Finite Volume Methods for Hyperbolic Problems

Convergence to Weak Solutions and Nonlinear Stability

- Lax-Wendroff Theorem
- Entropy consistent finite volume methods
- Nonlinear stability
- Total Variation stability

Conservation form

The method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

$$\Delta x \sum_{i} Q_i^{n+1} = \Delta x \sum_{i} Q_i^n - \Delta t (F_{+\infty} - F_{-\infty}).$$

Note: an isolated shock must travel at the right speed!

$$\frac{\partial}{\partial t} \int_{x_1}^{x_2} q(x,t) \, dx = F(x_1) - F(x_2).$$

Alternatively, multiply PDE by smooth test function $\phi(x, t)$, with compact support $(\phi(x, t) \equiv 0 \text{ for } |x| \text{ and } t \text{ sufficiently large})$, and then integrate over rectangle,

$$\int_0^\infty \int_{-\infty}^\infty \left(q_t + f(q)_x \right) \phi(x,t) \, dx \, dt$$

Alternatively, multiply PDE by smooth test function $\phi(x, t)$, with compact support $(\phi(x, t) \equiv 0 \text{ for } |x| \text{ and } t \text{ sufficiently large})$, and then integrate over rectangle,

$$\int_0^\infty \int_{-\infty}^\infty \left(q_t + f(q)_x \right) \phi(x,t) \, dx \, dt$$

Then we can integrate by parts to get

$$\int_0^\infty \int_{-\infty}^\infty \left(q\phi_t + f(q)\phi_x \right) dx \, dt = -\int_{-\infty}^\infty q(x,0)\phi(x,0) \, dx.$$

q(x,t) is a weak solution if this holds for all such ϕ .

Lax-Wendroff Theorem

Suppose the method is conservative and consistent with $q_t + f(q)_x = 0$,

$$F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i) \quad \text{with } \mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$$

and Lipschitz continuity of \mathcal{F} .

If a sequence of discrete approximations converge to a function q(x,t) as the grid is refined, then this function is a weak solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.

Conservative numerical method:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

Multiply by Φ_i^n : (cell-averaged version of test function $\phi(x,t)$)

$$\Phi_i^n Q_i^{n+1} = \Phi_i^n Q_i^n - \frac{\Delta t}{\Delta x} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

Conservative numerical method:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

Multiply by Φ_i^n : (cell-averaged version of test function $\phi(x,t)$)

$$\Phi_i^n Q_i^{n+1} = \Phi_i^n Q_i^n - \frac{\Delta t}{\Delta x} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

This is true for all values of *i* and *n* on each grid. Now sum over all *i* and $n \ge 0$ to obtain

$$\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (Q_i^{n+1} - Q_i^n) = -\frac{\Delta t}{\Delta x} \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

Use summation by parts to transfer differences to Φ terms.

Integration by parts:

$$\int_{a}^{b} u(x)v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, dx.$$

$$\sum_{i=1}^{N} u_i (v_i - v_{i-1})$$

Integration by parts:

$$\int_{a}^{b} u(x)v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, dx.$$

$$\sum_{i=1}^{N} u_i(v_i - v_{i-1})$$

= $u_1(v_1 - v_0) + u_2(v_2 - v_1) + \cdots$
+ $u_{N-1}(v_{N-1} - v_{N-2}) + u_N(v_N - v_{N-1})$

Integration by parts:

$$\int_{a}^{b} u(x)v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, dx.$$

$$\sum_{i=1}^{N} u_i(v_i - v_{i-1})$$

= $u_1(v_1 - v_0) + u_2(v_2 - v_1) + \cdots$
+ $u_{N-1}(v_{N-1} - v_{N-2}) + u_N(v_N - v_{N-1})$
= $-u_1v_0 - (u_2 - u_1)v_1 - (u_3 - u_2)v_2 + \cdots$
- $(u_N - u_{N-1})v_{N-1} + u_Nv_N$

Integration by parts:

$$\int_{a}^{b} u(x)v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, dx.$$

$$\sum_{i=1}^{N} u_i(v_i - v_{i-1})$$

$$= u_1(v_1 - v_0) + u_2(v_2 - v_1) + \cdots$$

$$+ u_{N-1}(v_{N-1} - v_{N-2}) + u_N(v_N - v_{N-1})$$

$$= -u_1v_0 - (u_2 - u_1)v_1 - (u_3 - u_2)v_2 + \cdots$$

$$- (u_N - u_{N-1})v_{N-1} + u_Nv_N$$

$$= u_{N-1}v_{N-1} - u_1v_0 - \sum_{i=1}^{N-1} (u_{i+1} - u_i)v_i$$

Conservative numerical method:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

Multiply by Φ_i^n : (cell-averaged version of test function $\phi(x,t)$)

$$\Phi_i^n Q_i^{n+1} = \Phi_i^n Q_i^n - \frac{\Delta t}{\Delta x} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

Conservative numerical method:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

Multiply by Φ_i^n : (cell-averaged version of test function $\phi(x,t)$)

$$\Phi_i^n Q_i^{n+1} = \Phi_i^n Q_i^n - \frac{\Delta t}{\Delta x} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

This is true for all values of *i* and *n* on each grid. Now sum over all *i* and $n \ge 0$ to obtain

$$\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (Q_i^{n+1} - Q_i^n) = -\frac{\Delta t}{\Delta x} \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

Use summation by parts to transfer differences to Φ terms.

Obtain analog of weak form of conservation law:

$$\Delta x \Delta t \left[\sum_{n=1}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_i^n - \Phi_i^{n-1}}{\Delta t} \right) Q_i^n + \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_{i+1}^n - \Phi_i^n}{\Delta x} \right) F_{i-1/2}^n \right] = -\Delta x \sum_{i=-\infty}^{\infty} \Phi_i^0 Q_i^0.$$

Obtain analog of weak form of conservation law:

$$\begin{split} \Delta x \Delta t \left[\sum_{n=1}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_i^n - \Phi_i^{n-1}}{\Delta t} \right) Q_i^n \right. \\ \left. + \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_{i+1}^n - \Phi_i^n}{\Delta x} \right) F_{i-1/2}^n \right] = -\Delta x \sum_{i=-\infty}^{\infty} \Phi_i^0 Q_i^0. \end{split}$$

Can show that any limiting function

 $Q_i^n \to q(X,T)$ almost everywhere, as $\Delta x, \Delta t \to 0$

must satisfy weak form of conservation law.

Obtain analog of weak form of conservation law:

$$\begin{split} \Delta x \Delta t \left[\sum_{n=1}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_i^n - \Phi_i^{n-1}}{\Delta t} \right) Q_i^n \right. \\ \left. + \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \left(\frac{\Phi_{i+1}^n - \Phi_i^n}{\Delta x} \right) F_{i-1/2}^n \right] = -\Delta x \sum_{i=-\infty}^{\infty} \Phi_i^0 Q_i^0. \end{split}$$

Can show that any limiting function

 $Q_i^n \to q(X,T)$ almost everywhere, as $\Delta x, \Delta t \to 0$

must satisfy weak form of conservation law.

Must use $F_{i-1/2}^n \to f(Q_i^n)$ almost everywhere, using consistency of numerical flux $F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i)$.

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}(Q_{i-1}, Q_i)$ leads to a numerical entropy flux $\Psi(Q_{i-1}, Q_i)$

such that the following discrete entropy inequality holds:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} \left[\Psi_{i+1/2}^n - \Psi_{i-1/2}^n \right].$$

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}(Q_{i-1}, Q_i)$ leads to a numerical entropy flux $\Psi(Q_{i-1}, Q_i)$

such that the following discrete entropy inequality holds:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} \left[\Psi_{i+1/2}^n - \Psi_{i-1/2}^n \right].$$

Then multiply by test function Φ_i^n , sum and use summation by parts to get discrete form of integral form of entropy condition.

Analog of Lax-Wendroff proof for entropy

Suppose the numerical flux function $\mathcal{F}(Q_{i-1}, Q_i)$ leads to a numerical entropy flux $\Psi(Q_{i-1}, Q_i)$

such that the following discrete entropy inequality holds:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} \left[\Psi_{i+1/2}^n - \Psi_{i-1/2}^n \right].$$

Then multiply by test function Φ_i^n , sum and use summation by parts to get discrete form of integral form of entropy condition.

 \implies If numerical approximations converge to some function, then the limiting function satisfies the entropy condition.

For Godunov's method, $F(Q_{i-1}, Q_i) = f(Q_{i-1/2}^{\psi})$

where $Q_{i-1/2}^{\psi}$ is the constant value along $x_{i-1/2}$ in the Riemann solution.

Let $\Psi_{i-1/2}^n = \psi(Q_{i-1/2}^{\bigvee})$

For Godunov's method, $F(Q_{i-1}, Q_i) = f(Q_{i-1/2}^{\vee})$

where $Q_{i-1/2}^{\psi}$ is the constant value along $x_{i-1/2}$ in the Riemann solution.

Let
$$\Psi_{i-1/2}^n = \psi(Q_{i-1/2}^{\bigvee})$$

As usual, let $\tilde{q}^n(x,t)$ be the exact solution of the conservation law for $t_n \leq t \leq t_{n+1}$ starting with piecewise constant data Q_i^n .

For Godunov's method, $F(Q_{i-1}, Q_i) = f(Q_{i-1/2}^{\vee})$

where $Q_{i-1/2}^{\psi}$ is the constant value along $x_{i-1/2}$ in the Riemann solution.

Let
$$\Psi_{i-1/2}^n = \psi(Q_{i-1/2}^{\bigvee})$$

As usual, let $\tilde{q}^n(x,t)$ be the exact solution of the conservation law for $t_n \leq t \leq t_{n+1}$ starting with piecewise constant data Q_i^n .

If we use exact solution satisfying the entropy condition, then

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \big(\tilde{q}^n(x, t_{n+1}) \big) \, dx \leq \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \big(\tilde{q}^n(x, t_n) \big) \, dx \\
+ \frac{1}{\Delta x} \int_{t_n}^{t_{n+1}} \psi \big(\tilde{q}^n(x_{i-1/2}, t) \, dt - \frac{1}{\Delta x} \int_{t_n}^{t_{n+1}} \psi \big(\tilde{q}^n(x_{i+1/2}, t) \, dt \big) \, dt$$

For Godunov's method, $F(Q_{i-1}, Q_i) = f(Q_{i-1/2}^{\vee})$

where $Q_{i-1/2}^{\psi}$ is the constant value along $x_{i-1/2}$ in the Riemann solution.

Let
$$\Psi_{i-1/2}^n = \psi(Q_{i-1/2}^{\bigvee})$$

As usual, let $\tilde{q}^n(x,t)$ be the exact solution of the conservation law for $t_n \leq t \leq t_{n+1}$ starting with piecewise constant data Q_i^n .

If we use exact solution satisfying the entropy condition, then

$$\begin{aligned} \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \big(\tilde{q}^n(x, t_{n+1}) \big) \, dx &\leq \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \big(\tilde{q}^n(x, t_n) \big) \, dx \\ &+ \frac{1}{\Delta x} \int_{t_n}^{t_{n+1}} \psi \big(\tilde{q}^n(x_{i-1/2}, t) \, dt - \frac{1}{\Delta x} \int_{t_n}^{t_{n+1}} \psi \big(\tilde{q}^n(x_{i+1/2}, t) \, dt \\ &= \eta (Q_i^n) - \frac{\Delta t}{\Delta x} \big(\Psi_{i+1/2}^n - \Psi_{i-1/2}^n \big) \end{aligned}$$

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \left(\tilde{q}^n(x, t_{n+1}) \right) dx \leq \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \left(\tilde{q}^n(x, t_{n+1}) \right) dx \leq \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

We want:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \left(\tilde{q}^n(x, t_{n+1}) \right) dx \leq \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

We want:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

We need:

$$\eta\left(\frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}\tilde{q}^n(x,t_{n+1})\,dx\right) \leq \frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}\eta\big(\tilde{q}^n(x,t_{n+1})\big)\,dx.$$

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \eta \big(\tilde{q}^n(x, t_{n+1}) \big) \, dx \, \leq \, \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

We want:

$$\eta(Q_i^{n+1}) \le \eta(Q_i^n) - \frac{\Delta t}{\Delta x} (\Psi_{i+1/2}^n - \Psi_{i-1/2}^n)$$

We need:

$$\eta\left(\frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}\tilde{q}^n(x,t_{n+1})\,dx\right) \leq \frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}\eta\big(\tilde{q}^n(x,t_{n+1})\big)\,dx.$$

Follows from Jensen's inequality for convex functions:

If $\eta''(q) \ge 0$ then The value of $\eta(q(x))$ evaluated at the average value of q(x) is less than or equal to the average value of $\eta(q(x))$, i.e.,

$$\eta\left(\int q(x)\,dx\right) \leq \int \eta(q(x))\,dx.$$

Convergence and stability

Let q^n be cell averages of exact solution at time t_n

$$Q^n = q^n + E^n.$$

We apply the numerical method to obtain Q^{n+1} :

$$Q^{n+1} = \mathcal{N}(Q^n) = \mathcal{N}(q^n + E^n)$$

and the global error is now

$$E^{n+1} = Q^{n+1} - q^{n+1}$$

= $\mathcal{N}(q^n + E^n) - q^{n+1}$
= $\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n) + \mathcal{N}(q^n) - q^{n+1}$
= $[\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)] + \Delta t \tau^n.$

where τ^n is the local trucation error introduced in this step.

Convergence and stability

$$E^{n+1} = \left[\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)\right] + \Delta t \tau^n.$$

so
$$\|E^{n+1}\| \le \|\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)\| + \Delta t \|\tau^n\|$$

If
$$\|\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)\| \le \|E^n\|$$

then

$$\begin{split} \|E^N\| &\leq \|E^0\| + \Delta t \sum_{n=1}^{N-1} \|\tau\| \\ &\leq (\|E^0\| + T\|\tau\|) \quad \text{ (for } N\Delta t = T\text{)}. \end{split}$$

Would like to show

$$\left\|\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)\right\| \le \|E^n\|$$

If method is linear, $\mathcal{N}(q^n + E^n) = \mathcal{N}(q^n) + \mathcal{N}(E^n)$, then enough to show:

 $\|\mathcal{N}(E^n)\| \le \|E^n\|$

Would like to show

$$\left\|\mathcal{N}(q^n + E^n) - \mathcal{N}(q^n)\right\| \le \|E^n\|$$

If method is linear, $\mathcal{N}(q^n + E^n) = \mathcal{N}(q^n) + \mathcal{N}(E^n)$, then enough to show:

 $\|\mathcal{N}(E^n)\| \le \|E^n\|$

But in nonlinear case we need contractivity,

$$\|\mathcal{N}(P) - \mathcal{N}(Q)\| \le \|P - Q\|.$$

Nonlinear stability

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to

$\|\mathcal{N}(Q)\| \leq \|Q\|$

but this does not always imply contractivity.

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to $\|\mathcal{N}(Q)\| \leq \|Q\|$

but this does not always imply contractivity.

Kružkov's Theorem (1970): Entropy stability for $\eta(q) = |q - k|$,

$$(|q-k|)_t + ((f(q)-f(k))\mathsf{sgn}(q-k))_x \leq 0$$

for all constants k implies

$$||q(\cdot,t) - w(\cdot,t)||_1 \le ||q(\cdot,0) - w(\cdot,0)||_1$$

for all $t \ge 0$. (1-norm contractivity)

Entropy stability $\eta(\mathcal{N}(Q)) \leq \eta(Q)$ analogous to $\|\mathcal{N}(Q)\| \leq \|Q\|$

but this does not always imply contractivity.

Kružkov's Theorem (1970): Entropy stability for $\eta(q) = |q - k|$,

$$(|q-k|)_t + ((f(q)-f(k))\mathsf{sgn}(q-k))_x \leq 0$$

for all constants k implies

$$||q(\cdot,t) - w(\cdot,t)||_1 \le ||q(\cdot,0) - w(\cdot,0)||_1$$

for all $t \ge 0$. (1-norm contractivity)

Numerical methods with this property are at best first order.

A numerical method is Total Variation Bounded (TVB) if

$$TV(Q^n) \leq R$$
 for all n with $n\Delta t \leq T$

A numerical method is Total Variation Bounded (TVB) if

 $TV(Q^n) \leq R$ for all n with $n\Delta t \leq T$

Sufficient condition: $TV(Q^{n+1}) \leq (1 + \alpha \Delta t)TV(Q^n)$

TVD method satisfies stronger condition $TV(Q^{n+1}) \leq TV(Q^n)$.

A numerical method is Total Variation Bounded (TVB) if

 $TV(Q^n) \leq R$ for all n with $n\Delta t \leq T$

Sufficient condition: $TV(Q^{n+1}) \leq (1 + \alpha \Delta t)TV(Q^n)$

TVD method satisfies stronger condition $TV(Q^{n+1}) \leq TV(Q^n)$.

Function space BV: A set of functions such as

 $\{v \in L_1 : TV(v) \leq R \text{ and } Supp(v) \subset [-M, M]\}$

is a compact set, so any sequence of functions has a convergent subsequence.

Suppose a numerical method is

- Total Variation Bounded (TVB),
- · Conservative,
- Consistent with flux f(q).

Suppose a numerical method is

- Total Variation Bounded (TVB),
- · Conservative,
- Consistent with flux f(q).

Theorem: Then as we refine the grid our approximations Q^n must be getting closer to the set of weak solutions of $q_t + f(q)_x = 0$.

Suppose a numerical method is

- Total Variation Bounded (TVB),
- · Conservative,
- Consistent with flux f(q).

Theorem: Then as we refine the grid our approximations Q^n must be getting closer to the set of weak solutions of $q_t + f(q)_x = 0$.

Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

Suppose a numerical method is

- Total Variation Bounded (TVB),
- · Conservative,
- Consistent with flux f(q).

Theorem: Then as we refine the grid our approximations Q^n must be getting closer to the set of weak solutions of $q_t + f(q)_x = 0$.

Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

This must have a convergent subsequence converging to some function $q(\boldsymbol{x},t)$

Suppose a numerical method is

- Total Variation Bounded (TVB),
- · Conservative,
- Consistent with flux f(q).

Theorem: Then as we refine the grid our approximations Q^n must be getting closer to the set of weak solutions of $q_t + f(q)_x = 0$.

Proof: Otherwise we could choose a sequence of approx's that are bounded away from the set of weak solutions.

This must have a convergent subsequence converging to some function $q(\boldsymbol{x},t)$

But then Lax-Wendroff Theorem $\implies q$ is a weak solution. Contradiction.

Accuracy at local extrema

TVD methods must clip local extrema:

Clipping by Δx^2 each time step can lead to $\mathcal{O}(\Delta x)$ global errors

Accuracy at local extrema

TVD methods must clip local extrema:

Clipping by Δx^2 each time step can lead to $\mathcal{O}(\Delta x)$ global errors

TVB methods: Only require $TV(Q^{n+1}) \leq (1 + \Delta t)TV(Q^n)$.

Essentially nonoscillatory (ENO) methods

Order of accuracy isn't everything

Order s: $||E^N|| = C(\Delta x)^s + \text{ higher order terms.}$

Order s: $||E^N|| = C(\Delta x)^s + \text{ higher order terms.}$

Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth wave packet data.

Order of accuracy isn't everything

Order s: $||E^N|| = C(\Delta x)^s + \text{ higher order terms.}$

Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth wave packet data.

The high-resolution method is not formally second-order accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.

R. J. LeVeque, University of Washington

FVMHP Sec. 8.5