Finite Volume Methods for Hyperbolic Problems

Nonlinear Scalar Conservation Laws Rarefaction Waves

- Form of centered rarefaction wave
- Non-uniqueness of weak solutions
- Entropy conditions

q(x,t) is a weak solution if it satisfies the integral form of the conservation law over all rectangles in space-time,

$$\int_{x_1}^{x_2} q(x,t_2) \, dx - \int_{x_1}^{x_2} q(x,t_1) \, dx$$
$$= \int_{t_1}^{t_2} f(q(x_1,t)) \, dt - \int_{t_1}^{t_2} f(q(x_2,t)) \, dt$$

Obtained by integrating

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = f(q(x_1,t)) - f(q(x_2,t))$$

from t_n to t_{n+1} .

Rankine-Hugoniot jump condition

$$s(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

This must hold for any discontinuity propagating with speed *s*, even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}.$$

Rankine-Hugoniot jump condition

$$s(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

This must hold for any discontinuity propagating with speed *s*, even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}.$$

For systems, $q_r - q_l$ and $f(q_r) - f(q_l)$ are vectors, s scalar,

R-H condition: $f(q_r) - f(q_l)$ must be scalar multiple of $q_r - q_l$.

$$s(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

This must hold for any discontinuity propagating with speed *s*, even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}.$$

For systems, $q_r - q_l$ and $f(q_r) - f(q_l)$ are vectors, s scalar,

R-H condition: $f(q_r) - f(q_l)$ must be scalar multiple of $q_r - q_l$.

For linear system, f(q) = Aq, this says

$$s(q_r - q_l) = A(q_r - q_l),$$

Jump must be an eigenvector, speed *s* the eigenvalue.

A function q(x,t) that is piecewise smooth with jump discontinuities is a weak solution only if:

- The PDE is satisfied where *q* is smooth,
- The jump discontinuities all satisfy the Rankine-Hugoniot conditions.

A function q(x,t) that is piecewise smooth with jump discontinuities is a weak solution only if:

- The PDE is satisfied where q is smooth,
- The jump discontinuities all satisfy the Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!

A function q(x,t) that is piecewise smooth with jump discontinuities is a weak solution only if:

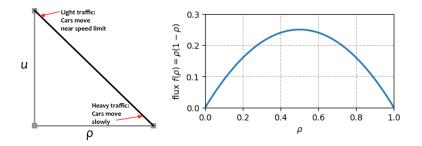
- The PDE is satisfied where q is smooth,
- The jump discontinuities all satisfy the Rankine-Hugoniot conditions.
- Note: The weak solution may not be unique!

Other admissibility conditions needed to pick out the physically correct weak solution, e.g.

- Vanishing viscosity limit,
- "Entropy conditions"

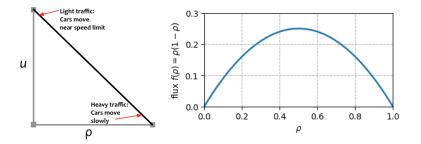
Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950's Density of cars (per carlength): q(x,t), $0 \le q \le 1$. Desired driving speed: $U(q) = u_{\max}(1-q)$, $0 \le U(q) \le u_{\max}$.



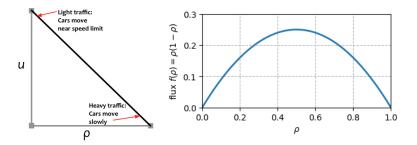
Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950's Density of cars (per carlength): q(x,t), $0 \le q \le 1$. Desired driving speed: $U(q) = u_{\max}(1-q)$, $0 \le U(q) \le u_{\max}$. Flux: $f(q) = qU(q) = u_{\max}q(1-q)$, $0 \le f(q) \le \frac{1}{4}u_{\max}$



Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950's Density of cars (per carlength): q(x,t), $0 \le q \le 1$. Desired driving speed: $U(q) = u_{\max}(1-q)$, $0 \le U(q) \le u_{\max}$. Flux: $f(q) = qU(q) = u_{\max}q(1-q)$, $0 \le f(q) \le \frac{1}{4}u_{\max}$ Characteristic speed: $f'(q) = u_{\max}(1-2q)$, $-u_{\max} \le f'(q) \le u_{\max}$



Chapter on Traffic Flow in the book Riemann Problems and Jupyter Solutions

View static version of notebook at: www.clawpack.org/riemann_book/html/Traffic_flow.html Chapter on Traffic Flow in the book Riemann Problems and Jupyter Solutions

View static version of notebook at: www.clawpack.org/riemann_book/html/Traffic_flow.html

Notebook on nonconvex scalar problems also may be useful:

www.clawpack.org/riemann_book/html/Nonconvex_scalar.html

The scalar conservation law $q_t + f(q)_x = 0$ has a convex flux if f''(q) has the same sign for all q:

$$f''(q) > 0 \quad \forall q \quad \text{or} \quad f''(q) < 0 \quad \forall q.$$

This means that the characteristic speed f'(q) is either strictly increasing or strictly decreasing as q increases.

The scalar conservation law $q_t + f(q)_x = 0$ has a convex flux if f''(q) has the same sign for all q:

$$f''(q) > 0 \quad \forall q \quad \text{or} \quad f''(q) < 0 \quad \forall q.$$

This means that the characteristic speed f'(q) is either strictly increasing or strictly decreasing as q increases.

Consequence: The Riemann problem solution consists of either a single shock wave or a rarefaction wave.

The scalar conservation law $q_t + f(q)_x = 0$ has a convex flux if f''(q) has the same sign for all q:

$$f''(q) > 0 \quad \forall q \quad \text{or} \quad f''(q) < 0 \quad \forall q.$$

This means that the characteristic speed f'(q) is either strictly increasing or strictly decreasing as q increases.

Consequence: The Riemann problem solution consists of either a single shock wave or a rarefaction wave.

Nonconvex flux: The Riemann solution can consist of multiple shocks with rarefaction waves in between.

The scalar conservation law $q_t + f(q)_x = 0$ has a convex flux if f''(q) has the same sign for all q:

$$f''(q) > 0 \quad \forall q \quad \text{or} \quad f''(q) < 0 \quad \forall q.$$

This means that the characteristic speed f'(q) is either strictly increasing or strictly decreasing as q increases.

Consequence: The Riemann problem solution consists of either a single shock wave or a rarefaction wave.

Nonconvex flux: The Riemann solution can consist of multiple shocks with rarefaction waves in between.

Generalization of convexity for systems: Each characteristic field must be genuinely nonlinear.

Riemann problem for traffic flow

Initial data of the form

$$q(x,0) = \begin{cases} q_{\ell} & \text{ if } x < 0 \\ q_r & \text{ if } x \ge 0 \end{cases}$$

$$U(q) = u_{\max}(1-q), \ f(q) = qU(q), \ 0 \le q \le 1$$

Case 1: $q_{\ell} < q_r$, so $U(q_{\ell}) > U(q_r)$, $f'(q_{\ell}) > f'(q_r)$.

Fast moving cars approaching traffic jam Expect shock wave.

Case 2: $q_{\ell} > q_r$, so $U(q_{\ell}) < U(q_r)$, $f'(q_{\ell}) < f'(q_r)$.

Slow moving cars can accelerate Expect rarefaction wave.

Figure 11.2 — Traffic jam shock wave

Cars approaching red light $(q_{\ell} < 1, q_r = 1)$ Shock speed:

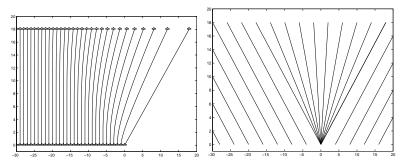
 $s = \frac{f(q_r) - f(q_\ell)}{q_r - q_\ell} = \frac{-2u_{\max}q_\ell}{1 - q_\ell} < 0 \quad \text{(for this data, could be} > 0\text{)}$ 35 21 25

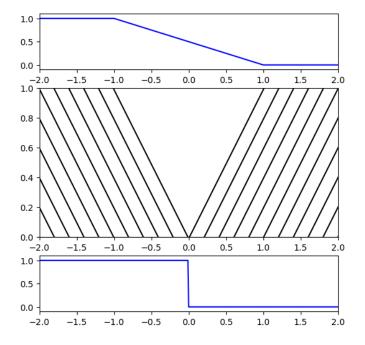
-25 -20

Cars accelerating at green light $(q_{\ell} = 1, q_r = 0)$

Characteristic speed $f'(q) = u_{\max}(1-2q)$

varies from $f'(q_\ell) = -u_{\max}$ to $f'(q_r) = u_{\max}$.





Similarity solution with piecewise constant initial data:

$$q(x,t) = \begin{cases} q_{\ell} & \text{if } x/t \leq f'(q_{\ell}) \\ \tilde{q}(x/t) & \text{if } f'(q_{\ell}) \leq x/t \leq f'(q_r) \\ q_r & \text{if } x/t \geq f'(q_r), \end{cases}$$

solves the Riemann problem for convex f, provided

$$f'(q_\ell) < f'(q_r),$$

so that characteristics spread out as time advances.

Rarefaction waves

$$q(x,t) = \begin{cases} q_{\ell} & \text{if } x/t \leq f'(q_{\ell}) \\ \tilde{q}(x/t) & \text{if } f'(q_{\ell}) \leq x/t \leq f'(q_{r}) \\ q_{r} & \text{if } x/t \geq f'(q_{r}), \end{cases}$$

Determining $\tilde{q}(\xi)$:

$$q(x,t) = \tilde{q}(x/t) \implies q_t(x,t) = -(x/t^2)\tilde{q}'(x/t),$$
$$q_x(x,t) = (1/t)\tilde{q}'(x/t).$$

Rarefaction waves

$$q(x,t) = \begin{cases} q_{\ell} & \text{if } x/t \leq f'(q_{\ell}) \\ \tilde{q}(x/t) & \text{if } f'(q_{\ell}) \leq x/t \leq f'(q_{r}) \\ q_{r} & \text{if } x/t \geq f'(q_{r}), \end{cases}$$

Determining $\tilde{q}(\xi)$:

$$q(x,t) = \tilde{q}(x/t) \implies q_t(x,t) = -(x/t^2)\tilde{q}'(x/t),$$
$$q_x(x,t) = (1/t)\tilde{q}'(x/t).$$

Quasilinear form: $q_t(x,t) + f'(q(x,t))q_x(x,t) = 0$ leads to

$$-(x/t^2)\tilde{q}'(x/t) + f'(\tilde{q}(x/t))(1/t)\tilde{q}'(x/t) = 0$$

Rarefaction waves

$$q(x,t) = \begin{cases} q_{\ell} & \text{if } x/t \leq f'(q_{\ell}) \\ \tilde{q}(x/t) & \text{if } f'(q_{\ell}) \leq x/t \leq f'(q_{r}) \\ q_{r} & \text{if } x/t \geq f'(q_{r}), \end{cases}$$

Determining $\tilde{q}(\xi)$:

$$q(x,t) = \tilde{q}(x/t) \implies q_t(x,t) = -(x/t^2)\tilde{q}'(x/t),$$
$$q_x(x,t) = (1/t)\tilde{q}'(x/t).$$

Quasilinear form: $q_t(x,t) + f'(q(x,t))q_x(x,t) = 0$ leads to

$$-(x/t^2)\tilde{q}'(x/t) + f'(\tilde{q}(x/t))(1/t)\tilde{q}'(x/t) = 0$$

Cancel $(1/t)\tilde{q}'(x/t)$ to get:

$$-(x/t) + f'(\tilde{q}(x/t)) = 0$$
 or $f'(\tilde{q}(\xi)) = \xi$.

Centered rarefaction for traffic flow

Take $u_{\text{max}} = 1$.

$$f(q) = q(1-q) \implies f'(q) = (1-2q).$$

Solving $f'(\tilde{q}(\xi)) = \xi$ gives

$$(1-2\tilde{q}(\xi))=\xi \implies \tilde{q}(\xi)=\frac{1}{2}(1-\xi)$$

Centered rarefaction for traffic flow

Take $u_{\text{max}} = 1$.

$$f(q) = q(1-q) \implies f'(q) = (1-2q).$$

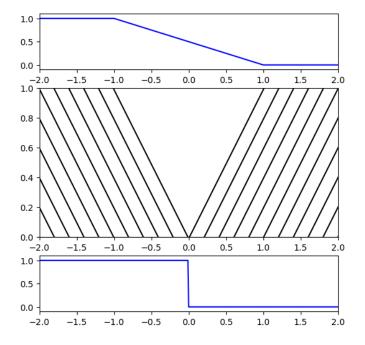
Solving $f'(\tilde{q}(\xi)) = \xi$ gives

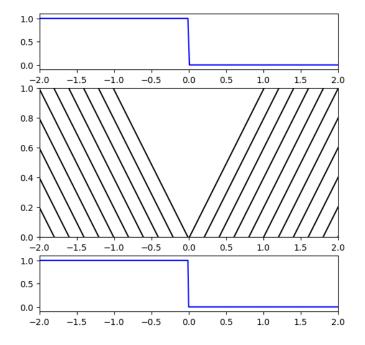
$$(1 - 2\tilde{q}(\xi)) = \xi \implies \tilde{q}(\xi) = \frac{1}{2}(1 - \xi)$$

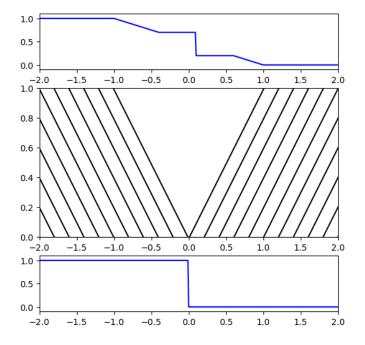
$$q(x,t) = \begin{cases} q_{\ell} & \text{if } x/t \le f'(q_{\ell}) \\ \frac{1}{2}(1-x/t) & \text{if } f'(q_{\ell}) \le x/t \le f'(q_{r}) \\ q_{r} & \text{if } x/t \ge f'(q_{r}), \end{cases}$$

Solution is linear in x at each t.

(Since f(q) was quadratic, not true in general.)



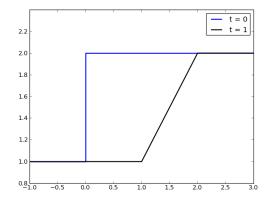




Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. "Physically correct" rarefaction wave solution:

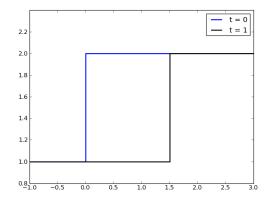


R. J. LeVeque, University of Washington FVMHP Sec. 11.13

Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. Entropy violating weak solution:

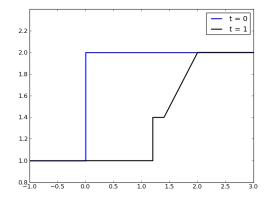


R. J. LeVeque, University of Washington FVMHP Sec. 11.13

Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. Another Entropy violating weak solution:



R. J. LeVeque, University of Washington FVMHP Sec. 11.13

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f'(q_\ell) > s > f'(q_r)$, where $s = (f(q_r) - f(q_\ell))/(q_r - q_\ell)$.

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f'(q_\ell) > s > f'(q_r)$, where $s = (f(q_r) - f(q_\ell))/(q_r - q_\ell)$.

Note: This means characteristics must approach shock from both sides as t advances, not move away from shock!