
Finite Volume Methods for Hyperbolic Problems

Convergence to Weak Solutions

and Nonlinear Stability

• Lax-Wendroff Theorem
• Entropy consistent finite volume methods
• Nonlinear stability
• Total Variation stability
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Conservation form

The method

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

∆x
∑
i

Qn+1
i = ∆x

∑
i

Qn
i −∆t(F+∞ − F−∞).

Note: an isolated shock must travel at the right speed!

∂

∂t

∫ x2

x1

q(x, t) dx = F (x1)− F (x2).
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Weak solutions to qt + f(q)x = 0

Alternatively, multiply PDE by smooth test function ϕ(x, t), with
compact support (ϕ(x, t) ≡ 0 for |x| and t sufficiently large),
and then integrate over rectangle,∫ ∞

0

∫ ∞

−∞

(
qt + f(q)x

)
ϕ(x, t) dx dt

Then we can integrate by parts to get∫ ∞

0

∫ ∞

−∞

(
qϕt + f(q)ϕx

)
dx dt = −

∫ ∞

−∞
q(x, 0)ϕ(x, 0) dx.

q(x, t) is a weak solution if this holds for all such ϕ.
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Lax-Wendroff Theorem
Suppose the method is conservative and consistent with
qt + f(q)x = 0,

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and Lipschitz continuity of F .

If a sequence of discrete approximations converge to a function
q(x, t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.
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Sketch of proof of Lax-Wendroff Theorem

Conservative numerical method:

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

Multiply by Φn
i : (cell-averaged version of test function ϕ(x, t))

Φn
i Q

n+1
i = Φn

i Q
n
i − ∆t

∆x
Φn
i (F

n
i+1/2 − Fn

i−1/2).

This is true for all values of i and n on each grid.
Now sum over all i and n ≥ 0 to obtain

∞∑
n=0

∞∑
i=−∞

Φn
i (Q

n+1
i −Qn

i ) = −∆t

∆x

∞∑
n=0

∞∑
i=−∞

Φn
i (F

n
i+1/2−F

n
i−1/2).

Use summation by parts to transfer differences to Φ terms.
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Summation by parts

Integration by parts:∫ b

a
u(x)v′(x) dx = u(b)v(b)− u(a)v(a)−

∫ b

a
u′(x)v(x) dx.

Consider sum:
N∑
i=1

ui(vi − vi−1)

= u1(v1 − v0) + u2(v2 − v1) + · · ·
+ uN−1(vN−1 − vN−2) + uN (vN − vN−1)

= −u1v0 − (u2 − u1)v1 − (u3 − u2)v2 + · · ·
− (uN − uN−1)vN−1 + uNvN

= uN−1vN−1 − u1v0 −
N−1∑
i=1

(ui+1 − ui)vi
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Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

∆x∆t

[ ∞∑
n=1

∞∑
i=−∞

(
Φn
i − Φn−1

i

∆t

)
Qn

i

+

∞∑
n=0

∞∑
i=−∞

(
Φn
i+1 − Φn

i

∆x

)
Fn
i−1/2

]
= −∆x

∞∑
i=−∞

Φ0
iQ

0
i .

Can show that any limiting function

Qn
i → q(X,T ) almost everywhere, as ∆x,∆t→ 0

must satisfy weak form of conservation law.

Must use Fn
i−1/2 → f(Qn

i ) almost everywhere, using
consistency of numerical flux Fi−1/2 = F(Qi−1, Qi).
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Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function F(Qi−1, Qi) leads to a
numerical entropy flux Ψ(Qi−1, Qi)

such that the following discrete entropy inequality holds:

η(Qn+1
i ) ≤ η(Qn

i )−
∆t

∆x

[
Ψn

i+1/2 −Ψn
i−1/2

]
.

Then multiply by test function Φn
i , sum and use summation by

parts to get discrete form of integral form of entropy condition.

=⇒ If numerical approximations converge to some function,
then the limiting function satisfies the entropy condition.
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Entropy consistency of Godunov’s method

For Godunov’s method, F (Qi−1, Qi) = f(Q∨|
i−1/2)

where Q∨|
i−1/2 is the constant value

along xi−1/2 in the Riemann solution.

Let Ψn
i−1/2 = ψ(Q∨|

i−1/2)

As usual, let q̃n(x, t) be the exact solution of the conservation
law for tn ≤ t ≤ tn+1 starting with piecewise constant data Qn

i .

If we use exact solution satisfying the entropy condition, then
1

∆x

∫ xi+1/2

xi−1/2

η
(
q̃n(x, tn+1)

)
dx ≤ 1

∆x

∫ xi+1/2

xi−1/2

η
(
q̃n(x, tn)

)
dx

+
1

∆x

∫ tn+1

tn

ψ(q̃n(xi−1/2, t) dt−
1

∆x

∫ tn+1

tn

ψ(q̃n(xi+1/2, t) dt

= η(Qn
i )−

∆t

∆x
(Ψn

i+1/2 −Ψn
i−1/2)
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Entropy consistency of Godunov’s method

1

∆x

∫ xi+1/2

xi−1/2

η
(
q̃n(x, tn+1)

)
dx ≤ η(Qn

i )−
∆t

∆x
(Ψn

i+1/2 −Ψn
i−1/2)

We want:

η(Qn+1
i ) ≤ η(Qn

i )−
∆t

∆x
(Ψn

i+1/2 −Ψn
i−1/2)

We need:

η

(
1

∆x

∫ xi+1/2

xi−1/2

q̃n(x, tn+1) dx

)
≤ 1

∆x

∫ xi+1/2

xi−1/2

η
(
q̃n(x, tn+1)

)
dx.

Follows from Jensen’s inequality for convex functions:

If η′′(q) ≥ 0 then The value of η(q(x)) evaluated at the average value
of q(x) is less than or equal to the average value of η(q(x)), i.e.,

η

(∫
q(x) dx

)
≤
∫
η(q(x)) dx.
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Entropy consistency of Godunov’s method
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Convergence and stability

Let qn be cell averages of exact solution at time tn

Qn = qn + En.

We apply the numerical method to obtain Qn+1:

Qn+1 = N (Qn) = N (qn + En)

and the global error is now

En+1 = Qn+1 − qn+1

= N (qn + En)− qn+1

= N (qn + En)−N (qn) +N (qn)− qn+1

= [N (qn + En)−N (qn)] + ∆t τn.

where τn is the local trucation error introduced in this step.
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Convergence and stability

En+1 = [N (qn + En)−N (qn)] + ∆t τn.

so
∥En+1∥ ≤ ∥N (qn + En)−N (qn)∥+∆t ∥τn∥

If
∥N (qn + En)−N (qn)∥ ≤ ∥En∥

then

∥EN∥ ≤ ∥E0∥+∆t

N−1∑
n=1

∥τ∥

≤ (∥E0∥+ T∥τ∥) (for N∆t = T ).
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Nonlinear stability

Would like to show

∥N (qn + En)−N (qn)∥ ≤ ∥En∥

If method is linear, N (qn +En) = N (qn) +N (En), then enough
to show:

∥N (En)∥ ≤ ∥En∥

But in nonlinear case we need contractivity,

∥N (P )−N (Q)∥ ≤ ∥P −Q∥.
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Nonlinear stability

Entropy stability η(N (Q)) ≤ η(Q) analogous to

∥N (Q)∥ ≤ ∥Q∥

but this does not always imply contractivity.

Kružkov’s Theorem (1970): Entropy stability for η(q) = |q − k|,

(|q − k|)t + ((f(q)− f(k))sgn(q − k))x ≤ 0

for all constants k implies

∥q(·, t)− w(·, t)∥1 ≤ ∥q(·, 0)− w(·, 0)∥1

for all t ≥ 0. (1-norm contractivity)

Numerical methods with this property are at best first order.
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TV Stability

A numerical method is Total Variation Bounded (TVB) if

TV (Qn) ≤ R for all n with n∆t ≤ T

Sufficient condition: TV (Qn+1) ≤ (1 + α∆t)TV (Qn)

TVD method satisfies stronger condition TV (Qn+1) ≤ TV (Qn).

Function space BV: A set of functions such as

{v ∈ L1 : TV (v) ≤ R and Supp(v) ⊂ [−M,M ]}

is a compact set, so any sequence of functions has a
convergent subsequence.
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TV Stability

Suppose a numerical method is
• Total Variation Bounded (TVB),
• Conservative,
• Consistent with flux f(q).

Theorem: Then as we refine the grid our approximations Qn

must be getting closer to the set of weak solutions of
qt + f(q)x = 0.

Proof: Otherwise we could choose a sequence of approx’s that
are bounded away from the set of weak solutions.

This must have a convergent subsequence converging to some
function q(x, t)

But then Lax-Wendroff Theorem =⇒ q is a weak solution.
Contradiction.
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Accuracy at local extrema

TVD methods must clip local extrema:

Clipping by ∆x2 each time step can lead to O(∆x) global errors

TVB methods: Only require TV (Qn+1) ≤ (1 + ∆t)TV (Qn).

Essentially nonoscillatory (ENO) methods
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Order of accuracy isn’t everything

Order s: ∥EN∥ = C(∆x)s + higher order terms.

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth wave packet data.

R. J. LeVeque, University of Washington FVMHP Sec. 8.5



Order of accuracy isn’t everything

Order s: ∥EN∥ = C(∆x)s + higher order terms.

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth wave packet data.

R. J. LeVeque, University of Washington FVMHP Sec. 8.5



Order of accuracy isn’t everything

Order s: ∥EN∥ = C(∆x)s + higher order terms.

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth wave packet data.

The high-resolution method is not formally second-order
accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.
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