Finite Volume Methods for Hyperbolic Problems

Nonlinear Scalar Conservation Laws
Rarefaction Waves

e Form of centered rarefaction wave
¢ Non-unigueness of weak solutions
e Entropy conditions
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Weak solutions to ¢; + f(¢). =0

q(z,t) is a weak solution if it satisfies the integral form of the
conservation law over all rectangles in space-time,

T2 xr2
/ q(z,ta) dx — / q(z,t1) dx
T 1

to

- / et~ [ flalant) dr

t1

Obtained by integrating

2

p q(z,t)dx = f(q(z1,t)) — f(g(x2,1))

from ¢, t0 t,11.
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Rankine-Hugoniot jump condition

s(gr — ae) = f(ar) — f(q0)-

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

flar) — fla)

S=—.
qr — q1
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s(gr — ae) = f(ar) — f(q0)-

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:
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For systems, ¢, — ¢; and f(q,) — f(q;) are vectors, s scalar,

R-H condition: f(q,) — f(q;) must be scalar multiple of ¢, — ¢;.
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Rankine-Hugoniot jump condition

s(gr — ae) = f(ar) — f(q0)-

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

flar) — fla)

S=—.
qr — q1

For systems, ¢, — ¢; and f(q,) — f(q;) are vectors, s scalar,
R-H condition: f(q,) — f(q;) must be scalar multiple of ¢, — ¢;.
For linear system, f(q) = Ag, this says

s(ar —a1) = Algr — ),
Jump must be an eigenvector, speed s the eigenvalue.
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Weak solutions to ¢; + f(¢). =0
A function ¢(z, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

e The PDE is satisfied where ¢ is smooth,

® The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.
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Weak solutions to ¢; + f(¢). =0

A function ¢(z, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

e The PDE is satisfied where ¢ is smooth,
® The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.
Note: The weak solution may not be unique!

Other admissibility conditions needed to pick out the
physically correct weak solution, e.g.

e Vanishing viscosity limit,

¢ “Entropy conditions”
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Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950’s
Density of cars (per carlength): ¢(z, ), 0<qg<1.
Desired driving speed: U(q) = umax(1 —¢q), 0<U(q) < umax-

Light traffic: 0.3
Cars move ’
near speed limit Q
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Traffic flow — LWR model

First models due to Lighthill, Whitham, Richards in 1950’s
Density of cars (per carlength): ¢(z, ), 0<qg<1.

Desired driving speed: U(q) = umax(1 —q), 0 < U(q) < Umax-
Flux: £(g) = qU(q) = tmaxq(1 — ), 0 < f(q) < Jtmax

Characteristic speed: f'(¢) = umax(1 —2¢), —tmax < f'(¢) < Umax

Light traffic 0.3

Cars move
near speed limit Q
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Jupyter Notebook for Traffic Flow

Chapter on Traffic Flow in the book
Riemann Problems and Jupyter Solutions

View static version of notebook at:
www.clawpack.org/riemann_book/html/Traffic_flow.html

R. J. LeVeque, University of Washington RpJs Chap. 5


https://bookstore.siam.org/fa16/bonus
http://www.clawpack.org/riemann_book/html/Traffic_flow.html
http://www.clawpack.org/riemann_book/html/Nonconvex_scalar.html

Jupyter Notebook for Traffic Flow

Chapter on Traffic Flow in the book
Riemann Problems and Jupyter Solutions

View static version of notebook at:
www.clawpack.org/riemann_book/html/Traffic_flow.html

Notebook on nonconvex scalar problems also may be useful:

www.clawpack.org/riemann_book/html/Nonconvex_scalar.html
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Convex flux functions

The scalar conservation law ¢; + f(¢). = 0 has a convex flux if
f"(q) has the same sign for all ¢:

f"(q) >0 Vg or f"(q) <0 Vq.

This means that the characteristic speed f/(q) is either strictly
increasing or strictly decreasing as ¢ increases.
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Convex flux functions

The scalar conservation law ¢; + f(¢). = 0 has a convex flux if
f"(q) has the same sign for all ¢:

f"(q) >0 Vg or f"(q) <0 Vq.

This means that the characteristic speed f/(q) is either strictly
increasing or strictly decreasing as ¢ increases.

Consequence: The Riemann problem solution consists of
either a single shock wave or a rarefaction wave.

Nonconvex flux: The Riemann solution can consist of
multiple shocks with rarefaction waves in between.

Generalization of convexity for systems:
Each characteristic field must be genuinely nonlinear.
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Riemann problem for traffic flow

Initial data of the form

. qe if <0
Q(x70)_{ G if 2>0

U(q) = umax(1 —q), f(¢) =qU(q), 0<¢<1

Case 1: gt < ¢r, S0 U(q) >Ul(qr), f'(q0)> f(ar).
Fast moving cars approaching traffic jam
Expect shock wave.

Case 2: ¢ > q», s0U(q) <Ul(q), f'(q) < f'(aq).

Slow moving cars can accelerate
Expect rarefaction wave.
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Figure 11.2 — Traffic jam shock wave

Cars approaching red light (¢, < 1, ¢, = 1)

Shock speed:
r) -2 max .
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Figure 11.3 — Rarefaction wave

Cars accelerating at green light (¢o =1, ¢, =0)
Characteristic speed f/(¢) = umax(1 — 2¢)

varies from f/(q;) = —tumax t0 f'(gr) = Umax-
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Centered rarefaction waves

Similarity solution with piecewise constant initial data:

q it x/t < f'(qe)
q(z,t) = q(z/t) i flla) <z/t < flar)
qr it 2/t > f'(qr),
solves the Riemann problem for convex f, provided

f'(ae) < f(qr),

so that characteristics spread out as time advances.
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Rarefaction waves

qz/t) i f(q) < x/t < flar)

q if z/t < f'(qe)
q(z,t) =
qr it x/t> f'(qr),

Determining ¢(¢):

q(z,t) = G(a/t) = qlz,t) = —(=/1) (2/t),
Ga(2,t) = (1/1)7 (2/1).
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Rarefaction waves

qz/t) it f'(q) <z/t < f(qr)
qr it x/t> f'(qr),

q if z/t < f'(qe)
q(z,t) =

Determining ¢(¢):

q(z,t) = 4(z/t) = qla,t) = —(z/t*)q (z/t),
G (x,t) = (1/8)q (2/t).
Quasilinear form: ¢, (z,t) + f'(q(x,t))q.(x,t) =0 leads to

—(@/t)q (x/t) + £ (q(«/1))(1/)F (/1) = 0
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Rarefaction waves

qz/t) it f'(q) <z/t < f(qr)
qr it x/t> f'(qr),

q if z/t < f'(qe)
q(z,t) =

Determining ¢(¢):

q(z,t) = 4(z/t) = qla,t) = —(z/t*)q (z/t),
@(z,t) = (1/1)¢ (z/1).
Quasilinear form: ¢, (z,t) + f'(q(x,t))q.(x,t) =0 leads to

—(2/t) (/) + f'(a(x/1))(1/1)q (x/t) =

Cancel (1/t)¢'(x/t) to get:
—(@/t) + f(a(x/t)) =0 or f'(4(&) =¢.
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Centered rarefaction for traffic flow

Take upax = 1.
fl@)=aq(1—q) = f'(¢g) =(1—2q).
Solving f(q(£)) = € gives

(1-20(6) =€ = 4(6) = ;1)
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Centered rarefaction for traffic flow

Take upax = 1.

fl@)=q(l—q) = f(g) = (1-29g).
Solving f(q(£)) = € gives

(1-20(6) =€ = 4(6) = ;1)

q it x/t < f'(qr)
qla,t)=q A —z/t) i f(q) <z/t < f(q)

qr if x/t > f'(gr),

Solution is linear in « at each .

(Since f(q) was quadratic, not true in general.)

R. J. LeVeque, University of Washington FVMHP Sec. 11.10



1.0 1
0.5 1
0.0 T T T T
. —1 5 —1 0 —0 5 0.0 0.5 . 1.5 2.0

1.0
0.8
0.6
0.4 4
0.2 ‘
0.0 f T f

=2.0 —1 5 -1 0.0 0.5 1.0 1.5 2.0
1.0
0.5 1
0.0 4 T T T T T T T

—-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

R. J. LeVeque, University of Washington

FVMHP Chap. 11



1.0
0.5 1
0.0 T T T T
. —1 5 —1 0 —0 5 0.0 0.5 . 1.5 2.0

1.0
0.8
0.6
0.4 4
0.2 ‘
0.0 f T f

=2.0 —1 5 -1 0.0 0.5 1.0 1.5 2.0
1.0
0.5 1
0.0 4 T T T T T T T

—-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

R. J. LeVeque, University of Washington

FVMHP Chap. 11



o~
0.5 1
L
0.0 T T T T
. —1 5 —1 0 —0 5 0.0 .5 1.0 1.5 2.0

1.0
0.8
0.6
0.4 4
0.2 ‘
0.0 f T f

=2.0 —1 5 -1 0.0 0.5 1.0 1.5 2.0
1.0
0.5 1
0.0 4 T T T T T T T

—-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

R. J. LeVeque, University of Washington

FVMHP Chap. 11



Weak solutions to Burgers’ equation

ut—i-(%u?)x:(), ug =1, u, =2

Characteristic speed: u  Rankine-Hugoniot speed: 1 (u¢ + ;).

“Physically correct” rarefaction wave solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Entropy violating weak solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Another Entropy violating weak solution:
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(q;) > f'(qr),
e Rarefaction if f'(¢;) < f'(gr)-
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We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(q;) > f'(qr),
e Rarefaction if f'(q;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(q0) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — q0)-
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shockif f'(q) > f'(qr),
e Rarefaction if f'(q;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(q0) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — q0)-

Note: This means characteristics must approach shock from
both sides as ¢ advances, not move away from shock!
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