
Finite Volume Methods for Hyperbolic Problems

High-Resolution TVD Methods

• Godunov: wave-propagation and REA algorithms
• Extension of REA to piecewise linear
• Relation to Lax-Wendroff, Beam-Warming
• Limiters and minmod
• Monotonicity and Total Variation
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Advection tests with periodic BCs

Compare Upwind, Lax-Wendroff, minmod...

With 200 cells:

With 400 cells:

R. J. LeVeque, University of Washington FVMHP Fig. 6.1



High-Resolution methods

• Methods that give good accuracy for smooth solutions
Clawpack methods: at best second-order accuracy

• Do not have oscillations around discontinuities
Not only ugly but can lead to nonlinear instabilities

• Capture discontuities as sharply as possible
Minimal numerical dissipation
“Shock capturing” methods for nonlinear problems

• Easy to combine with adaptive mesh refinement (AMR)
To give better accuracy where solution varies rapidly,
Even sharper resolution of discontinuities

• Godunov-type methods — based on Riemann solvers
Wave-propagation algorithms with “limiters”
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Wave-propagation viewpoint

For linear system qt+Aqx = 0, the Riemann solution consists of

waves Wp propagating at constant speed λp.
λ2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =

m∑
p=1

αp
i−1/2r

p ≡
m∑
p=1

Wp
i−1/2.

Qn+1
i = Qn

i − ∆t

∆x

[
λ2W2

i−1/2 + λ3W3
i−1/2 + λ1W1

i+1/2

]
.
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First-order REA Algorithm

1 Reconstruct a piecewise constant function q̃n(x, tn)
defined for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

R. J. LeVeque, University of Washington FVMHP Sec. 4.11



Cell update

The cell average is modified by

u∆t · (Qn
i−1 −Qn

i )

∆x

So we obtain the upwind method

Qn+1
i = Qn

i − u∆t

∆x
(Qn

i −Qn
i−1).
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Second-order REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.

Note: Conservative for any choice of slopes σn
i .
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:
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Choice of slopes

Q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i − u∆t

∆x
(Qn

i −Qn
i−1)−

1

2

u∆t

∆x
(∆x− u∆t) (σn

i − σn
i−1)

Choice of slopes:

Centered slope: σn
i =

Qn
i+1 −Qn

i−1

2∆x
(Fromm)

Upwind slope: σn
i =

Qn
i −Qn

i−1

∆x
(Beam-Warming)

Downwind slope: σn
i =

Qn
i+1 −Qn

i

∆x
(Lax-Wendroff)
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Slopes can create oscillations

Step function data with Lax-Wendroff slope:

Evolving solution and averaging can result in overshoot:
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Slopes can create oscillations

Step function data with Beam-Warming slope:

Evolving solution and averaging can result in undershoot:
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution, e.g.,

σn
i = minmod

((
Qn

i −Qn
i−1

∆x

)
,

(
Qn

i+1 −Qn
i

∆x

))
where

minmod(a, b) =


a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0.
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Limiters can eliminate oscillations

Step function data with minmod slope:

Evolving solution and averaging maintains monotonicity:

R. J. LeVeque, University of Washington FVMHP Sec. 6.4
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Minmod solution with 200 cells:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1, 2, 3, 4, 5, . . . should agree with initial data.

Upwind solution with 100 cells at t = 5:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html


Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1, 2, 3, 4, 5, . . . should agree with initial data.

Lax-Wendroff solution with 100 cells at t = 5:

$CLAW/apps/fvmbook/chap6/compareadv
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1, 2, 3, 4, 5, . . . should agree with initial data.

Minmod limiter solution with 100 cells at t = 5:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html


Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1, 2, 3, 4, 5, . . . should agree with initial data.

Monotonized Central limiter solution with 100 cells at t = 5:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html


Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1, 2, 3, 4, 5, . . . should agree with initial data.

Superbee limiter solution with 100 cells at t = 5:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html


Monotonicity Preserving methods

A scalar method is said to be monotonicity preserving if:

Given any data Qn
i that satisfies

Qn
i−1 ≥ Qn

i for all i.

Taking one time step preserves this property:

Qn+1
i−1 ≥ Qn+1

i for all i.

And similarly if ≥ replaced by ≤.

In particular:
An isolated discontinuity propagates without any oscillations.

R. J. LeVeque, University of Washington FVMHP Sec. 6.7
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TVD Methods

Total variation:
TV (Q) =

∑
i

|Qi −Qi−1|

For a function, TV (q) =
∫
|qx(x)| dx.

For scalar conservation laws, the solution always satisifes:

TV (q(·, t) ≤ TV (q(·, 0)) for any t ≥ 0.

A method is Total Variation Diminishing (TVD) if

TV (Qn+1) ≤ TV (Qn).

Gives a form of stability useful for proving convergence,
also for nonlinear scalar conservation laws.

R. J. LeVeque, University of Washington FVMHP Sec. 6.7
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TVD implies monotonicity preserving

Any TVD method for a scalar PDE is monotonicity preserving.

Prove the contrapositive:

Suppose
Qn

i−1 ≥ Qn
i for all i

but after one step we do not have Qn+1
i−1 ≥ Qn+1

i for all i.

Then the total variation of the solution must have increased.
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Deriving methods that are TVD

Since TV is a global property, how do we derive methods that
we can prove are TVD for any data?

Use these facts (for scalar conservation law):

• Exact solution is TVD

• If we average q(x, t) over grid cells to compute Qi,
then TV (Qi) ≤ TV (q(·, t)).

TV (Q) =
∑
i

|Qi −Qi−1|, TV (q) =

∫
|qx(x)| dx

R. J. LeVeque, University of Washington FVMHP Sec. 6.8
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TVD REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci

with the property that TV (q̃n) ≤ TV (Qn).

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.

Note: Steps 2 and 3 are always TVD.

So TV (Qn+1) ≤ TV (q̃n(·, tn+1)) ≤ TV (q̃n(·, tn)) ≤ TV (Qn)
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Reconstruction step

Lax-Wendroff slopes do not give TVD reconstruction:

Minmod slopes do give TVD reconstruction:

R. J. LeVeque, University of Washington FVMHP Sec. 6.8
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