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Nonlinear Systems

Shock Waves and the Hugoniot Locus

• Shallow water equations
• Rankine-Hugoniot condition
• Hugoniot locus in phase space
• All-shock Riemann solutions

R. J. LeVeque, University of Washington FVMHP Chap. 13



Riemann Problems and Jupyter Solutions
Theory and Approximate Solvers for Hyperbolic PDEs

David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.:
bookstore.siam.org/fa16/bonus

View static version of notebooks at:
www.clawpack.org/riemann_book/html/Index.html

R. J. LeVeque, University of Washington RpJs/Shallow_water.ipynb

https://bookstore.siam.org/fa16/bonus
http://www.clawpack.org/riemann_book/html/Index.html


Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0

Jacobian matrix:

f ′(q) =

[
0 1

gh− u2 2u

]
, λ = u±

√
gh.
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Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.

Note:
• System of two equations gives rise to 2 waves.
• Each wave behaves like solution of nonlinear scalar

equation.

Not quite... no linear superposition. Nonlinear interaction!
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The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1

2
gh2

)
x
= 0
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Two-shock Riemann solution

With hℓ = hr and uℓ = −ur > 0
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Two-shock Riemann solution for shallow water

Initially hl = hr = 1, ul = −ur = 0.5 > 0

Solution at later time:

R. J. LeVeque, University of Washington FVMHP Fig. 13.7



Characteristics for scalar nonlinear problem

Scalar hyperbolic equation in quasi-linear form: qt+ f ′(q)qx = 0.

Characteristic curve in x–t plane: X(t) satisfying

X ′(t) = f ′(q(X(t), t)).

Along this curve,

d

dt
q(X(t), t) = X ′(t)qx + qt = 0

So for a scalar equation,
q(x, t) is constant along characteristic curves.

Advection: Characteristics satisfy X ′(t) = u, so X(t) = x0 + ut
are parallel straight lines.

Nonlinear: Characteristcs are straight since f ′(q(X(t), t)) is
constant, but not parallel. Crossing =⇒ shock formation.

R. J. LeVeque, University of Washington FVMHP Chap. 11



Characteristics for scalar nonlinear problem

Scalar hyperbolic equation in quasi-linear form: qt+ f ′(q)qx = 0.

Characteristic curve in x–t plane: X(t) satisfying

X ′(t) = f ′(q(X(t), t)).

Along this curve,

d

dt
q(X(t), t) = X ′(t)qx + qt = 0

So for a scalar equation,
q(x, t) is constant along characteristic curves.

Advection: Characteristics satisfy X ′(t) = u, so X(t) = x0 + ut
are parallel straight lines.

Nonlinear: Characteristcs are straight since f ′(q(X(t), t)) is
constant, but not parallel. Crossing =⇒ shock formation.

R. J. LeVeque, University of Washington FVMHP Chap. 11



Characteristics for nonlinear systems

Hyperbolic system in quasi-linear form: qt + f ′(q)qx = 0.

Eigenvalues of Jacobian: λp(q) with f ′(q)rp(q) = λp(q)rp(q).

Simple wave in pth family: Suppose we choose q(x, 0)
so that qx(x, 0) = wp(x)rp(q(x)) for some scalar function wp(x).

Let X(t) be a smooth curve and compute

d

dt
q(X(t), t) = X ′(t)qx(X(t), t) + qt(X(t), t)

= X ′(t) qx(X(t), t)− f ′(q(X(t), t)) qx(X(t), t)

= wp(x)X ′(t) rp(q(X(t), t))

− wp(x) f ′(q(X(t), t)) rp(q(X(t), t)

This = 0 if we choose X ′(t) = λp(q(X(t), t)).

So in the simple wave case, q(X(t), t) is constant along each
ray with X ′(t) = λp(q(X(t), t)) (as long as these don’t cross).
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Two-shock Riemann solution for shallow water

Characteristic curves X ′(t) = u(X(t), t)±
√

gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant. (Shown for g = 1 so

√
gh = 1 everywhere initially.)

Note that 1-characteristics impinge on 1-shock,
2-characteristics impinge on 2-shock.

R. J. LeVeque, University of Washington FVMHP Fig. 13.8



An isolated shock

If an isolated shock with left and right states ql and qr is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

f(qr)− f(ql) = s(qr − ql)

For a system q ∈ lRm this can only hold for certain pairs ql, qr:

For a linear system, f(qr)− f(ql) = Aqr −Aql = A(qr − ql).
So qr − ql must be an eigenvector of f ′(q) = A.

A ∈ lRm×m =⇒ there will be m rays through ql in state space
in the eigen-directions, and qr must lie on one of these.

For a nonlinear system, there will be m curves through ql called
the Hugoniot loci.
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Hugoniot loci for shallow water

q =

[
h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
.

Fix q∗ = (h∗, u∗).

What states q can be connected to q∗ by an isolated shock?

The Rankine-Hugoniot condition s(q − q∗) = f(q)− f(q∗) gives:

s(h∗ − h) = h∗u∗ − hu,

s(h∗u∗ − hu) = h∗u
2
∗ − hu2 +

1

2
g(h2∗ − h2).

Two equations with 3 unknowns (h, u, s), so we expect
1-parameter families of solutions.
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Hugoniot loci for shallow water

Rankine-Hugoniot conditions:

s(h∗ − h) = h∗u∗ − hu,

s(h∗u∗ − hu) = h∗u
2
∗ − hu2 +

1

2
g(h2∗ − h2).

For any h > 0 we can solve for

u(h) = u∗ ±

√
g

2

(
h∗
h

− h

h∗

)
(h∗ − h)

s(h) = (h∗u∗ − hu)/(h∗ − h).

This gives 2 curves in h–hu space (one for +, one for −).

R. J. LeVeque, University of Washington FVMHP Sec. 13.7



Hugoniot loci for shallow water

For any h > 0 we have a possible shock state. Set

h = h∗ + α,

so that h = h∗ at α = 0, to obtain

hu = h∗u∗ + α

[
u∗ ±

√
gh∗ +

1

2
gα(3 + α/h∗)

]
.

Hence we have[
h
hu

]
=

[
h∗

h∗u∗

]
+ α

[
1

u∗ ±
√
gh∗ +O(α)

]
as α → 0.

Close to q∗ the curves are tangent to eigenvectors of f ′(q∗)
Expected since f(q)− f(q∗) ≈ f ′(q∗)(q − q∗).
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Hugoniot loci for one particular q∗

States that can be connected to q∗ by a “shock”

Note: Might not satisfy entropy condition.

R. J. LeVeque, University of Washington FVMHP Sec. 13.7



Hugoniot loci for two different states

“All-shock” Riemann solution:

From ql along 1-wave locus to qm,
From qr along 2-wave locus to qm,
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2-shock Riemann solution for shallow water

Given arbitrary states ql and qr, we can solve the Riemann
problem with two shocks.

Choose qm so that qm is on the 1-Hugoniot locus of ql
and also qm is on the 2-Hugoniot locus of qr.

This requires

um = ur+(hm − hr)

√
g

2

(
1

hm
+

1

hr

)
and

um = ul−(hm − hl)

√
g

2

(
1

hm
+

1

hl

)
.

Equate and solve single nonlinear equation for hm.

R. J. LeVeque, University of Washington FVMHP Sec. 13.7



Hugoniot loci for one particular q∗

Green curves are contours of λ1

Note: Increases in one direction only along blue curve.
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Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or
2-wave satisfying the R-H conditions:

Solid portion: states that can be connected by shock satisfying
entropy condition.

Dashed portion: states that can be connected with R-H
condition satisfied but not the physically correct solution.

R. J. LeVeque, University of Washington FVMHP Fig. 13.9



2-shock Riemann solution for shallow water

Colliding with ul = −ur > 0:

Entropy condition: Characteristics should impinge on shock:
λ1 should decrease going from ql to qm,
λ2 should increase going from qr to qm,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R. J. LeVeque, University of Washington FVMHP Fig. 13.10
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Two-shock Riemann solution for shallow water
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Two-shock Riemann solution

With hℓ = hr and uℓ = −ur > 0
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Two-shock Riemann solution

With non-equal states, but uℓ > 0 and ur < 0:
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2-shock Riemann solution for shallow water

Colliding with ul = −ur > 0: Dam break:
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Entropy-violatiing Riemann solution for dam break

Characteristic curves X ′(t) = u(X(t), t)±
√

gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant.

Note that 1-characteristics do not impinge on 1-shock,
2-characteristics impinge on 2-shock.

R. J. LeVeque, University of Washington FVMHP Fig. 13.11



The Riemann problem
Dam break problem for shallow water equations
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General information and links to book, Github, Binder, etc.:
bookstore.siam.org/fa16/bonus

View static version of notebooks at:
www.clawpack.org/riemann_book/html/Index.html
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