\tilde{q}^{1}\right)^{\prime} \\
\left(\tilde{q}^{2}\right)^{\prime}
\end{array}\right]=\tilde{q}^{\prime}(\xi)=r^{1}(\tilde{q}(\xi))=\left[\begin{array}{c}
1 \\
\tilde{q}^{2} / \tilde{q}^{1}-\sqrt{g \tilde{q}^{1}}
\end{array}\right]
$$

This is a system of 2 ODEs

1-waves: integral curves of r^{1}

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfies $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{1}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.
Choose $\alpha(\xi) \equiv 1$ and obtain

$$
\left[\begin{array}{c}
\left(\tilde{q}^{1}\right)^{\prime} \\
\left(\tilde{q}^{2}\right)^{\prime}
\end{array}\right]=\tilde{q}^{\prime}(\xi)=r^{1}(\tilde{q}(\xi))=\left[\begin{array}{c}
1 \\
\tilde{q}^{2} / \tilde{q}^{1}-\sqrt{g \tilde{q}^{1}}
\end{array}\right]
$$

This is a system of 2 ODEs
First equation: $\tilde{q}^{1}(\xi)=\xi \Longrightarrow \xi=h$.

1-waves: integral curves of r^{1}

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfies $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{1}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.
Choose $\alpha(\xi) \equiv 1$ and obtain

$$
\left[\begin{array}{c}
\left(\tilde{q}^{1}\right)^{\prime} \\
\left(\tilde{q}^{2}\right)^{\prime}
\end{array}\right]=\tilde{q}^{\prime}(\xi)=r^{1}(\tilde{q}(\xi))=\left[\begin{array}{c}
1 \\
\tilde{q}^{2} / \tilde{q}^{1}-\sqrt{g \tilde{q}^{1}}
\end{array}\right]
$$

This is a system of 2 ODEs
First equation: $\tilde{q}^{1}(\xi)=\xi \Longrightarrow \xi=h$.
Second equation $\Longrightarrow\left(\tilde{q}^{2}\right)^{\prime}=\tilde{q}^{2}(\xi) / \xi-\sqrt{g \xi}$.

1-waves: integral curves of r^{1}

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfies $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{1}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.
Choose $\alpha(\xi) \equiv 1$ and obtain

$$
\left[\begin{array}{c}
\left(\tilde{q}^{1}\right)^{\prime} \\
\left(\tilde{q}^{2}\right)^{\prime}
\end{array}\right]=\tilde{q}^{\prime}(\xi)=r^{1}(\tilde{q}(\xi))=\left[\begin{array}{c}
1 \\
\tilde{q}^{2} / \tilde{q}^{1}-\sqrt{g \tilde{q}^{1}}
\end{array}\right]
$$

This is a system of 2 ODEs
First equation: $\tilde{q}^{1}(\xi)=\xi \Longrightarrow \xi=h$.
Second equation $\Longrightarrow\left(\tilde{q}^{2}\right)^{\prime}=\tilde{q}^{2}(\xi) / \xi-\sqrt{g \xi}$.
Require $\tilde{q}^{2}\left(h_{*}\right)=h_{*} u_{*} \Longrightarrow$

$$
\tilde{q}^{2}(\xi)=\xi u_{*}+2 \xi\left(\sqrt{g h_{*}}-\sqrt{g \xi}\right) .
$$

1-wave integral curves of r^{p}

So

$$
\begin{aligned}
& \tilde{q}^{1}(\xi)=\xi, \\
& \tilde{q}^{2}(\xi)=\xi u_{*}+2 \xi\left(\sqrt{g h_{*}}-\sqrt{g \xi}\right) .
\end{aligned}
$$

and hence integral curve through $\left(h_{*}, h_{*} u_{*}\right)$ satisfies

$$
h u=h u_{*}+2 h\left(\sqrt{g h_{*}}-\sqrt{g h}\right) \quad \text { for } 0<h<\infty .
$$

1-wave integral curves of r^{p}

So

$$
\begin{aligned}
& \tilde{q}^{1}(\xi)=\xi, \\
& \tilde{q}^{2}(\xi)=\xi u_{*}+2 \xi\left(\sqrt{g h_{*}}-\sqrt{g \xi}\right) .
\end{aligned}
$$

and hence integral curve through $\left(h_{*}, h_{*} u_{*}\right)$ satisfies

$$
h u=h u_{*}+2 h\left(\sqrt{g h_{*}}-\sqrt{g h}\right) \quad \text { for } 0<h<\infty .
$$

Similarly, 2-wave integral curve through $\left(h_{*}, h_{*} u_{*}\right)$ satisfies

$$
h u=h u_{*}-2 h\left(\sqrt{g h_{*}}-\sqrt{g h}\right) .
$$

Integral curves of r^{p} versus Hugoniot loci

Solving the shallow water Riemann problem

Solution to Riemann problem depends on which state is q_{l}, q_{r}. Also need to choose correct curve from each state.

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

Solving the dam break Riemann problem

$h_{\ell}>h_{r}$ and $u_{\ell}=u_{r}=0 \Longrightarrow$ 1-rarefaction and 2-shock
So the intermediate state q_{m} lies on:
1-wave integral curve through q_{ℓ}, and on
2-wave Hugoniot locus through q_{r}.

Solving the dam break Riemann problem

$h_{\ell}>h_{r}$ and $u_{\ell}=u_{r}=0 \Longrightarrow$ 1-rarefaction and 2-shock
So the intermediate state q_{m} lies on:
1-wave integral curve through q_{ℓ}, and on
2-wave Hugoniot locus through q_{r}.

$$
u_{m}=u_{l}+2\left(\sqrt{g h_{l}}-\sqrt{g h_{m}}\right)
$$

and

$$
u_{m}=u_{r}+\left(h_{m}-h_{r}\right) \sqrt{\frac{g}{2}\left(\frac{1}{h_{m}}+\frac{1}{h_{r}}\right)}
$$

Solving the dam break Riemann problem

$h_{\ell}>h_{r}$ and $u_{\ell}=u_{r}=0 \Longrightarrow$ 1-rarefaction and 2-shock
So the intermediate state q_{m} lies on:
1-wave integral curve through q_{ℓ}, and on
2-wave Hugoniot locus through q_{r}.

$$
u_{m}=u_{l}+2\left(\sqrt{g h_{l}}-\sqrt{g h_{m}}\right)
$$

and

$$
u_{m}=u_{r}+\left(h_{m}-h_{r}\right) \sqrt{\frac{g}{2}\left(\frac{1}{h_{m}}+\frac{1}{h_{r}}\right)}
$$

Equate to obtain a single nonlinear equation for h_{m} :

$$
u_{l}+2\left(\sqrt{g h_{l}}-\sqrt{g h_{m}}\right)=u_{r}+\left(h_{m}-h_{r}\right) \sqrt{\frac{g}{2}\left(\frac{1}{h_{m}}+\frac{1}{h_{r}}\right)}
$$

Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or 2-wave satisfying the R-H conditions:

Solid portion: states that can be connected by shock satisfying entropy condition.

Dashed portion: states that can be connected with R-H condition satisfied but not the physically correct solution.

Solving the general Riemann problem

For general data q_{ℓ}, q_{r}, the shallow water Riemann solution could have a shock or rarefaction in each family.

Use the fact that across a shock we always expect deeper water "behind" the shock to define 1 -wave curve through q_{ℓ} :

$$
\phi_{\ell}(h)= \begin{cases}u_{\ell}+2\left(\sqrt{g h_{\ell}}-\sqrt{g h}\right) & \text { if } h<h_{\ell} \\ u_{\ell}-\left(h-h_{\ell}\right) \sqrt{\frac{g}{2}\left(\frac{1}{h}+\frac{1}{h_{\ell}}\right)} & \text { if } h \geq h_{\ell}\end{cases}
$$

and 2-wave curve through q_{r} :

$$
\phi_{r}(h)= \begin{cases}u_{r}-2\left(\sqrt{g h_{r}}-\sqrt{g h}\right) & \text { if } h<h_{r} \\ u_{r}+\left(h-h_{r}\right) \sqrt{\frac{g}{2}\left(\frac{1}{h}+\frac{1}{h_{r}}\right)} & \text { if } h \geq h_{r}\end{cases}
$$

Then determine h_{m} by using a numerical root finder on

$$
\phi(h)=\phi_{\ell}(h)-\phi_{r}(h) .
$$

Riemann invariants

Along a 1-wave integral curve,

$$
u=u_{*}+2\left(\sqrt{g h_{*}}-\sqrt{g h}\right)
$$

and hence

$$
u+2 \sqrt{g h}=u_{*}+2 \sqrt{g h_{*}} .
$$

Riemann invariants

Along a 1-wave integral curve,

$$
u=u_{*}+2\left(\sqrt{g h_{*}}-\sqrt{g h}\right)
$$

and hence

$$
u+2 \sqrt{g h}=u_{*}+2 \sqrt{g h_{*}} .
$$

So at every point on the integral curve through $\left(h_{*}, h_{*} u_{*}\right)$

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u_{*}+2 \sqrt{g h_{*}}$.

Riemann invariants

Along a 1-wave integral curve,

$$
u=u_{*}+2\left(\sqrt{g h_{*}}-\sqrt{g h}\right)
$$

and hence

$$
u+2 \sqrt{g h}=u_{*}+2 \sqrt{g h_{*}} .
$$

So at every point on the integral curve through $\left(h_{*}, h_{*} u_{*}\right)$

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u_{*}+2 \sqrt{g h_{*}}$.
The function $w^{1}(q)$ is a 1-Riemann invariant for this system.

Riemann invariants

1-Riemann invariants:

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u_{*}+2 \sqrt{g h_{*}}$ at every point on any integral curve of $r^{1}(q)$.

The integral curves are contour lines of $w^{1}(q)$.

Riemann invariants

1-Riemann invariants:

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u_{*}+2 \sqrt{g h_{*}}$ at every point on any integral curve of $r^{1}(q)$.
The integral curves are contour lines of $w^{1}(q)$.

2-Riemann invariants:

$$
w^{2}(q)=u-2 \sqrt{g h}
$$

has the constant value $w^{2}(q) \equiv w^{2}\left(q_{*}\right)=u_{*}-2 \sqrt{g h_{*}}$ at every point on any integral curve of $r^{2}(q)$.

Linearly degenerate fields

Scalar advection: $q_{t}+u q_{x}=0$ with $u=$ constant.
Characteristics $X(t)=x_{0}+u t$ are parallel.
Discontinuity propagates along a characteristic curve.
Characteristics on either side are parallel so not a shock!

Linearly degenerate fields

Scalar advection: $q_{t}+u q_{x}=0$ with $u=$ constant.
Characteristics $X(t)=x_{0}+u t$ are parallel.
Discontinuity propagates along a characteristic curve.
Characteristics on either side are parallel so not a shock!
For the flux $f(q)=u q$, we have $f^{\prime}(q)=u \forall q$ and $f^{\prime \prime}(q) \equiv 0$.

Linearly degenerate fields

Scalar advection: $q_{t}+u q_{x}=0$ with $u=$ constant.
Characteristics $X(t)=x_{0}+u t$ are parallel.
Discontinuity propagates along a characteristic curve.
Characteristics on either side are parallel so not a shock!
For the flux $f(q)=u q$, we have $f^{\prime}(q)=u \forall q$ and $f^{\prime \prime}(q) \equiv 0$.
For a system the analogous property arises if

$$
\nabla \lambda^{p}(q) \cdot r^{p}(q) \equiv 0
$$

holds for all q, in which case

$$
\frac{d}{d \xi} \lambda^{p}(\tilde{q}(\xi))=\nabla \lambda^{p}(\tilde{q}(\xi)) \cdot \tilde{q}^{\prime}(\xi) \equiv 0
$$

So λ^{p} is constant along each integral curve.
Then p th field is said to be linearly degenerate.

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

Shallow water with passive tracer

Let $\phi(x, t)$ be tracer concentration and add equation

$$
\phi_{t}+u \phi_{x}=0 \Longrightarrow(h \phi)_{t}+(u h \phi)_{x}=0 \quad\left(\text { since } h_{t}+(h u)_{x}=0\right)
$$

Gives:
$q=\left[\begin{array}{c}h \\ h u \\ h \phi\end{array}\right]=\left[\begin{array}{l}q^{1} \\ q^{2} \\ q^{3}\end{array}\right], \quad f(q)=\left[\begin{array}{c}h u \\ h u^{2}+\frac{1}{2} g h^{2} \\ u h \dot{\phi}\end{array}\right]=\left[\begin{array}{c}q^{2} \\ \left(q^{2}\right) / q^{1}+\frac{1}{2} g\left(q^{1}\right)^{2} \\ q^{2} q^{3} / q^{1}\end{array}\right]$.

Shallow water with passive tracer

Let $\phi(x, t)$ be tracer concentration and add equation

$$
\phi_{t}+u \phi_{x}=0 \Longrightarrow(h \phi)_{t}+(u h \phi)_{x}=0 \quad\left(\text { since } h_{t}+(h u)_{x}=0\right) .
$$

Gives:
$q=\left[\begin{array}{c}h \\ h u \\ h \phi\end{array}\right]=\left[\begin{array}{l}q^{1} \\ q^{2} \\ q^{3}\end{array}\right], \quad f(q)=\left[\begin{array}{c}h u \\ h u^{2}+\frac{1}{2} g h^{2} \\ u h \dot{\phi}\end{array}\right]=\left[\begin{array}{c}q^{2} \\ \left(q^{2}\right) / q^{1}+\frac{1}{2} g\left(q^{1}\right)^{2} \\ q^{2} q^{3} / q^{1}\end{array}\right]$
Jacobian:

$$
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u \phi & \phi & u
\end{array}\right] .
$$

Shallow water with passive tracer

$$
\begin{aligned}
& f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u \phi & \phi & u
\end{array}\right] . \\
& \lambda^{1}=u-\sqrt{g h}, \quad \lambda^{2}=u, \quad \lambda^{3}=u+\sqrt{g h}, \\
& r^{1}=\left[\begin{array}{c}
1 \\
u-\sqrt{g h} \\
\phi
\end{array}\right], \quad r^{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad r^{3}=\left[\begin{array}{c}
1 \\
u+\sqrt{g h} \\
\phi
\end{array}\right] .
\end{aligned}
$$

Shallow water with passive tracer

$$
\begin{gathered}
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u \phi & \phi & u
\end{array}\right] . \\
\lambda^{1}=u-\sqrt{g h}, \quad \lambda^{2}=u, \quad \lambda^{3}=u+\sqrt{g h}, \\
r^{1}=\left[\begin{array}{c}
1 \\
u-\sqrt{g h} \\
\phi
\end{array}\right], \quad r^{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad r^{3}=\left[\begin{array}{c}
1 \\
u+\sqrt{g h} \\
\phi
\end{array}\right] . \\
\lambda^{2}=u=(h u) / h \Longrightarrow \nabla \lambda^{2}=\left[\begin{array}{c}
-u / h \\
1 / h \\
0
\end{array}\right] \Longrightarrow \lambda^{2} \cdot r^{2} \equiv 0 .
\end{gathered}
$$

So 2nd field is linearly degenerate.
(Fields 1 and 3 are genuinely nonlinear.)

