
Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for
Scalar Conservation Laws

• Godunov’s method
• Fluxes, cell averages, and wave propagation form
• Transonic rarefactions waves
• Approximate Riemann solver with entropy fix
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds spi−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at tn+1,

2. Compute fluxes at interfaces and flux-difference:

Qn+1
i = Qn

i − ∆t

∆x
[Fn

i+1/2 − Fn
i−1/2]

3. Update cell averages by contributions from all waves entering cell:

Qn+1
i = Qn

i − ∆t

∆x
[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =

m∑
i=1

(spi−1/2)
±Wp

i−1/2.
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Godunov’s method with flux differencing

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.

tn

tn+1

Qn
i

Qn+1
i

q̃n(xi−1/2, t) ≡ q∨
|
(Qi−1, Qi) for t > tn.

Fn
i−1/2 =

1

∆t

∫ tn+1

tn

f(q∨
|
(Qn

i−1, Q
n
i )) dt = f(q∨

|
(Qn

i−1, Q
n
i )).
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Riemann problem for scalar nonlinear problem

qt + f(q)x = 0 with data

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

Similarity solution: q(x, t) = q̃(x/t) so q(0, t) = constant.

For convex flux (e.g. Burgers’ or traffic flow with quadratic flux),
the Riemann solution consists of:

• Shock wave if f ′(ql) > f ′(qr),
• Rarefaction wave if f ′(ql) < f ′(qr).
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Riemann problem for scalar convex flux

qt + f(q)x = 0 with f ′′(q) of one sign, so f ′(q) is monotone.

6 possible cases:

Case 3: Transonic rarefaction f ′(ql) < 0 < f ′(qr)

Convex =⇒ there is at most one point qs where f ′(qs) = 0.
qs is called the sonic point or stagnation point.

Terminology from gas dynamics: wave speeds u± c
=⇒ sonic points where |u| = c, supersonic if |u| > c.

Case 6: Shock moving at speed 0. Then f(ql) = f(qr)
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Godunov flux for scalar problem

The Godunov flux function for the case f ′′(q) > 0 is

Fn
i−1/2 =


f(Qi) if s ≤ 0 and Qi < qs
f(Qi−1) if s ≥ 0 and Qi−1 > qs
f(qs) if Qi−1 ≤ qs ≤ Qi.

where s = f(Qi)−f(Qi−1)
Qi−Qi−1

is the Rankine-Hugoniot shock speed.

A more general formula: (for any continuous f(q))

Fn
i−1/2 =


min

Qi−1≤q≤Qi

f(q) if Qi−1 ≤ Qi

max
Qi≤q≤Qi−1

f(q) if Qi ≤ Qi−1,
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

Fluctuations:

A−∆Qi−1/2 =

m∑
p=1

(λp)−Wp
i−1/2 = A− (Qi −Qi−1),

A+∆Qi−1/2 =

m∑
p=1

(λp)+Wp
i−1/2 = A+ (Qi −Qi−1),

For a linear system, sp = λp and waves Wp are eigenvectors.

For scalar advection m = 1, only one wave.
Wi−1/2 = ∆Qi−1/2 = Qi −Qi−1 and s = u,

A−∆Qi−1/2 = u−Wi−1/2,

A+∆Qi−1/2 = u+Wi−1/2.
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Godunov for scalar nonlinear in terms of fluctuations

Flux-differencing formula:

Qn+1
i = Qn

i − ∆t

∆x

[
Fi+1/2 − Fi−1/2

]
.

Can be rewritten in terms of fluctuations as

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

If we define

A−∆Qi−1/2 = Fi−1/2 − f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− Fi−1/2 right-going fluctuation

Agrees with previous definition for linear systems.
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Upwind wave-propagation algorithm
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]
.

A−∆Qi−1/2 = Fi−1/2 − f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− Fi−1/2 right-going fluctuation

For high-resolution method, we also need to define a wave W
and speed s,

Wi−1/2 = Qi −Qi−1,

si−1/2 =

{
(f(Qi)− f(Qi−1))/(Qi −Qi−1) if Qi−1 ̸= Qi
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Approximate Riemann solver

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

For scalar advection m = 1, only one wave.
Wi−1/2 = ∆Qi−1/2 = Qi −Qi−1 and si−1/2 = u,

A−∆Qi−1/2 = s−i−1/2Wi−1/2,

A+∆Qi−1/2 = s+i−1/2Wi−1/2.

For scalar nonlinear: Use same formulas with

Wi−1/2 = ∆Qi−1/2, si−1/2 = (f(Qi)− f(Qi−1))/(Qi −Qi−1).

This is exact solution for shock.

Replacing rarefaction with shock: also exact (after averaging),
except in case of transonic rarefaction.
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Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers’ equation):

Approximating rarefaction with shock gives same cell average.

R. J. LeVeque, University of Washington FVMHP Sec. 12.2



Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers’ equation):

Approximating rarefaction with shock gives same cell average.

R. J. LeVeque, University of Washington FVMHP Sec. 12.2



Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers’ equation):

Approximating rarefaction with shock gives same cell average.

R. J. LeVeque, University of Washington FVMHP Sec. 12.2



Rarefaction waves in wave propagation method

Initial data with a transonic rarefaction (Burgers’ equation):

Approximating rarefaction with shock gives poor approximation!
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Entropy fix

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

Define wave W and speed s using Rankine-Hugoniot:
(both for A+∆Qi−1/2, A−∆Qi+1/2 and for corrections)

Wi−1/2 = Qi −Qi−1,

si−1/2 =

{
(f(Qi)− f(Qi−1))/(Qi −Qi−1) if Qi−1 ̸= Qi

f ′(Qi) if Qi−1 = Qi.

Fix for transonic rarefaction: But if f ′(Qi−1) < 0 < f ′(Qi), use:

A−∆Qi−1/2 = f(qs)− f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− f(qs) right-going fluctuation
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Wave limiters for scalar nonlinear

For qt + f(q)x = 0 , just one wave: Wi−1/2 = Qn
i −Qn

i−1.

Godunov:

Qn+1
i = Qn

i − ∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

“Lax-Wendroff”:

Qn+1
i = Qn

i −
∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
−∆t

∆x
(F̃i+1/2−F̃i−1/2)

F̃i−1/2 =
1

2

(
1−

∣∣∣∣si−1/2∆t

∆x

∣∣∣∣) |si−1/2|Wi−1/2

High-resolution method:

F̃i−1/2 =
1

2

(
1−

∣∣∣∣si−1/2∆t

∆x

∣∣∣∣) |si−1/2|W̃i−1/2

W̃i−1/2 = ϕ(θ)Wi−1/2, where θi−1/2 = WI−1/2/Wi−1/2.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation with ql = −1 and qr = 2:
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