
Finite Volume Methods for Hyperbolic Problems

TVD Methods and Limiters

• Slope limiters vs. flux limiters
• Total variation for scalar problems
• Proving TVD in flux-limiter form
• Design of TVD limiters
• Sweby Region

R. J. LeVeque, University of Washington FVMHP Sec. 6.11, 6.12



High-Resolution methods

• Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

• Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities

• Capture discontuities as sharply as possible
Minimal numerical dissipation
“Shock capturing” methods for nonlinear problems

• Easy to combine with adaptive mesh refinement (AMR)
To give better accuracy where solution varies rapidly,
Even sharper resolution of discontinuities

• Godunov-type methods — based on Riemann solvers
Wave-propagation algorithms with “limiters”
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Limiters can eliminate oscillations

Step function data with minmod slope:

Evolving solution and averaging maintains monotonicity:
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Could make slope steeper and still be monotone

Step function data with MC slope (twice that of minmod):
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Monotonized centered (MC) limiter

Using the centered slope (Qn
i+1 −Qn

i−1)/(2∆x) gives
second-order accuracy (Fromm’s method) but not monotonicity.

Limit this slope based on twice the one-sided slopes.

σn
i = minmod

((
Qn

i+1 −Qn
i−1

2∆x

)
, 2

(
Qn

i −Qn
i−1

∆x

)
, 2

(
Qn

i+1 −Qn
i

∆x

))
.

Rationale:

• Where solution is smooth, centered slope is smaller and
chosen, hence maintains accuracy.

• Near jumps in solution, don’t expect second-order but want
to resolve discontinuities as sharply as possible.
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TVD REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci

with the property that TV (q̃n) ≤ TV (Qn).

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.

Note: Steps 2 and 3 are always TVD.
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MC slopes are not always a TVD reconstruction

Sample data with MC slope (twice that of minmod):

But evolving and averaging still maintains monotonicity (TVD):
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Slope limiters and flux limiters

Slope limiter formulation for advection:

q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives (for u > 0):

Qn+1
i = Qn

i − u∆t

∆x
(Qn

i −Qn
i−1)−

1

2

u∆t

∆x
(∆x− u∆t) (σn

i − σn
i−1)

Flux limiter formulation:

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

with flux

Fn
i−1/2 = uQn

i−1+
1

2
u(∆x−u∆t)σn

i−1 =
1

∆t

∫ tn+1

tn

uq̃(xi−1/2, t) dt.
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Lax-Wendroff and flux limiters

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

with flux

Fn
i−1/2 =

{
uQn

i−1 +
1
2u(∆x− u∆t)σn

i−1 if u > 0,
uQn

i − 1
2u(∆x+ u∆t)σn

i if u < 0.

Lax-Wendroff:

Fn
i−1/2 = u+Qn

i−1 + u−Qn
i +

1

2
|u|(1− |u|∆t/∆x)(Qn

i −Qn
i−1)

= u+Qn
i−1 + u−Qn

i +
1

2
|u|(1− |u|∆t/∆x)∆Qn

i−1/2

Flux limiter method: Replace ∆Qn
i−1/2 by limited version δni−1/2

Fn
i−1/2 = u+Qn

i−1 + u−Qn
i +

1

2
|u|(1− |u|∆t/∆x)δni−1/2
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Flux limiters and wave limiters

Flux limiter method: Replace ∆Qn
i−1/2 by limited version δni−1/2

Fn
i−1/2 = u+Qn

i−1 + u−Qn
i +

1

2
|u|(1− |u|∆t/∆x)δni−1/2

For systems of equations:

• Solve Riemann problem to decompose ∆Qn
i−1/2 into waves

∆Qi−1/2 =
∑
p

Wp
i−1/2 =

∑
p

αp
i−1/2r

p

• Use wave propagation form of Godunov (first-order) update
• Apply limiters to waves to get W̃p

i−1/2 = α̃p
i−1/2r

p

• Use limited waves in “second-order” corrections
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Flux limiters for scalar problem

Flux limiter method: Replace ∆Qn
i−1/2 by limited version δni−1/2

Fn
i−1/2 = u+Qn

i−1 + u−Qn
i +

1

2
|u|(1− |u|∆t/∆x)δni−1/2

Limiter based on the ratio

θni−1/2 =
QI −QI−1

Qi −Qi−1

where I denotes the cell in the upwind direction:

I =

{
i− 1 if u > 0
i+ 1 if u < 0.

Note that:
• θ ≈ 1 +O(∆x) where the solution is smooth,
• θ < 0 if slopes have different sign.
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Limiter function: Define ϕ(θ) and then

δni−1/2 = ϕ(θni−1/2)∆Qn
i−1/2

Desirable properties:

• ϕ(θ) = 0 for θ ≤ 0 (zero slope at extrema)

• ϕ(1) = 1 so nearly using Lax-Wendroff where smooth
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Flux limiters for scalar problem

Flux limiter method:

Fn
i−1/2 = u+Qn

i−1 + u−Qn
i +

1

2
|u|(1− |u|∆t/∆x)δni−1/2

δni−1/2 = ϕ(θni−1/2)∆Qn
i−1/2 where θni−1/2 =

QI −QI−1

Qi −Qi−1

Note that:

• ϕ(θ) ≡ 0 for all θ =⇒ upwind method

• ϕ(θ) ≡ 1 for all θ =⇒ Lax-Wendroff

• ϕ(θ) = θ =⇒ Beam-Warming: δni−1/2 = QI −QI−1

• ϕ(θ) = 1
2(1 + θ) =⇒ Fromm’s method

• ϕ(θ) = minmod(1, θ) =⇒ Minmod method
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TVD flux limiter methods

For qt + uqx = 0 with u > 0 and ν = u∆t/∆x

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

Fn
i−1/2 = uQn

i−1 +
1

2
u(1− u∆t/∆x)δni−1/2

= uQn
i−1 +

1

2
u(1− ν)[ϕ(θi−1/2)(Qi −Qi−1)]

Can be written as:

Qn+1
i = Qn

i −
[
ν +

1

2
ν(1− ν)

(
ϕ(θi+1/2)

θi+1/2
− ϕ(θi−1/2)

)]
(Qn

i −Qn
i−1)

since Qi+1 −Qi = (1/θi+1/2)(Qi −Qi−1)).
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TVD flux limiter methods

Qn+1
i = Qn

i −
[
ν +

1

2
ν(1− ν)

(
ϕ(θi+1/2)

θi+1/2
− ϕ(θi−1/2)

)]
(Qn

i −Qn
i−1)

Use this part of Theorem 6.1 (Harten):

The method

Qn+1
i = Qn

i − Cn
i−1(Q

n
i −Qn

i−1)

is TVD provided 0 ≤ Cn
i ≤ 1 for all i, regardless of how these

coefficients depend on Qn, ∆x, ∆t.
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TVD flux limiter methods

Qn+1
i = Qi − Ci−1(Qi −Qi−1), TV (Q) =

∑
|Qi+1 −Qi|

Proof that method is TVD provided 0 ≤ Ci ≤ 1 for all i:

Qn+1
i+1 −Qn+1

i = (Qi+1 −Qi)− Ci(Qi+1 −Qi) + Ci−1(Qi −Qi−1)

= (1− Ci)(Qi+1 −Qi) + Ci−1(Qi+1 −Qi)

|Qn+1
i+1 −Qn+1

i | ≤ (1− Ci)|Qi+1 −Qi|+ Ci−1|Qi −Qi−1|

∑
|Qn+1

i+1 −Qn+1
i | ≤

∑
(1− Ci)|Qi+1 −Qi|+

∑
Ci−1|Qi −Qi−1|

≤
∑

(1− Ci)|Qi+1 −Qi|+
∑

Ci|Qi+1 −Qi|

≤
∑

(1− Ci + Ci)|Qi+1 −Qi| = TV (Qn)
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= (1− Ci)(Qi+1 −Qi) + Ci−1(Qi+1 −Qi)

|Qn+1
i+1 −Qn+1

i | ≤ (1− Ci)|Qi+1 −Qi|+ Ci−1|Qi −Qi−1|∑
|Qn+1

i+1 −Qn+1
i | ≤

∑
(1− Ci)|Qi+1 −Qi|+

∑
Ci−1|Qi −Qi−1|

≤
∑

(1− Ci)|Qi+1 −Qi|+
∑

Ci|Qi+1 −Qi|

≤
∑

(1− Ci + Ci)|Qi+1 −Qi| = TV (Qn)
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TVD flux limiter methods

The method

Qn+1
i = Qn

i −
[
ν +

1

2
ν(1− ν)

(
ϕ(θi+1/2)

θi+1/2
− ϕ(θi−1/2)

)]
(Qn

i −Qn
i−1)

is TVD provided

0 ≤
[
ν +

1

2
ν(1− ν)

(
ϕ(θ1)

θ1
− ϕ(θ2)

)]
≤ 1

for all values of θ1 and θ2 (provided 0 ≤ ν ≤ 1).

This is true if

−2 ≤
(
ϕ(θ1)

θ1
− ϕ(θ2)

)
≤ 2

for all values of θ1 and θ2
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TVD flux limiter methods

So the method

Qn+1
i = Qn

i −
[
ν +

1

2
ν(1− ν)

(
ϕ(θi+1/2)

θi+1/2
− ϕ(θi−1/2)

)]
(Qn

i −Qn
i−1)

is TVD provided

−2 ≤
(
ϕ(θ1)

θ1
− ϕ(θ2)

)
≤ 2

for all values of θ1 and θ2.

Satisfied provided ϕ(θ) satisfies:

0 ≤ ϕ(θ)

θ
≤ 2, 0 ≤ ϕ(θ) ≤ 2,

or
0 ≤ ϕ(θ) ≤ minmod(2, 2θ).
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Sweby diagram

If we plot ϕ(θ), the curve must lie in the shaded region:

Standard second order methods go outside this region.

Recall we want ϕ(1) = 1 for good accuracy of smooth solutions.

R. J. LeVeque, University of Washington FVMHP Fig. 6.6
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Sweby diagram

Sweby’s investigation suggested best methods lie between
Lax-Wendroff and Beam-Warming (and inside the TVD region).

Sweby region:

ϕ(θ) = minmod(1, θ) follows the lower limit of this region.
R. J. LeVeque, University of Washington FVMHP Fig. 6.6



Superbee method

The superbee limiter follows the upper limit:

ϕ(θ) = max(0, min(1, 2θ), min(2, θ))
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MC method

The Monotonized Centered (MC) limiter follows Fromm’s
method near θ = 1, and is smooth at θ = 1:

ϕ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

R. J. LeVeque, University of Washington FVMHP Fig. 6.6



van Leer method

The van Leer limiter is a smoother version of MC

ϕ(θ) = θ+|θ|
1+|θ| .

R. J. LeVeque, University of Washington FVMHP Fig. 6.6



Some popular limiters

Linear methods:

upwind : ϕ(θ) = 0

Lax-Wendroff : ϕ(θ) = 1

Beam-Warming : ϕ(θ) = θ

Fromm : ϕ(θ) =
1

2
(1 + θ)

High-resolution limiters:

minmod : ϕ(θ) = minmod(1, θ)
superbee : ϕ(θ) = max(0, min(1, 2θ), min(2, θ))

MC : ϕ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer : ϕ(θ) =
θ + |θ|
1 + |θ|
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