Finite Volume Methods for Hyperbolic Problems

Convergence to Weak Solutions and Nonlinear Stability

- Lax-Wendroff Theorem
- Entropy consistent finite volume methods
- Nonlinear stability
- Total Variation stability

Conservation form

The method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

$$
\Delta x \sum_{i} Q_{i}^{n+1}=\Delta x \sum_{i} Q_{i}^{n}-\Delta t\left(F_{+\infty}-F_{-\infty}\right)
$$

Note: an isolated shock must travel at the right speed!

$$
\frac{\partial}{\partial t} \int_{x_{1}}^{x_{2}} q(x, t) d x=F\left(x_{1}\right)-F\left(x_{2}\right)
$$

Weak solutions to $q_{t}+f(q)_{x}=0$

Alternatively, multiply PDE by smooth test function $\phi(x, t)$, with compact support $\quad(\phi(x, t) \equiv 0$ for $|x|$ and t sufficiently large), and then integrate over rectangle,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(q_{t}+f(q)_{x}\right) \phi(x, t) d x d t
$$

Weak solutions to $q_{t}+f(q)_{x}=0$

Alternatively, multiply PDE by smooth test function $\phi(x, t)$, with compact support $\quad(\phi(x, t) \equiv 0$ for $|x|$ and t sufficiently large), and then integrate over rectangle,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(q_{t}+f(q)_{x}\right) \phi(x, t) d x d t
$$

Then we can integrate by parts to get

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(q \phi_{t}+f(q) \phi_{x}\right) d x d t=-\int_{-\infty}^{\infty} q(x, 0) \phi(x, 0) d x .
$$

$q(x, t)$ is a weak solution if this holds for all such ϕ.

Lax-Wendroff Theorem

Suppose the method is conservative and consistent with $q_{t}+f(q)_{x}=0$,

$$
F_{i-1 / 2}=\mathcal{F}\left(Q_{i-1}, Q_{i}\right) \quad \text { with } \mathcal{F}(\bar{q}, \bar{q})=f(\bar{q})
$$

and Lipschitz continuity of \mathcal{F}.
If a sequence of discrete approximations converge to a function $q(x, t)$ as the grid is refined, then this function is a weak solution of the conservation law.

Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.
Also need to satisfy an entropy condition.

Sketch of proof of Lax-Wendroff Theorem

Conservative numerical method:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Multiply by Φ_{i}^{n} : (cell-averaged version of test function $\phi(x, t)$)

$$
\Phi_{i}^{n} Q_{i}^{n+1}=\Phi_{i}^{n} Q_{i}^{n}-\frac{\Delta t}{\Delta x} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Sketch of proof of Lax-Wendroff Theorem

Conservative numerical method:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Multiply by Φ_{i}^{n} : (cell-averaged version of test function $\phi(x, t)$)

$$
\Phi_{i}^{n} Q_{i}^{n+1}=\Phi_{i}^{n} Q_{i}^{n}-\frac{\Delta t}{\Delta x} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

This is true for all values of i and n on each grid.
Now sum over all i and $n \geq 0$ to obtain
$\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_{i}^{n}\left(Q_{i}^{n+1}-Q_{i}^{n}\right)=-\frac{\Delta t}{\Delta x} \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)$.
Use summation by parts to transfer differences to Φ terms.

Summation by parts

Integration by parts:

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

Consider sum:

$$
\sum_{i=1}^{N} u_{i}\left(v_{i}-v_{i-1}\right)
$$

Summation by parts

Integration by parts:

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

Consider sum:

$$
\begin{aligned}
& \sum_{i=1}^{N} u_{i}\left(v_{i}-v_{i-1}\right) \\
& \quad=\quad u_{1}\left(v_{1}-v_{0}\right)+u_{2}\left(v_{2}-v_{1}\right)+\cdots \\
& \quad+u_{N-1}\left(v_{N-1}-v_{N-2}\right)+u_{N}\left(v_{N}-v_{N-1}\right)
\end{aligned}
$$

Summation by parts

Integration by parts:

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

Consider sum:

$$
\begin{aligned}
& \sum_{i=1}^{N} u_{i}\left(v_{i}-v_{i-1}\right) \\
& =u_{1}\left(v_{1}-v_{0}\right)+u_{2}\left(v_{2}-v_{1}\right)+\cdots \\
& \quad+u_{N-1}\left(v_{N-1}-v_{N-2}\right)+u_{N}\left(v_{N}-v_{N-1}\right) \\
& =- \\
& \quad u_{1} v_{0}-\left(u_{2}-u_{1}\right) v_{1}-\left(u_{3}-u_{2}\right) v_{2}+\cdots \\
& \quad-\left(u_{N}-u_{N-1}\right) v_{N-1}+u_{N} v_{N}
\end{aligned}
$$

Summation by parts

Integration by parts:

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

Consider sum:

$$
\begin{aligned}
\sum_{i=1}^{N} u_{i}\left(v_{i}-\right. & \left.v_{i-1}\right) \\
= & u_{1}\left(v_{1}-v_{0}\right)+u_{2}\left(v_{2}-v_{1}\right)+\cdots \\
& \quad+u_{N-1}\left(v_{N-1}-v_{N-2}\right)+u_{N}\left(v_{N}-v_{N-1}\right) \\
= & -u_{1} v_{0}-\left(u_{2}-u_{1}\right) v_{1}-\left(u_{3}-u_{2}\right) v_{2}+\cdots \\
& \quad-\left(u_{N}-u_{N-1}\right) v_{N-1}+u_{N} v_{N} \\
= & u_{N-1} v_{N-1}-u_{1} v_{0}-\sum_{i=1}^{N-1}\left(u_{i+1}-u_{i}\right) v_{i}
\end{aligned}
$$

Sketch of proof of Lax-Wendroff Theorem

Conservative numerical method:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Multiply by Φ_{i}^{n} : (cell-averaged version of test function $\phi(x, t)$)

$$
\Phi_{i}^{n} Q_{i}^{n+1}=\Phi_{i}^{n} Q_{i}^{n}-\frac{\Delta t}{\Delta x} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Sketch of proof of Lax-Wendroff Theorem

Conservative numerical method:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

Multiply by Φ_{i}^{n} : (cell-averaged version of test function $\phi(x, t)$)

$$
\Phi_{i}^{n} Q_{i}^{n+1}=\Phi_{i}^{n} Q_{i}^{n}-\frac{\Delta t}{\Delta x} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

This is true for all values of i and n on each grid.
Now sum over all i and $n \geq 0$ to obtain
$\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_{i}^{n}\left(Q_{i}^{n+1}-Q_{i}^{n}\right)=-\frac{\Delta t}{\Delta x} \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_{i}^{n}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)$.
Use summation by parts to transfer differences to Φ terms.

Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

$$
\begin{aligned}
\Delta x \Delta t\left[\sum_{n=1}^{\infty}\right. & \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i}^{n}-\Phi_{i}^{n-1}}{\Delta t}\right) Q_{i}^{n} \\
& \left.+\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i+1}^{n}-\Phi_{i}^{n}}{\Delta x}\right) F_{i-1 / 2}^{n}\right]=-\Delta x \sum_{i=-\infty}^{\infty} \Phi_{i}^{0} Q_{i}^{0}
\end{aligned}
$$

Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

$$
\begin{aligned}
\Delta x \Delta t\left[\sum_{n=1}^{\infty}\right. & \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i}^{n}-\Phi_{i}^{n-1}}{\Delta t}\right) Q_{i}^{n} \\
& \left.+\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i+1}^{n}-\Phi_{i}^{n}}{\Delta x}\right) F_{i-1 / 2}^{n}\right]=-\Delta x \sum_{i=-\infty}^{\infty} \Phi_{i}^{0} Q_{i}^{0}
\end{aligned}
$$

Can show that any limiting function

$$
Q_{i}^{n} \rightarrow q(X, T) \quad \text { almost everywhere, as } \Delta x, \Delta t \rightarrow 0
$$

must satisfy weak form of conservation law.

Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

$$
\begin{aligned}
\Delta x \Delta t\left[\sum_{n=1}^{\infty}\right. & \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i}^{n}-\Phi_{i}^{n-1}}{\Delta t}\right) Q_{i}^{n} \\
& \left.+\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty}\left(\frac{\Phi_{i+1}^{n}-\Phi_{i}^{n}}{\Delta x}\right) F_{i-1 / 2}^{n}\right]=-\Delta x \sum_{i=-\infty}^{\infty} \Phi_{i}^{0} Q_{i}^{0}
\end{aligned}
$$

Can show that any limiting function

$$
Q_{i}^{n} \rightarrow q(X, T) \quad \text { almost everywhere, as } \Delta x, \Delta t \rightarrow 0
$$

must satisfy weak form of conservation law.
Must use $F_{i-1 / 2}^{n} \rightarrow f\left(Q_{i}^{n}\right)$ almost everywhere, using consistency of numerical flux $F_{i-1 / 2}=\mathcal{F}\left(Q_{i-1}, Q_{i}\right)$.

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)$ leads to a numerical entropy flux $\Psi\left(Q_{i-1}, Q_{i}\right)$
such that the following discrete entropy inequality holds:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left[\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right]
$$

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)$ leads to a numerical entropy flux $\Psi\left(Q_{i-1}, Q_{i}\right)$
such that the following discrete entropy inequality holds:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left[\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right]
$$

Then multiply by test function Φ_{i}^{n}, sum and use summation by parts to get discrete form of integral form of entropy condition.

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)$ leads to a numerical entropy flux $\Psi\left(Q_{i-1}, Q_{i}\right)$
such that the following discrete entropy inequality holds:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left[\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right]
$$

Then multiply by test function Φ_{i}^{n}, sum and use summation by parts to get discrete form of integral form of entropy condition.
\Longrightarrow If numerical approximations converge to some function, then the limiting function satisfies the entropy condition.

Entropy consistency of Godunov's method

For Godunov's method, $F\left(Q_{i-1}, Q_{i}\right)=f\left(Q_{i-1 / 2}^{\downarrow}\right)$ where $Q_{i-1 / 2}^{\downarrow}$ is the constant value along $x_{i-1 / 2}$ in the Riemann solution.

Let $\Psi_{i-1 / 2}^{n}=\psi\left(Q_{i-1 / 2}^{\downarrow}\right)$

Entropy consistency of Godunov's method

For Godunov's method, $F\left(Q_{i-1}, Q_{i}\right)=f\left(Q_{i-1 / 2}^{\downarrow}\right)$
where $Q_{i-1 / 2}^{\downarrow}$ is the constant value along $x_{i-1 / 2}$ in the Riemann solution.
Let $\Psi_{i-1 / 2}^{n}=\psi\left(Q_{i-1 / 2}^{\Downarrow}\right)$
As usual, let $\tilde{q}^{n}(x, t)$ be the exact solution of the conservation law for $t_{n} \leq t \leq t_{n+1}$ starting with piecewise constant data Q_{i}^{n}.

Entropy consistency of Godunov's method

For Godunov's method, $F\left(Q_{i-1}, Q_{i}\right)=f\left(Q_{i-1 / 2}^{\Downarrow}\right)$
where $Q_{i-1 / 2}^{\downarrow}$ is the constant value along $x_{i-1 / 2}$ in the Riemann solution.
Let $\Psi_{i-1 / 2}^{n}=\psi\left(Q_{i-1 / 2}^{\Downarrow}\right)$
As usual, let $\tilde{q}^{n}(x, t)$ be the exact solution of the conservation law for $t_{n} \leq t \leq t_{n+1}$ starting with piecewise constant data Q_{i}^{n}.
If we use exact solution satisfying the entropy condition, then

$$
\begin{aligned}
& \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n}\right)\right) d x \\
&+\frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \psi\left(\tilde{q}^{n}\left(x_{i-1 / 2}, t\right) d t-\frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \psi\left(\tilde{q}^{n}\left(x_{i+1 / 2}, t\right) d t\right.\right.
\end{aligned}
$$

Entropy consistency of Godunov's method

For Godunov's method, $F\left(Q_{i-1}, Q_{i}\right)=f\left(Q_{i-1 / 2}^{\downarrow}\right)$
where $Q_{i-1 / 2}^{\downarrow}$ is the constant value along $x_{i-1 / 2}$ in the Riemann solution.
Let $\Psi_{i-1 / 2}^{n}=\psi\left(Q_{i-1 / 2}^{\downarrow}\right)$
As usual, let $\tilde{q}^{n}(x, t)$ be the exact solution of the conservation law for $t_{n} \leq t \leq t_{n+1}$ starting with piecewise constant data Q_{i}^{n}.
If we use exact solution satisfying the entropy condition, then

$$
\begin{aligned}
& \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n}\right)\right) d x \\
& +\frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \psi\left(\tilde{q}^{n}\left(x_{i-1 / 2}, t\right) d t-\frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \psi\left(\tilde{q}^{n}\left(x_{i+1 / 2}, t\right) d t\right.\right. \\
& \quad=\eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
\end{aligned}
$$

Entropy consistency of Godunov's method

$$
\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

Entropy consistency of Godunov's method

$$
\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

We want:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

Entropy consistency of Godunov's method

$$
\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

We want:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

We need:

$$
\eta\left(\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \tilde{q}^{n}\left(x, t_{n+1}\right) d x\right) \leq \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x
$$

Entropy consistency of Godunov's method

$$
\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

We want:

$$
\eta\left(Q_{i}^{n+1}\right) \leq \eta\left(Q_{i}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\Psi_{i+1 / 2}^{n}-\Psi_{i-1 / 2}^{n}\right)
$$

We need:

$$
\eta\left(\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \tilde{q}^{n}\left(x, t_{n+1}\right) d x\right) \leq \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \eta\left(\tilde{q}^{n}\left(x, t_{n+1}\right)\right) d x
$$

Follows from Jensen's inequality for convex functions:
If $\eta^{\prime \prime}(q) \geq 0$ then The value of $\eta(q(x))$ evaluated at the average value of $q(x)$ is less than or equal to the average value of $\eta(q(x))$, i.e.,

$$
\eta\left(\int q(x) d x\right) \leq \int \eta(q(x)) d x
$$

Convergence and stability

Let q^{n} be cell averages of exact solution at time t_{n}

$$
Q^{n}=q^{n}+E^{n}
$$

We apply the numerical method to obtain Q^{n+1} :

$$
Q^{n+1}=\mathcal{N}\left(Q^{n}\right)=\mathcal{N}\left(q^{n}+E^{n}\right)
$$

and the global error is now

$$
\begin{aligned}
E^{n+1} & =Q^{n+1}-q^{n+1} \\
& =\mathcal{N}\left(q^{n}+E^{n}\right)-q^{n+1} \\
& =\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)+\mathcal{N}\left(q^{n}\right)-q^{n+1} \\
& =\left[\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right]+\Delta t \tau^{n}
\end{aligned}
$$

where τ^{n} is the local trucation error introduced in this step.

Convergence and stability

$$
E^{n+1}=\left[\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right]+\Delta t \tau^{n}
$$

so

$$
\left\|E^{n+1}\right\| \leq\left\|\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right\|+\Delta t\left\|\tau^{n}\right\|
$$

If

$$
\left\|\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right\| \leq\left\|E^{n}\right\|
$$

then

$$
\begin{aligned}
\left\|E^{N}\right\| & \leq\left\|E^{0}\right\|+\Delta t \sum_{n=1}^{N-1}\|\tau\| \\
& \leq\left(\left\|E^{0}\right\|+T\|\tau\|\right) \quad(\text { for } N \Delta t=T)
\end{aligned}
$$

Nonlinear stability

Would like to show

$$
\left\|\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right\| \leq\left\|E^{n}\right\|
$$

If method is linear, $\mathcal{N}\left(q^{n}+E^{n}\right)=\mathcal{N}\left(q^{n}\right)+\mathcal{N}\left(E^{n}\right)$, then enough to show:

$$
\left\|\mathcal{N}\left(E^{n}\right)\right\| \leq\left\|E^{n}\right\|
$$

Nonlinear stability

Would like to show

$$
\left\|\mathcal{N}\left(q^{n}+E^{n}\right)-\mathcal{N}\left(q^{n}\right)\right\| \leq\left\|E^{n}\right\|
$$

If method is linear, $\mathcal{N}\left(q^{n}+E^{n}\right)=\mathcal{N}\left(q^{n}\right)+\mathcal{N}\left(E^{n}\right)$, then enough to show:

$$
\left\|\mathcal{N}\left(E^{n}\right)\right\| \leq\left\|E^{n}\right\|
$$

But in nonlinear case we need contractivity,

$$
\|\mathcal{N}(P)-\mathcal{N}(Q)\| \leq\|P-Q\|
$$

Nonlinear stability

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to

$$
\|\mathcal{N}(Q)\| \leq\|Q\|
$$

but this does not always imply contractivity.

Nonlinear stability

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to

$$
\|\mathcal{N}(Q)\| \leq\|Q\|
$$

but this does not always imply contractivity.
Kružkov's Theorem (1970): Entropy stability for $\eta(q)=|q-k|$,

$$
(|q-k|)_{t}+((f(q)-f(k)) \operatorname{sgn}(q-k))_{x} \leq 0
$$

for all constants k implies

$$
\|q(\cdot, t)-w(\cdot, t)\|_{1} \leq\|q(\cdot, 0)-w(\cdot, 0)\|_{1}
$$

for all $t \geq 0$. (1-norm contractivity)

Nonlinear stability

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to

$$
\|\mathcal{N}(Q)\| \leq\|Q\|
$$

but this does not always imply contractivity.
Kružkov's Theorem (1970): Entropy stability for $\eta(q)=|q-k|$,

$$
(|q-k|)_{t}+((f(q)-f(k)) \operatorname{sgn}(q-k))_{x} \leq 0
$$

for all constants k implies

$$
\|q(\cdot, t)-w(\cdot, t)\|_{1} \leq\|q(\cdot, 0)-w(\cdot, 0)\|_{1}
$$

for all $t \geq 0$. (1-norm contractivity)
Numerical methods with this property are at best first order.

TV Stability

A numerical method is Total Variation Bounded (TVB) if

$$
T V\left(Q^{n}\right) \leq R \quad \text { for all } n \text { with } n \Delta t \leq T
$$

TV Stability

A numerical method is Total Variation Bounded (TVB) if

$$
T V\left(Q^{n}\right) \leq R \quad \text { for all } n \text { with } n \Delta t \leq T
$$

Sufficient condition: $T V\left(Q^{n+1}\right) \leq(1+\alpha \Delta t) T V\left(Q^{n}\right)$
TVD method satisfies stronger condition $T V\left(Q^{n+1}\right) \leq T V\left(Q^{n}\right)$.

TV Stability

A numerical method is Total Variation Bounded (TVB) if

$$
T V\left(Q^{n}\right) \leq R \text { for all } n \text { with } n \Delta t \leq T
$$

Sufficient condition: $T V\left(Q^{n+1}\right) \leq(1+\alpha \Delta t) T V\left(Q^{n}\right)$
TVD method satisfies stronger condition $T V\left(Q^{n+1}\right) \leq T V\left(Q^{n}\right)$.

Function space BV: A set of functions such as

$$
\left\{v \in L_{1}: T V(v) \leq R \text { and } \operatorname{Supp}(v) \subset[-M, M]\right\}
$$

is a compact set, so any sequence of functions has a convergent subsequence.

TV Stability

Suppose a numerical method is

- Total Variation Bounded (TVB),
- Conservative,
- Consistent with flux $f(q)$.

TV Stability

Suppose a numerical method is

- Total Variation Bounded (TVB),
- Conservative,
- Consistent with flux $f(q)$.

Theorem: Then as we refine the grid our approximations Q^{n} must be getting closer to the set of weak solutions of $q_{t}+f(q)_{x}=0$.

TV Stability

Suppose a numerical method is

- Total Variation Bounded (TVB),
- Conservative,
- Consistent with flux $f(q)$.

Theorem: Then as we refine the grid our approximations Q^{n} must be getting closer to the set of weak solutions of $q_{t}+f(q)_{x}=0$.
Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

TV Stability

Suppose a numerical method is

- Total Variation Bounded (TVB),
- Conservative,
- Consistent with flux $f(q)$.

Theorem: Then as we refine the grid our approximations Q^{n} must be getting closer to the set of weak solutions of $q_{t}+f(q)_{x}=0$.
Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

This must have a convergent subsequence converging to some function $q(x, t)$

TV Stability

Suppose a numerical method is

- Total Variation Bounded (TVB),
- Conservative,
- Consistent with flux $f(q)$.

Theorem: Then as we refine the grid our approximations Q^{n} must be getting closer to the set of weak solutions of $q_{t}+f(q)_{x}=0$.
Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

This must have a convergent subsequence converging to some function $q(x, t)$
But then Lax-Wendroff Theorem $\Longrightarrow q$ is a weak solution. Contradiction.

Accuracy at local extrema

TVD methods must clip local extrema:

Clipping by Δx^{2} each time step can lead to $\mathcal{O}(\Delta x)$ global errors

Accuracy at local extrema

TVD methods must clip local extrema:

Clipping by Δx^{2} each time step can lead to $\mathcal{O}(\Delta x)$ global errors
TVB methods: Only require $T V\left(Q^{n+1}\right) \leq(1+\Delta t) T V\left(Q^{n}\right)$.
Essentially nonoscillatory (ENO) methods

Order of accuracy isn't everything

Order $s: \quad\left\|E^{N}\right\|=C(\Delta x)^{s}+$ higher order terms.

Order of accuracy isn't everything

Order $s: \quad\left\|E^{N}\right\|=C(\Delta x)^{s}+$ higher order terms.
Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth wave packet data.

Order of accuracy isn't everything

Order $s: \quad\left\|E^{N}\right\|=C(\Delta x)^{s}+$ higher order terms.
Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth wave packet data.

The high-resolution method is not formally second-order accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.

R. J. LeVeque, University of Washington

FVMHP Sec. 8.5

