Finite Volume Methods for Hyperbolic Problems

High-Resolution TVD Methods

Godunov: wave-propagation and REA algorithms
Extension of REA to piecewise linear

Relation to Lax-Wendroff, Beam-Warming
Limiters and minmod

Monotonicity and Total Variation
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Advection tests with periodic BCs

Compare Upwind, Lax-Wendroff, minmod...
With 200 cells:
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High-Resolution methods

e Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

* Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities
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High-Resolution methods

Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities

Capture discontuities as sharply as possible
Minimal numerical dissipation
“Shock capturing” methods for nonlinear problems

Easy to combine with adaptive mesh refinement (AMR)
To give better accuracy where solution varies rapidly,
Even sharper resolution of discontinuities
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High-Resolution methods

Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities

Capture discontuities as sharply as possible
Minimal numerical dissipation
“Shock capturing” methods for nonlinear problems

Easy to combine with adaptive mesh refinement (AMR)
To give better accuracy where solution varies rapidly,
Even sharper resolution of discontinuities

Godunov-type methods — based on Riemann solvers
Wave-propagation algorithms with “limiters”
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Wave-propagation viewpoint

For linear system ¢; + Aq, = 0, the Riemann solution consists of

waves WP propagating at constant speed AP.
A2AL
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First-order REA Algorithm

@ Reconstruct a piecewise constant function ¢"(x, t,,)
defined for all z, from the cell averages Q7.

q"(z,t,) = Q" forall x € C;.

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x, t,+1) a time At later.

@ Average this function over each grid cell to obtain new cell

averages
1

Qi = Ar /c 7" (@, tpt1) do.
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

R —

After evolution:
_—| L

L]
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Cell update

The cell average is modified by

ult - (Q7, — QF)
Azx

So we obtain the upwind method

Ut

QT =Qf - (@ - Q).
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Second-order REA Algorithm

@ Reconstruct a piecewise linear function ¢"(z, t,,) defined
for all =, from the cell averages Q.

q"(z,t,) = Q7 + o' (x —z;) forallzed;.

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x, t,+1) a time At later.

@ Average this function over each grid cell to obtain new cell

averages
1 -
Q?—H = ACL‘/C q"(x,tn+1) dz.
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Second-order REA Algorithm

@ Reconstruct a piecewise linear function ¢"(z, t,,) defined
for all =, from the cell averages Q.

q"(z,t,) = Q7 + o' (x —z;) forallzed;.

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x, t,+1) a time At later.

@ Average this function over each grid cell to obtain new cell

averages
1 -
Q?—H = ACL‘/C q"(x,tn+1) dz.

Note: Conservative for any choice of slopes o}'.
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:

N
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Choice of slopes

Q™ (z,t,) = Q" + o (z — x;) for z;_y /0 <o <wipy).
Applying REA algorithm gives:

ulAt 1 uAt

Qi =Qf - Ap (@i~ Qi) — 54 (B —ult) (o] —oily)
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Choice of slopes

Q™ (z,t,) = Q" + o (z — x;) for z;_y /0 <o <wipy).

Applying REA algorithm gives:

n n uAt n 1uAt N n
QI =Qr - (Qz Qi) — 3 Az (Az — uAt) (0] — 07" 4)

Choice of slopes:

Centered slope: o = % (Fromm)
H . n Q? _ ZT'L—l .
Upwind slope: o' = —Ar (Beam-Warming)
Downwind slope:  of = H_lAl' @i (Lax-Wendroff)
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Slopes can create oscillations

Step function data with Lax-Wendroff slope:
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Slopes can create oscillations

Step function data with Lax-Wendroff slope:

Evolving solution and averaging can result in overshoot:
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Slopes can create oscillations

Step function data with Beam-Warming slope:
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Slopes can create oscillations

Step function data with Beam-Warming slope:

Evolving solution and averaging can result in undershoot:
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution, e.g.,

N Q' — Qi i1 — @7
o;' = minmod (( AL ), < AL

where

a if la] <|bland ab >0
minmod(a,b) =< b  if |b] < |a| and ab >0
0 if ab <0.
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Limiters can eliminate oscillations

Step function data with minmod slope:
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Limiters can eliminate oscillations

Step function data with minmod slope:

Evolving solution and averaging maintains monotonicity:

\
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Advection tests
q: + g = 0 with periodic BCs
Solution at ¢t = 1 should agree with initial data.

Minmod solution with 200 cells:
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Advection tests with periodic BCs

Compare Lax-Wendroff, Beam-Warming, minmod...
With 200 cells:

With 400 cells:
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Advection tests
q: + g = 0 with periodic BCs
Solution att = 1,2, 3,4, 5, ... should agree with initial data.

Upwind solution with 100 cells at ¢ = 5:
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Advection tests
q: + g = 0 with periodic BCs
Solution att = 1,2, 3,4, 5, ... should agree with initial data.

Lax-Wendroff solution with 100 cells at ¢t = 5:
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Advection tests
q: + g = 0 with periodic BCs
Solution att = 1,2, 3,4, 5, ... should agree with initial data.

Minmod limiter solution with 100 cells at ¢t = 5:
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Advection tests
q: + g = 0 with periodic BCs
Solution att = 1,2, 3,4, 5, ... should agree with initial data.

Monotonized Central limiter solution with 100 cells at ¢t = 5:
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Advection tests
q: + g = 0 with periodic BCs
Solution att = 1,2, 3,4, 5, ... should agree with initial data.

Superbee limiter solution with 100 cells at ¢ = 5:
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Monotonicity Preserving methods

A scalar method is said to be monotonicity preserving if:

Given any data @7 that satisfies

P >Qp foralli.

Taking one time step preserves this property:
QM > Q! foralli.

And similarly if > replaced by <.

R. J. LeVeque, University of Washington FVMHP Sec. 6.7



Monotonicity Preserving methods

A scalar method is said to be monotonicity preserving if:

Given any data @7 that satisfies
P >Qp foralli.
Taking one time step preserves this property:
QM > Q! foralli.
And similarly if > replaced by <.

In particular:
An isolated discontinuity propagates without any oscillations.
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TVD Methods

Total variation:

TV(Q) = Z Qi — Qi—1]

For a function, TV (¢q) = [ |g.(z)| dz.
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TVD Methods

Total variation:

= Z Qi — Qi—1]

For a function, TV (¢q) = [ |g.(z)| dz.

For scalar conservation laws, the solution always satisifes:

TV (q(-,t) <TV(q(-,0)) forany t > 0.
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TVD Methods

Total variation:

TV(Q) = Z Qi — Qi—1]

For a function, TV (¢q) = [ |g.(z)| dz.

For scalar conservation laws, the solution always satisifes:
TV (q(-,t) <TV(q(-,0)) forany ¢t > 0.
A method is Total Variation Diminishing (TVD) if

TV(Q") < TV(Q").
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TVD Methods
Total variation:

= Z Qi — Qi—1]

For a function, TV (¢q) = [ |g.(z)| dz.

For scalar conservation laws, the solution always satisifes:

TV (q(-,t) <TV(q(-,0)) forany t > 0.

A method is Total Variation Diminishing (TVD) if
V(Q™h) <TV(QM).
Gives a form of stability useful for proving convergence,

also for nonlinear scalar conservation laws.
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TVD implies monotonicity preserving

Any TVD method for a scalar PDE is monotonicity preserving.

Prove the contrapositive:

Suppose
Qi > Qi foralli

but after one step we do not have Q"' > Q7! for all 4.

Then the total variation of the solution must have increased.

R. J. LeVeque, University of Washington FVMHP Sec. 6.7



Deriving methods that are TVD

Since TV is a global property, how do we derive methods that
we can prove are TVD for any data?
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Deriving methods that are TVD

Since TV is a global property, how do we derive methods that
we can prove are TVD for any data?

Use these facts (for scalar conservation law):

e Exact solution is TVD

¢ |f we average q(z,t) over grid cells to compute Q;,
then TV(Q;) < TV (q(-,1)).

Q=Y -l TV = [lanw)lds
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TVD REA Algorithm

© Reconstruct a piecewise linear function ¢"(z, t,,) defined
for all z, from the cell averages Q7.

§"(z,tn) = QF +0j(x —x;) forallze(;
with the property that TV (¢") < TV (Q™).

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x,t,+1) a time k later.

@ Average this function over each grid cell to obtain new cell
averages

n 1
Q = Ax/ (Q? tn+1)d
Note: Steps 2 and 3 are always TVD.
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TVD REA Algorithm

© Reconstruct a piecewise linear function ¢"(z, t,,) defined
for all z, from the cell averages Q7.

§"(z,tn) = QF +0j(x —x;) forallze(;
with the property that TV (¢") < TV (Q™).

® Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x,t,+1) a time k later.

@ Average this function over each grid cell to obtain new cell
averages

1
Qn+1 A.T / (Q? tn+1)d

Note: Steps 2 and 3 are always TVD.
So TV(Q"™) <TV(§"(-,tnt1)) < TV(§"(- tn)) < TV(Q™)
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Reconstruction step

Lax-Wendroff slopes do not give TVD reconstruction:

Minmod slopes do give TVD reconstruction:

N
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