Finite Volume Methods for Hyperbolic Problems

TVD Methods and Limiters

Slope limiters vs. flux limiters
Total variation for scalar problems
Proving TVD in flux-limiter form
Design of TVD limiters

Sweby Region

R. J. LeVeque, University of Washington FVMHP Sec. 6.11, 6.12



High-Resolution methods

e Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

* Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities
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High-Resolution methods

Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities

Capture discontuities as sharply as possible
Minimal numerical dissipation
“Shock capturing” methods for nonlinear problems

Easy to combine with adaptive mesh refinement (AMR)
To give better accuracy where solution varies rapidly,
Even sharper resolution of discontinuities

Godunov-type methods — based on Riemann solvers
Wave-propagation algorithms with “limiters”

R. J. LeVeque, University of Washington FVMHP Chap. 6



Limiters can eliminate oscillations

Step function data with minmod slope:
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Monotonized centered (MC) limiter

Using the centered slope (Q7,; — Q7 )/(2Ax) gives
second-order accuracy (Fromm’s method) but not monotonicity.

Limit this slope based on twice the one-sided slopes.

N __ i Q?—i—l — ?—1 Q? — '?—1 Q?-H B Q?
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Monotonized centered (MC) limiter

Using the centered slope (Q7,; — Q7 )/(2Ax) gives
second-order accuracy (Fromm’s method) but not monotonicity.

Limit this slope based on twice the one-sided slopes.

N __ i Q?—i—l — ?—1 Q? — '?—1 Q?-H B Q:l

Rationale:

e Where solution is smooth, centered slope is smaller and
chosen, hence maintains accuracy.

¢ Near jumps in solution, don’t expect second-order but want
to resolve discontinuities as sharply as possible.
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TVD REA Algorithm

@ Reconstruct a piecewise linear function ¢"(z, t,,) defined
for all , from the cell averages Q7.

q"(x,ty) = QF + 0 (x —z;) foralze(;
with the property that TV (¢") < TV (Q™).

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x, t,+1) a time k later.

@ Average this function over each grid cell to obtain new cell

averages
1

Qi = Ar /c 7" (@, tpt1) do.

Note: Steps 2 and 3 are always TVD.
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MC slopes are not always a TVD reconstruction

Sample data with MC slope (twice that of minmod):
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MC slopes are not always a TVD reconstruction

Sample data with MC slope (twice that of minmod):

But evolving and averaging still maintains monotonicity (TVD):
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Slope limiters and flux limiters
Slope limiter formulation for advection:
q"(z,tn) = Q + 0" (x — ;) for z;_1 /0 <o <wipy ).
Applying REA algorithm gives (for u > 0):

uAt 1 uAt

E(Q? - Q1) — 5 (Az — uAt) (07 — o7"4)

n+l _ 7n _
@ =di 2 Az
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Slope limiters and flux limiters
Slope limiter formulation for advection:
q"(z,tn) = Qi + 0i'(z — ;) for x;_1)0 <z <Tipy)s.
Applying REA algorithm gives (for u > 0):

uAt 1 uAt

E(Q? - Q1) — 5 (Az — uAt) (07 — o7"4)

n+l _ 7n _
@ =di 2 Az

Flux limiter formulation:

QI =qQf - Ay Fiv2 = 1 9)

with flux

1
Fl g =uQi 1+ §U(A$ —ult)o;
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Slope limiters and flux limiters
Slope limiter formulation for advection:
q"(x,tn) = Qf + 07 (z — x;) for x;_1)0 <z <Tipy)s.
Applying REA algorithm gives (for u > 0):

uAt 1 uAt

Tx(Qi - Qi) — §E(A$—UA75) (0f —oiq)

1
Q= qQp -

Flux limiter formulation:

QI =qQf - Ay Fiv2 = 1 9)

with flux

1 1 tn+1 ~
Fin_l/g - UQ?,l‘FéU(Aw—UAt)UZLfl = E /t Uq(l'i,l/Q, t) dt
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Lax-Wendroff and flux limiters

Qi =Qr - ( iv12 — F 1/2)
with flux
o uQ? | + su(Ax — uAt) t, ifu>0,
—1/2 uQ"—f (Aac+uAt) if u<O.
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Lax-Wendroff and flux limiters

Qi =Qr - ( iv12 — F 1/2)
with flux
o uQ? | + su(Ax — uAt) t, ifu>0,
—1/2 uQ"—f (Aac+uAt) if u<O.

Lax-Wendroff:
— n 1 n n
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Lax-Wendroff and flux limiters

At

QI =Q; - Ay Fiviye = Filyp)
with flux
o { u@i + su(Az — uAt) ', ifu>0,
1/2 uQl — 5 (AIL‘ + uAt)ol if uw<0.

Lax-Wendroff:
— n 1 n n
Fy)= ut QP +uTQF + §|u|(1 — |ulAt/Az)(Q} — QF4

— n 1 n
=utQf, +uTQ + §|u|(1 — |[ulAt/Az)AQT )5
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Lax-Wendroff and flux limiters

At

QI =Q; - Ay Fiviye = Filyp)
with flux
o { u@i + su(Az — uAt) ', ifu>0,
1/2 uQl — 5 (AIL‘ + uAt)ol if uw<0.

Lax-Wendroff:
— n 1 n n
Fy)= ut QP +uTQF + §|“|(1 — |ulAt/Ax)(Q} — @f4)

— n 1 n
=utQf, +uTQ + §|u|(1 — |[ulAt/Az)AQT )5

Flux limiter method: Replace AQ” by limited version 6;11/2

1/2

Flyjp=utQfy +u”QF + \u](l = [u|At/Az)6} )
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Flux limiters and wave limiters

Flux limiter method: Replace AQ;LW by limited version 6{11/2

mn n — n 1 n
Fily)e = uwt QP +uTQF + §|U|(1 = |ulAt/Az)d )

For systems of equations:

* Solve Riemann problem to decompose AQ}' , , into waves
AQi1y2 = szp—l/Q - Zaf—l/Qrp
p p

e Use wave propagation form of Godunov (first-order) update

e Apply limiters to waves to get WP = ab P

i—1/2 1/2
e Use limited waves in “second-order” corrections
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Flux limiters for scalar problem

Flux limiter method: Replace AQ? , ,, by limited version 6?_1/2

1/2

Fllyjp=u Qi +u Q7 + IUI(1 = |ulAt/Ax)o}

Limiter based on the ratio

n _ Q] - QI—I
e

where I denotes the cell in the upwind direction:

I 1 —1 if u>0
Tl i+1 if u<O.
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Flux limiters for scalar problem

Flux limiter method: Replace AQ?_1/2 by limited version 6?_1/2

n — NN 1 n
Fz'n_l/g =utQf  +uTQf + §|U|(1 — u|At/Az) i—1/2

Limiter based on the ratio
no Qi@
2T Qi - Qi
where I denotes the cell in the upwind direction:

I 1 —1 if u>0
Tl i+1 if u<O.

Note that:
® 0~ 1+ O(Az) where the solution is smooth,
* () < 0 if slopes have different sign.
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Flux limiters for scalar problem

n

i—1/o by limited version ;" , ,

Flux limiter method: Replace AQ
om0 n
Firil/2 = 'LL+Q,?;1 +u Ql + §‘U|(1 — ‘U|At/ACE) i—1/2

Limiter based on the ratio

n _ Q] - QI—I
V2T Qi — Qi

Limiter function: Define ¢(#) and then

?—1/2 = ¢(0?—1/2)AQ?—1/2
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Flux limiters for scalar problem

n

i—1/o by limited version ;" , ,

Flux limiter method: Replace AQ
om0 n
Firil/2 = 'LL+Q?71 +u Ql + §‘U|(1 — ‘U|At/A.fC) i—1/2

Limiter based on the ratio

n _ Q] - QI—I
S Ty

Limiter function: Define ¢(#) and then

?—1/2 = ¢(9?—1/2)AQ?—1/2

Desirable properties:
® $(0) =0 for & < 0 (zero slope at extrema)
® ¢(1) =1 so nearly using Lax-Wendroff where smooth
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Flux limiters for scalar problem

Flux limiter method:

n n — n 1 n
Fi_1/2 = U+Qz‘—1 +um @ + §|U|(1 — ulAt/Az) i—1/2

- i n " Qr—Qr-
O 1j0 = (0] 1/2)AQ} 1),  Where 07, = ﬁ

Note that:

® ¢(0) =0forall# = upwind method
® $(f) =1forall@ — Lax-Wendroff
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Flux limiters for scalar problem

Flux limiter method:
Flypp=u"Qy +u QF + |U|(1 — |ulAt/Az)6} 4 )y

Qr—Qr—1

O 1jg = OO 1)2) AR5 )5 Where 07, = Qi — Qi1

Note that:

® ¢(0) =0forall# = upwind method
® $(f) =1forall@ — Lax-Wendroff

* ()

= Beam-Warming: 4" 12 = =Q;—Qr_1
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Flux limiters for scalar problem

Flux limiter method:

Flypp=u"Qy +u QF + |U|(1 — |ulAt/Az)6} 4 )y

a0 Ly where 0Ly = S0
Note that:

® ¢(f) =0forall = upwind method

® $(f) =1forall@ — Lax-Wendroff

* ¢(¢) =0 = Beam-Warming: 4} |, = Qr — Qr-1

° $(0) = %(1 +6) = Fromm’s method
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Flux limiters for scalar problem

Flux limiter method:
Flypp=u"Qy +u Qf + |U|(1 — |ulAt/Az)6} 4 )y

Qr—Qr—1

5?—1/2 = ¢(9?—1/2)AQ?—1/2 where HZ 2= Qi — Qi1

Note that:

® ¢(f) =0forall = upwind method

® $(f) =1forall@ — Lax-Wendroff

* ¢(¢) =0 = Beam-Warming: 4} |, = Qr — Qr-1
* $(0) =1(1+60) = Fromm’s method

® ¢(f) = minmod(1,0) == Minmod method
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TVD flux limiter methods

For ¢; + ug, = 0 with w > 0 and v = uAt/Azx
At

Q?H = Qi - E( ﬁ-l/Q - 3@1/2)
mn n 1 n
FL = uQiy + §U(1 — uAt/A:L‘)(Si_l/2
1
= uQi 1 + 5“(1 —1)[#(0i—1/2)(Qi — Qi-1)]

Can be written as:

0
o = Qe [ + gt =) (S g0 ) ] @r-ar
2 Oiv1/2

since Qi1 — Qi = (1/0;412)(Qi — Qi—1)).
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TVD flux limiter methods

Q= Qre [u+ La v

P(0ig1/2)
- (g

Oiv1/2

-0 )| (@-)

Use this part of Theorem 6.1 (Harten):
The method

QI =@ —C(QF — Q1Y)

is TVD provided 0 < C}* < 1 for all 4, regardless of how these
coefficients depend on Q", Ax, At.
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TVD flux limiter methods

QMM =Qi—Cii(Qi—Qi1),  TV(Q) =) |Qit1 — Qi
Proof that method is TVD provided 0 < C; < 1 for all 4:

QI = QI = (Qit1 — Q) — Ci(Qix1 — Qi) + Cim1(Qi — Qi—1)
=(1-Ci)(Qir1 — Qi) + Cim1(Qiy1 — Qi)
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TVD flux limiter methods

QM =Qi—Cii(Qi—Qic1),  TV(Q) = Qi1 — Qi
Proof that method is TVD provided 0 < C; < 1 for all 4:

QI = QI = (Qit1 — Q) — Ci(Qix1 — Qi) + Cim1(Qi — Qi—1)
=(1-Ci)(Qir1 — Qi) + Cim1(Qiy1 — Qi)

QIE = QI < (1 - C)|Qiv1 — Qil + Cim1|Qi — Qi1
dIQE =@t <Y (1 - C)IQir — Qil + > Cia|Qi — Qi
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TVD flux limiter methods

QM =Qi—Cia(Qi—Qim1),  TV(Q) =) [Qit1— Qi
Proof that method is TVD provided 0 < C; < 1 for all 4:

QI = QI = (Qit1 — Q) — Ci(Qix1 — Qi) + Cim1(Qi — Qi—1)
=(1-Ci)(Qir1 — Qi) + Cim1(Qiy1 — Qi)

QM — QI < (1 - C)|Qis1 — Qi + Cia|Qi — Qi
Z\Q?ﬂl QI < Z (1-Cy)|Qiv1 — Qi +ZCZ 1|Qi — Qi—1]
< Z 1- ’Qz-‘rl Qz| + ZC |Qz+1 Qz|
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TVD flux limiter methods

QM =Qi—Cia(Qi—Qim1),  TV(Q) =) [Qit1— Qi
Proof that method is TVD provided 0 < C; < 1 for all 4:

Qi = Q™ = (Qit1 — Qi) — CilQit1 — Qi) + Cima (Qi — Qi1)
= (1 - C)(Qit1 — Qi) + Cim1(Qiv1 — Qi)
QT — QT < (1= C)|Qis1 — Qil + Ci1|Qi — Qi
DI =i <Y (1= Ci)IQir1 — Qil + > Ci1|Qi — Qi
<D (1= C)IQis — Qil + D Cil Qi1 — Qi
<D (1=Ci+C)IQin1 — Qi =TV(Q")

R. J. LeVeque, University of Washington FVMHP Sec. 6.12



TVD flux limiter methods

The method
(0 41/2)

Oit1/2

@t =i+ i -n) - 001 )| (@)

is TVD provided

0< {1/ + %1/(1 — ) <¢(9911) - ¢(92)>] <1

for all values of #; and 65 (provided 0 < v < 1).
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TVD flux limiter methods

The method
(0 41/2)

Oit1/2

@t =i+ i -n) - 001 )| (@)

is TVD provided

0< {1/ + %1/(1 — ) <¢(9911) - ¢(92)>] <1

for all values of #; and 65 (provided 0 < v < 1).

—2< (W” - ¢>(92)) <2

This is true if

01
for all values of 6; and 6,
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TVD flux limiter methods

So the method
P(0i11/2)

i+1/2

@t =ar - v o) ~ o0 )| @ e

is TVD provided

o< ((ﬁ(ff) —¢<02)) <9

for all values of 6; and 6,.

Satisfied provided ¢(0) satisfies:

0<™ s <o <2
or
0 < ¢(#) < minmod(2, 20).
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Sweby diagram

If we plot ¢(#), the curve must lie in the shaded region:

3

phi(theta)
=

R. J. LeVeque, University of Washington FVMHP Fig. 6.6



Sweby diagram

If we plot ¢(#), the curve must lie in the shaded region:

3

Beam-Warming

Lax-Wendroff

phi(theta)
=

Standard second order methods go outside this region.
Recall we want ¢(1) = 1 for good accuracy of smooth solutions.
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Sweby diagram
Sweby’s investigation suggested best methods lie between
Lax-Wendroff and Beam-Warming (and inside the TVD region).
Sweby region:

3

phi(theta)
=

-1 0 1 2 3 4
theta

¢(0) = minmod(1, #) follows the lower limit of this region.
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Superbee method

The superbee limiter follows the upper limit:

3

phi(theta)
-

-1 0 1 2 3 4
theta

#(0) = max(0, min(1,26), min(2,0))
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MC method

The Monotonized Centered (MC) limiter follows Fromm’s
method near § = 1, and is smooth at 6 = 1:

3

phi(theta)
=

-1 0 1 2 3 4
theta

¢(0) = max(0, min((1+0)/2, 2, 20))
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van Leer method

The van Leer limiter is a smoother version of MC

3

phi(theta)
=

6(0) = THg-
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Some popular limiters

Linear methods:

upwind :  ¢(f) =0

Lax-Wendroff :  ¢(0) =1

Beam-Warming : ¢(0) =46
Fromm: ¢(0) = %(1 +0)

High-resolution limiters:

minmod :  ¢(#) = minmod(1, 6)
superbee :  ¢(f) = max(0, min(1,26), min(2,6))
MC: ¢(0) = max(0, min((1+6)/2, 2, 26))
van Leer: ¢(0) = 6+ 6]
1+ 16|
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