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Admissible Solutions and

Entropy Functions

• Weak solutions and conservation form
• Admissibility / entropy conditions
• Entropy functions
• Weak form of entropy condition
• Relation to vanishing viscosity solution
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Weak solutions to qt + f(q)x = 0

q(x, t) is a weak solution if it satisfies the integral form of the
conservation law over all rectangles in space-time,∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=

∫ t2

t1

f(q(x1, t)) dt−
∫ t2

t1

f(q(x2, t)) dt

Obtained by integrating

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

from tn to tn+1.
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Weak solutions to qt + f(q)x = 0

Alternatively, multiply PDE by smooth test function ϕ(x, t), with
compact support (ϕ(x, t) ≡ 0 for |x| and t sufficiently large),
and then integrate over rectangle,∫ ∞

0

∫ ∞

−∞

(
qt + f(q)x

)
ϕ(x, t) dx dt

Then we can integrate by parts to get∫ ∞

0

∫ ∞

−∞

(
qϕt + f(q)ϕx

)
dx dt = −

∫ ∞

−∞
q(x, 0)ϕ(x, 0) dx.

q(x, t) is a weak solution if this holds for all such ϕ.
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Weak solutions to qt + f(q)x = 0

A function q(x, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

• The PDE is satisfied where q is smooth,

• The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!

Other admissibility conditions needed to pick out the
physically correct weak solution, e.g.

• Vanishing viscosity limit,

• “Entropy conditions”
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Conservation form

The method

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

∆x
∑
i

Qn+1
i = ∆x

∑
i

Qn
i −∆t(F+∞ − F−∞).

Note: an isolated shock must travel at the right speed!

∂

∂t

∫ x2

x1

q(x, t) dx = F (x1)− F (x2).

R. J. LeVeque, University of Washington FVMHP Sec.



Nonlinear scalar conservation laws

Burgers’ equation: ut +
(
1
2u

2
)
x
= 0.

Quasilinear form: ut + uux = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative: Un+1
i = Un

i − ∆t
∆x

(
1
2((U

n
i )

2 − (Un
i−1)

2)
)

Quasilinear: Un+1
i = Un

i − ∆t
∆xU

n
i (U

n
i − Un

i−1).

Ok for smooth solutions, not for shocks!

R. J. LeVeque, University of Washington FVMHP Sec. 11.12



Nonlinear scalar conservation laws

Burgers’ equation: ut +
(
1
2u

2
)
x
= 0.

Quasilinear form: ut + uux = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative: Un+1
i = Un

i − ∆t
∆x

(
1
2((U

n
i )

2 − (Un
i−1)

2)
)

Quasilinear: Un+1
i = Un

i − ∆t
∆xU

n
i (U

n
i − Un

i−1).

Ok for smooth solutions, not for shocks!

R. J. LeVeque, University of Washington FVMHP Sec. 11.12



Importance of conservation form

Solution to Burgers’ equation using conservative upwind:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Solution to Burgers’ equation using quasilinear upwind:
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Weak solutions depend on the conservation law

The conservation laws

ut +

(
1

2
u2

)
x

= 0

and (
u2

)
t
+

(
2

3
u3

)
x

= 0

both have the same quasilinear form

ut + uux = 0

but have different weak solutions,

different shock speeds!
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Weak solutions depend on the conservation law

ut +

(
1

2
u2

)
x

= 0 =⇒ s =
1

2

u2r − u2ℓ
ur − ul

=
1

2
(uℓ + ur).

whereas (
u2

)
t
+

(
2

3
u3

)
x

= 0 =⇒ s =
2

3

u3r − u3ℓ
u2r − u2ℓ

.

Speeds are different in general =⇒ different weak solutions.
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Lax-Wendroff Theorem
Suppose the method is conservative and consistent with
qt + f(q)x = 0,

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and Lipschitz continuity of F .

If a sequence of discrete approximations converge to a function
q(x, t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.
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Weak solutions to Burgers’ equation

ut +
(
1
2u

2
)
x
= 0, uℓ = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
2(uℓ + ur).

“Physically correct” rarefaction wave solution:
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Weak solutions to Burgers’ equation
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1
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2
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= 0, uℓ = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
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Vanishing viscosity solution

We want q(x, t) to be the limit as ϵ→ 0 of solution to

qt + f(q)x = ϵqxx.

This selects a unique weak solution:
• Shock if f ′(ql) > f ′(qr),
• Rarefaction if f ′(ql) < f ′(qr).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f ′(qℓ) > s > f ′(qr), where s = (f(qr)− f(qℓ))/(qr − qℓ).

Note: This means characteristics must approach shock from
both sides as t advances, not move away from shock!
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Entropy (admissibility) conditions

We generally require additional conditions on a weak solution
to a conservation law, to pick out the unique solution that is
physically relevant.

In gas dynamics: entropy is constant along particle paths for
smooth solutions, entropy can only increase as a particle goes
through a shock.

Entropy functions: Function of q that “behaves like” physical
entropy for the conservation law being studied.

NOTE: Mathematical entropy functions generally chosen to
decrease for admissible solutions,
increase for entropy-violating solutions.
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Entropy functions for convex scalar problems

Entropy function: η : lR → lR Entropy flux: ψ : lR → lR

chosen so that η(q) is convex (η′′(q) > 0) (not < 0) and:
• η(q) is conserved wherever the solution is smooth,

η(q)t + ψ(q)x = 0.

• Entropy decreases across an admissible shock wave.

Weak form:∫ x2

x1

η(q(x, t2)) dx ≤
∫ x2

x1

η(q(x, t1)) dx

+

∫ t2

t1

ψ(q(x1, t)) dt−
∫ t2

t1

ψ(q(x2, t)) dt

with equality where solution is smooth. η(q)t + ψ(q)t ≤ 0
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Entropy functions

How to find η and ψ satisfying this?

η(q)t + ψ(q)x = 0

For smooth solutions gives

η′(q)qt + ψ′(q)qx = 0.

Since qt = −f ′(q)qx this is satisfied provided

ψ′(q) = η′(q)f ′(q)

Scalar: Choose any convex η(q) and integrate to get ψ(q).

Example: Burgers’ equation, f ′(u) = u and take η(u) = u2.

Then ψ′(u) = 2u2 =⇒ Entropy function: ψ(u) = 2
3u

3.
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Weak solutions depend on the conservation law

ut +

(
1

2
u2

)
x

= 0 =⇒ s =
1

2

u2r − u2ℓ
ur − ul

=
1

2
(uℓ + ur).

whereas (
u2

)
t
+

(
2

3
u3

)
x

= 0 =⇒ s∗ =
2

3

u3r − u3ℓ
u2r − u2ℓ

.

Speeds are different in general =⇒ different weak solutions.

Entropy function viewpoint: A jump discontinuity in Burgers’
equation travels too slowly to conserve u2, since s < s∗.

If uℓ > ur (correct shock) then ∂
∂t

∫
u2 dx < ψ(u2r)− ψ(u2ℓ )

If uℓ < ur (entropy-violating) then ∂
∂t

∫
u2 dx > ψ(u2r)− ψ(u2ℓ )
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Entropy condition for LWR traffic equations

f(q) = q(1− q). Note that qt + (1− 2q)qx = 0 where smooth

Again take entropy function η(q) = q2 (we need η′′(q) > 0)
Determine entropy flux by solving

ψ′(q) = η′(q)f ′(q) = 2q(1− 2q) =⇒ ψ(q) = q2 − 4

3
q3.

For physically correct solution, entropy satisfies

(q2)t +

(
q2 − 4

3
q3
)

x

≤ 0

Where q is smooth, left hand side is equivalent to

qt + (1− 2q)qx

which = 0 from the original equation.
Why ≤ 0 for correct shock? Consider vanishing viscosity...
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Entropy functions

∫ x2

x1

η(q(x, t2)) dx ≤
∫ x2

x1

η(q(x, t1)) dx

+

∫ t2

t1

ψ(q(x1, t)) dt−
∫ t2

t1

ψ(q(x2, t)) dt

comes from considering the vanishing viscosity solution:

qϵt + f(qϵ)x = ϵqϵxx with ϵ > 0

Multiply by η′(qϵ) to obtain:

η(qϵ)t + ψ(qϵ)x = ϵη′(qϵ)qϵxx.

Manipulate further to get

η(qϵ)t + ψ(qϵ)x = ϵ
(
η′(qϵ)qϵx

)
x
− ϵη′′(qϵ) (qϵx)

2.
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Manipulate further to get

η(qϵ)t + ψ(qϵ)x = ϵ
(
η′(qϵ)qϵx

)
x
− ϵη′′(qϵ) (qϵx)

2.
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Entropy functions
Smooth solution to viscous equation satisfies

η(qϵ)t + ψ(qϵ)x = ϵ
(
η′(qϵ)qϵx

)
x
− ϵη′′(qϵ) (qϵx)

2.

Integrating over rectangle [x1, x2]× [t1, t2] gives∫ x2

x1

η(qϵ(x, t2)) dx =

∫ x2

x1

η(qϵ(x, t1)) dx

−
(∫ t2

t1

ψ(qϵ(x2, t)) dt−
∫ t2

t1

ψ(qϵ(x1, t)) dt

)
+ ϵ

∫ t2

t1

[
η′(qϵ(x2, t)) q

ϵ
x(x2, t)− η′(qϵ(x1, t)) q

ϵ
x(x1, t)

]
dt

− ϵ

∫ t2

t1

∫ x2

x1

η′′(qϵ) (qϵx)
2 dx dt.

Let ϵ→ 0 to get result:
Term on third line goes to 0,
Term of fourth line is always ≤ 0.
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Entropy functions

Weak form of entropy condition:∫ ∞

0

∫ ∞

−∞

[
ϕtη(q) + ϕxψ(q)

]
dx dt+

∫ ∞

−∞
ϕ(x, 0)η(q(x, 0)) dx ≥ 0

for all ϕ ∈ C1
0 (lR× lR) with ϕ(x, t) ≥ 0 for all x, t.

Informally we may write

η(q)t + ψ(q)x ≤ 0.
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Entropy functions

Weak form of entropy condition:∫ ∞
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∫ ∞
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η(q)t + ψ(q)x ≤ 0.
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Lax-Wendroff Theorem
Suppose the method is conservative and consistent with
qt + f(q)x = 0,

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and Lipschitz continuity of F .

If a sequence of discrete approximations converge to a function
q(x, t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Can also use FV version of entropy condition in weak form to
show that limit must be correct weak solution.

And entropy stability can also be used to prove convergence.
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