Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for Scalar Conservation Laws

- Godunov's method
- Fluxes, cell averages, and wave propagation form
- Transonic rarefactions waves
- Approximate Riemann solver with entropy fix

Godunov's Method for $q_{t}+f(q)_{x}=0$

1. Solve Riemann problems at all interfaces, yielding waves $\mathcal{W}_{i-1 / 2}^{p}$ and speeds $s_{i-1 / 2}^{p}$, for $p=1,2, \ldots, m$.

Riemann problem: Original equation with piecewise constant data.

Godunov's Method for $q_{t}+f(q)_{x}=0$

Then either:

1. Compute new cell averages by integrating over cell at t_{n+1},

Godunov's Method for $q_{t}+f(q)_{x}=0$

Then either:

1. Compute new cell averages by integrating over cell at t_{n+1},
2. Compute fluxes at interfaces and flux-difference:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right]
$$

Godunov's Method for $q_{t}+f(q)_{x}=0$

Then either:

1. Compute new cell averages by integrating over ce
2. Compute fluxes at interfaces and flux-difference:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right]
$$

3. Update cell averages by contributions from all waves entering cell:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

where $\mathcal{A}^{ \pm} \Delta Q_{i-1 / 2}=\sum_{i=1}^{m}\left(s_{i-1 / 2}^{p}\right)^{ \pm} \mathcal{W}_{i-1 / 2}^{p}$.

Godunov's method with flux differencing

Q_{i}^{n} defines a piecewise constant function

$$
\tilde{q}^{n}\left(x, t_{n}\right)=Q_{i}^{n} \text { for } x_{i-1 / 2}<x<x_{i+1 / 2}
$$

Discontinuities at cell interfaces \Longrightarrow Riemann problems.

$$
\begin{aligned}
& Q_{i}^{n} \\
& \tilde{q}^{n}\left(x_{i-1 / 2}, t\right) \equiv q^{\Downarrow}\left(Q_{i-1}, Q_{i}\right) \quad \text { for } t>t_{n} . \\
& F_{i-1 / 2}^{n}=\frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} f\left(q^{\Downarrow}\left(Q_{i-1}^{n}, Q_{i}^{n}\right)\right) d t=f\left(q^{\Downarrow}\left(Q_{i-1}^{n}, Q_{i}^{n}\right)\right) .
\end{aligned}
$$

Riemann problem for scalar nonlinear problem

$q_{t}+f(q)_{x}=0$ with data

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Similarity solution: $q(x, t)=\tilde{q}(x / t)$ so $q(0, t)=$ constant.

Riemann problem for scalar nonlinear problem

$q_{t}+f(q)_{x}=0$ with data

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Similarity solution: $q(x, t)=\tilde{q}(x / t)$ so $q(0, t)=$ constant.

For convex flux (e.g. Burgers' or traffic flow with quadratic flux), the Riemann solution consists of:

- Shock wave if $f^{\prime}\left(q_{l}\right)>f^{\prime}\left(q_{r}\right)$,
- Rarefaction wave if $f^{\prime}\left(q_{l}\right)<f^{\prime}\left(q_{r}\right)$.

Riemann problem for scalar convex flux

$q_{t}+f(q)_{x}=0$ with $f^{\prime \prime}(q)$ of one sign, so $f^{\prime}(q)$ is monotone.
6 possible cases:

Riemann problem for scalar convex flux

$q_{t}+f(q)_{x}=0$ with $f^{\prime \prime}(q)$ of one sign, so $f^{\prime}(q)$ is monotone.
6 possible cases:

Case 3: Transonic rarefaction $\quad f^{\prime}\left(q_{l}\right)<0<f^{\prime}\left(q_{r}\right)$
Convex \Longrightarrow there is at most one point q_{s} where $f^{\prime}\left(q_{s}\right)=0$. q_{s} is called the sonic point or stagnation point.

Terminology from gas dynamics: wave speeds $u \pm c$
\Longrightarrow sonic points where $|u|=c$, supersonic if $|u|>c$.

Riemann problem for scalar convex flux

$q_{t}+f(q)_{x}=0$ with $f^{\prime \prime}(q)$ of one sign, so $f^{\prime}(q)$ is monotone.
6 possible cases:

Case 3: Transonic rarefaction $f^{\prime}\left(q_{l}\right)<0<f^{\prime}\left(q_{r}\right)$
Convex \Longrightarrow there is at most one point q_{s} where $f^{\prime}\left(q_{s}\right)=0$. q_{s} is called the sonic point or stagnation point.
Terminology from gas dynamics: wave speeds $u \pm c$
\Longrightarrow sonic points where $|u|=c$, supersonic if $|u|>c$.
Case 6: Shock moving at speed 0 . Then $f\left(q_{l}\right)=f\left(q_{r}\right)$

Godunov flux for scalar problem

The Godunov flux function for the case $f^{\prime \prime}(q)>0$ is

$$
F_{i-1 / 2}^{n}= \begin{cases}f\left(Q_{i}\right) & \text { if } s \leq 0 \text { and } Q_{i}<q_{s} \\ f\left(Q_{i-1}\right) & \text { if } s \geq 0 \text { and } Q_{i-1}>q_{s} \\ f\left(q_{s}\right) & \text { if } Q_{i-1} \leq q_{s} \leq Q_{i}\end{cases}
$$

where $s=\frac{f\left(Q_{i}\right)-f\left(Q_{i-1}\right)}{Q_{i}-Q_{i-1}}$ is the Rankine-Hugoniot shock speed.

Godunov flux for scalar problem

The Godunov flux function for the case $f^{\prime \prime}(q)>0$ is

$$
F_{i-1 / 2}^{n}= \begin{cases}f\left(Q_{i}\right) & \text { if } s \leq 0 \text { and } Q_{i}<q_{s} \\ f\left(Q_{i-1}\right) & \text { if } s \geq 0 \text { and } Q_{i-1}>q_{s} \\ f\left(q_{s}\right) & \text { if } Q_{i-1} \leq q_{s} \leq Q_{i} .\end{cases}
$$

where $s=\frac{f\left(Q_{i}\right)-f\left(Q_{i-1}\right)}{Q_{i}-Q_{i-1}}$ is the Rankine-Hugoniot shock speed.
A more general formula: (for any continuous $f(q)$)

$$
F_{i-1 / 2}^{n}= \begin{cases}\min _{Q_{i-1} \leq q \leq Q_{i}} f(q) & \text { if } Q_{i-1} \leq Q_{i} \\ \max _{Q_{i} \leq q \leq Q_{i-1}} f(q) & \text { if } Q_{i} \leq Q_{i-1}\end{cases}
$$

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Fluctuations:

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \mathcal{W}_{i-1 / 2}^{p}=A^{-}\left(Q_{i}-Q_{i-1}\right), \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2}^{p}=A^{+}\left(Q_{i}-Q_{i-1}\right),
\end{aligned}
$$

For a linear system, $s^{p}=\lambda^{p}$ and waves \mathcal{W}^{p} are eigenvectors.

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Fluctuations:

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \mathcal{W}_{i-1 / 2}^{p}=A^{-}\left(Q_{i}-Q_{i-1}\right), \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2}^{p}=A^{+}\left(Q_{i}-Q_{i-1}\right),
\end{aligned}
$$

For a linear system, $s^{p}=\lambda^{p}$ and waves \mathcal{W}^{p} are eigenvectors.
For scalar advection $m=1$, only one wave.

$$
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1} \text { and } s=u
$$

$$
\begin{aligned}
\mathcal{A}^{-} \Delta Q_{i-1 / 2} & =u^{-} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2} & =u^{+} \mathcal{W}_{i-1 / 2}
\end{aligned}
$$

Godunov for scalar nonlinear in terms of fluctuations

Flux-differencing formula:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2}-F_{i-1 / 2}\right]
$$

Can be rewritten in terms of fluctuations as

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

If we define

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=F_{i-1 / 2}-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-F_{i-1 / 2} \quad \text { right-going fluctuation }
\end{aligned}
$$

Godunov for scalar nonlinear in terms of fluctuations

Flux-differencing formula:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2}-F_{i-1 / 2}\right]
$$

Can be rewritten in terms of fluctuations as

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

If we define

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=F_{i-1 / 2}-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-F_{i-1 / 2} \quad \text { right-going fluctuation }
\end{aligned}
$$

Agrees with previous definition for linear systems.

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=F_{i-1 / 2}-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-F_{i-1 / 2} \quad \text { right-going fluctuation }
\end{aligned}
$$

For high-resolution method, we also need to define a wave \mathcal{W} and speed s,

$$
\begin{aligned}
\mathcal{W}_{i-1 / 2} & =Q_{i}-Q_{i-1} \\
s_{i-1 / 2} & = \begin{cases}\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right) & \text { if } Q_{i-1} \neq Q_{i} \\
f^{\prime}\left(Q_{i}\right) & \text { if } Q_{i-1}=Q_{i}\end{cases}
\end{aligned}
$$

Approximate Riemann solver

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

For scalar advection $m=1$, only one wave.

$$
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1} \text { and } s_{i-1 / 2}=u
$$

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{-} \mathcal{W}_{i-1 / 2} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{+} \mathcal{W}_{i-1 / 2}
\end{aligned}
$$

Approximate Riemann solver

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

For scalar advection $m=1$, only one wave.

$$
\begin{gathered}
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1} \text { and } s_{i-1 / 2}=u \\
\mathcal{A}^{-} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{-} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{+} \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

For scalar nonlinear: Use same formulas with

$$
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}, \quad s_{i-1 / 2}=\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right)
$$

Approximate Riemann solver

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

For scalar advection $m=1$, only one wave.

$$
\begin{gathered}
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1} \text { and } s_{i-1 / 2}=u \\
\mathcal{A}^{-} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{-} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{+} \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

For scalar nonlinear: Use same formulas with

$$
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}, \quad s_{i-1 / 2}=\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right)
$$

This is exact solution for shock.

Approximate Riemann solver

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

For scalar advection $m=1$, only one wave.

$$
\begin{gathered}
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1} \text { and } s_{i-1 / 2}=u \\
\mathcal{A}^{-} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{-} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{+} \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

For scalar nonlinear: Use same formulas with

$$
\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}, \quad s_{i-1 / 2}=\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right)
$$

This is exact solution for shock.
Replacing rarefaction with shock: also exact (after averaging), except in case of transonic rarefaction.

Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers' equation):

Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers' equation):

Rarefaction waves in wave propagation method

Initial data giving rarefaction waves (Burgers' equation):
Approximating rarefaction with shock gives same cell average.

Rarefaction waves in wave propagation method

Initial data with a transonic rarefaction (Burgers' equation):

Rarefaction waves in wave propagation method

Initial data with a transonic rarefaction (Burgers' equation):

Rarefaction waves in wave propagation method

Initial data with a transonic rarefaction (Burgers' equation):
Approximating rarefaction with shock gives poor approximation!

Entropy fix

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Define wave \mathcal{W} and speed s using Rankine-Hugoniot: (both for $\mathcal{A}^{+} \Delta Q_{i-1 / 2}, \mathcal{A}^{-} \Delta Q_{i+1 / 2}$ and for corrections)

$$
\begin{aligned}
\mathcal{W}_{i-1 / 2} & =Q_{i}-Q_{i-1} \\
s_{i-1 / 2} & = \begin{cases}\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right) & \text { if } Q_{i-1} \neq Q_{i} \\
f^{\prime}\left(Q_{i}\right) & \text { if } Q_{i-1}=Q_{i}\end{cases}
\end{aligned}
$$

Entropy fix

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Define wave \mathcal{W} and speed s using Rankine-Hugoniot: (both for $\mathcal{A}^{+} \Delta Q_{i-1 / 2}, \mathcal{A}^{-} \Delta Q_{i+1 / 2}$ and for corrections)

$$
\begin{aligned}
\mathcal{W}_{i-1 / 2} & =Q_{i}-Q_{i-1}, \\
s_{i-1 / 2} & = \begin{cases}\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right) & \text { if } Q_{i-1} \neq Q_{i} \\
f^{\prime}\left(Q_{i}\right) & \text { if } Q_{i-1}=Q_{i}\end{cases}
\end{aligned}
$$

Fix for transonic rarefaction: But if $f^{\prime}\left(Q_{i-1}\right)<0<f^{\prime}\left(Q_{i}\right)$, use:

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=f\left(q_{s}\right)-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-f\left(q_{s}\right) \quad \text { right-going fluctuation }
\end{aligned}
$$

Wave limiters for scalar nonlinear

For $q_{t}+f(q)_{x}=0$, just one wave: $\mathcal{W}_{i-1 / 2}=Q_{i}^{n}-Q_{i-1}^{n}$.
Godunov:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Wave limiters for scalar nonlinear

For $q_{t}+f(q)_{x}=0$, just one wave: $\mathcal{W}_{i-1 / 2}=Q_{i}^{n}-Q_{i-1}^{n}$.
Godunov:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right] .
$$

"Lax-Wendroff":

$$
\begin{gathered}
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2}-\tilde{F}_{i-1 / 2}\right) \\
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{s_{i-1 / 2} \Delta t}{\Delta x}\right|\right)\left|s_{i-1 / 2}\right| \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

Wave limiters for scalar nonlinear

For $q_{t}+f(q)_{x}=0$, just one wave: $\mathcal{W}_{i-1 / 2}=Q_{i}^{n}-Q_{i-1}^{n}$.
Godunov:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right] .
$$

"Lax-Wendroff":

$$
\begin{gathered}
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2}-\tilde{F}_{i-1 / 2}\right) \\
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{s_{i-1 / 2} \Delta t}{\Delta x}\right|\right)\left|s_{i-1 / 2}\right| \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

High-resolution method:

$$
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{s_{i-1 / 2} \Delta t}{\Delta x}\right|\right)\left|s_{i-1 / 2}\right| \widetilde{\mathcal{W}}_{i-1 / 2}
$$

$\widetilde{\mathcal{W}}_{i-1 / 2}=\phi(\theta) \mathcal{W}_{i-1 / 2}, \quad$ where $\theta_{i-1 / 2}=\mathcal{W}_{I-1 / 2} / \mathcal{W}_{i-1 / 2}$.

Entropy-violating numerical solutions

Riemann problem for Burgers' equation with $q_{l}=-1$ and $q_{r}=2$:

