
Finite Volume Methods for Hyperbolic Problems

Nonlinear Scalar Conservation Laws
Rarefaction Waves

• Form of centered rarefaction wave
• Non-uniqueness of weak solutions
• Entropy conditions

R. J. LeVeque, University of Washington FVMHP Chap. 11



Weak solutions to qt + f(q)x = 0

q(x, t) is a weak solution if it satisfies the integral form of the
conservation law over all rectangles in space-time,∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=

∫ t2

t1

f(q(x1, t)) dt−
∫ t2

t1

f(q(x2, t)) dt

Obtained by integrating

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

from tn to tn+1.
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Rankine-Hugoniot jump condition

s(qr − qℓ) = f(qr)− f(qℓ).

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

s =
f(qr)− f(ql)

qr − ql
.

For systems, qr − ql and f(qr)− f(ql) are vectors, s scalar,

R-H condition: f(qr)− f(ql) must be scalar multiple of qr − ql.

For linear system, f(q) = Aq, this says

s(qr − ql) = A(qr − ql),

Jump must be an eigenvector, speed s the eigenvalue.
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Weak solutions to qt + f(q)x = 0

A function q(x, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

• The PDE is satisfied where q is smooth,

• The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!

Other admissibility conditions needed to pick out the
physically correct weak solution, e.g.

• Vanishing viscosity limit,

• “Entropy conditions”
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Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950’s

Density of cars (per carlength): q(x, t), 0 ≤ q ≤ 1.

Desired driving speed: U(q) = umax(1− q), 0 ≤ U(q) ≤ umax.

Flux: f(q) = qU(q) = umaxq(1− q), 0 ≤ f(q) ≤ 1
4umax

Characteristic speed: f ′(q) = umax(1− 2q), −umax ≤ f ′(q) ≤ umax
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Jupyter Notebook for Traffic Flow

Chapter on Traffic Flow in the book
Riemann Problems and Jupyter Solutions

View static version of notebook at:
www.clawpack.org/riemann_book/html/Traffic_flow.html

Notebook on nonconvex scalar problems also may be useful:

www.clawpack.org/riemann_book/html/Nonconvex_scalar.html

R. J. LeVeque, University of Washington RpJs Chap. 5

https://bookstore.siam.org/fa16/bonus
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Convex flux functions

The scalar conservation law qt + f(q)x = 0 has a convex flux if
f ′′(q) has the same sign for all q:

f ′′(q) > 0 ∀q or f ′′(q) < 0 ∀q.

This means that the characteristic speed f ′(q) is either strictly
increasing or strictly decreasing as q increases.

Consequence: The Riemann problem solution consists of
either a single shock wave or a rarefaction wave.

Nonconvex flux: The Riemann solution can consist of
multiple shocks with rarefaction waves in between.

Generalization of convexity for systems:
Each characteristic field must be genuinely nonlinear.
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Riemann problem for traffic flow

Initial data of the form

q(x, 0) =

{
qℓ if x < 0
qr if x ≥ 0

U(q) = umax(1− q), f(q) = qU(q), 0 ≤ q ≤ 1

Case 1: qℓ < qr, so U(qℓ) > U(qr), f ′(qℓ) > f ′(qr).

Fast moving cars approaching traffic jam
Expect shock wave.

Case 2: qℓ > qr, so U(qℓ) < U(qr), f ′(qℓ) < f ′(qr).

Slow moving cars can accelerate
Expect rarefaction wave.
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Figure 11.2 — Traffic jam shock wave

Cars approaching red light (qℓ < 1, qr = 1)

Shock speed:

s =
f(qr)− f(qℓ)

qr − qℓ
=

−2umaxqℓ
1− qℓ

< 0 (for this data, could be > 0)
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Figure 11.3 — Rarefaction wave

Cars accelerating at green light (qℓ = 1, qr = 0)

Characteristic speed f ′(q) = umax(1− 2q)

varies from f ′(qℓ) = −umax to f ′(qr) = umax.
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Centered rarefaction waves

Similarity solution with piecewise constant initial data:

q(x, t) =


qℓ if x/t ≤ f ′(qℓ)
q̃(x/t) if f ′(qℓ) ≤ x/t ≤ f ′(qr)
qr if x/t ≥ f ′(qr),

solves the Riemann problem for convex f , provided

f ′(qℓ) < f ′(qr),

so that characteristics spread out as time advances.
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Rarefaction waves

q(x, t) =


qℓ if x/t ≤ f ′(qℓ)
q̃(x/t) if f ′(qℓ) ≤ x/t ≤ f ′(qr)
qr if x/t ≥ f ′(qr),

Determining q̃(ξ):

q(x, t) = q̃(x/t) =⇒ qt(x, t) = −(x/t2)q̃′(x/t),

qx(x, t) = (1/t)q̃′(x/t).

Quasilinear form: qt(x, t) + f ′(q(x, t))qx(x, t) = 0 leads to

−(x/t2)q̃′(x/t) + f ′(q̃(x/t))(1/t)q̃′(x/t) = 0

Cancel (1/t)q̃′(x/t) to get:

−(x/t) + f ′(q̃(x/t)) = 0 or f ′(q̃(ξ)) = ξ.
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Centered rarefaction for traffic flow

Take umax = 1.

f(q) = q(1− q) =⇒ f ′(q) = (1− 2q).

Solving f ′(q̃(ξ)) = ξ gives

(1− 2q̃(ξ)) = ξ =⇒ q̃(ξ) =
1

2
(1− ξ)

q(x, t) =


qℓ if x/t ≤ f ′(qℓ)
1
2(1− x/t) if f ′(qℓ) ≤ x/t ≤ f ′(qr)
qr if x/t ≥ f ′(qr),

Solution is linear in x at each t.

(Since f(q) was quadratic, not true in general.)
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Weak solutions to Burgers’ equation

ut +
(
1
2u

2
)
x
= 0, uℓ = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
2(uℓ + ur).

“Physically correct” rarefaction wave solution:
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Vanishing viscosity solution

We want q(x, t) to be the limit as ϵ → 0 of solution to

qt + f(q)x = ϵqxx.

This selects a unique weak solution:
• Shock if f ′(ql) > f ′(qr),
• Rarefaction if f ′(ql) < f ′(qr).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f ′(qℓ) > s > f ′(qr), where s = (f(qr)− f(qℓ))/(qr − qℓ).

Note: This means characteristics must approach shock from
both sides as t advances, not move away from shock!

R. J. LeVeque, University of Washington FVMHP Sec. 11.13



Vanishing viscosity solution

We want q(x, t) to be the limit as ϵ → 0 of solution to

qt + f(q)x = ϵqxx.

This selects a unique weak solution:
• Shock if f ′(ql) > f ′(qr),
• Rarefaction if f ′(ql) < f ′(qr).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f ′(qℓ) > s > f ′(qr), where s = (f(qr)− f(qℓ))/(qr − qℓ).

Note: This means characteristics must approach shock from
both sides as t advances, not move away from shock!

R. J. LeVeque, University of Washington FVMHP Sec. 11.13



Vanishing viscosity solution

We want q(x, t) to be the limit as ϵ → 0 of solution to

qt + f(q)x = ϵqxx.

This selects a unique weak solution:
• Shock if f ′(ql) > f ′(qr),
• Rarefaction if f ′(ql) < f ′(qr).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f ′(qℓ) > s > f ′(qr), where s = (f(qr)− f(qℓ))/(qr − qℓ).

Note: This means characteristics must approach shock from
both sides as t advances, not move away from shock!

R. J. LeVeque, University of Washington FVMHP Sec. 11.13


	Nonlinear scalar PDEs
	Weak solutions
	Traffic flow
	Entropy conditions


