Finite Volume Methods for Hyperbolic Problems

Dissipation, Dispersion,
Modified Equations

Upwind, Lax-Friedrichs
Lax-Wendroff and Beam-Warming
Numerical dissipation and dispersion
Modified equations
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Symmetric methods

Centered in space, forward in time:

QI =Qr — EA( 1 — Qi)

Flux differencing with F(Q;—1, Q) = 3(AQi—1 + AQ;) for f(q) = Aq.
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Symmetric methods

Centered in space, forward in time:

At
n+1 n n n
QI =Qp - EA( 1 — Qi)

Flux differencing with F(Q;—1, Q) = 3(AQi—1 + AQ;) for f(q) = Aq.

O(Ax?) approximation to ¢, but unstable for any fixed At/Ax.

Lax-Friedrichs:

n 1 At n n
QM = 5( QN ) — EA( 1 — Q)

This is stable if |22t] < 1 for all p.
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Numerical dissipation

Lax-Friedrichs:

At

1, ., n n n
Q! = 5( i1+ Qi) — %‘4( i1~ Qi)

This can be rewritten as

., At 1
QI =Qp - %A( 1 — Qi)+ 5( 1 — 207 + Q)
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Numerical dissipation

Lax-Friedrichs:

At

n 1 1 n " i
Qi = S(QI + Qi) — A AQl — Q1)

This can be rewritten as

. At 1 |
QI =Qp - EA( 1 — Qi)+ 5( 1 — 207 + Q)

— Q" — AtA (Q?-H _Q?—l) + At <A172> < i1 _2Q?+Q?+1>

20z 2At Ax?
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Numerical dissipation

Lax-Friedrichs:

At

n 1 1 n " i
QiJr1 = 5( 1+ Qi) — %A( it~ Qi)

This can be rewritten as

n n At n 1 n
QI =Qpr - %A( 1 — Qi)+ 5( i1 =207 + Q)

n— Q. A2\ [QF, —2Q7 + QT
— 0" — AtA i+1 i—1 i—1 i i+1
@ ( 27z ) Al <2At> < Aa?

The unstable method with the addition of artificial viscosity,
Approximates ¢: + Aq, = eq.,. (modified equation)
with e = 22 = O(Az) if At/Ax s fixed as Az — 0.
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Modified Equations
The upwind method
At
ntl _ ~Hn _ =7 n__ nn
Qi - Qz AI‘U(QZ 2—1)'

gives a first-order accurate approximation to ¢; + ug, = 0.

But it gives a second-order approximation to

n _ ulAw 1 uAt
gt T~ U4y = 9 Az Qxa-

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is O(Ax).
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Modified Equations
The upwind method
At
ntl _ ~Hn _ =7 n__ nn
Qi - Qz AI‘U(QZ 2—1)'

gives a first-order accurate approximation to ¢; + ug, = 0.

But it gives a second-order approximation to

n _ ulAw 1 uAt
gt T~ U4y = 9 Az Qxa-

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is O(Ax).

Note: No diffusion if 43/ =1 (QI"' = Q_; exactly).
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Advection tests
q: + g = 0 with periodic BCs
Solution at ¢t = 1 should agree with initial data.

Initial data with 200 cells:

qattimet= 0.00000000

1.2 1 —— true solution
1.0 p
0.8 1
0.6 1
0.4
0.29
0.01
—0.2
—0.4
0:0 0:2 0:4 0.‘6 0:8 l.IO

SCLAW/apps/fvmbook/chap6/compareadv
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Advection tests
q: + g = 0 with periodic BCs
Solution at ¢ = 1 should agree with initial data.

Upwind solution with 400 cells:

qattimet= 1.00000000
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Lax-Wendroff

Second-order accuracy?

Taylor series:
1
q(z,t + At) = q(x,t) + Atg(x,t) + §At2qtt(a:, )+

From ¢, = —Aq, we find g = A%¢..

a4+ A1) = g, 1)~ AtAG (1) + S AP A g, 1) 4+

Replace ¢, and ¢, by centered differences:

At 1 At?
n+l _ Hn n n 2 n n n
QT =0Q; _EA( i1 i—1)+§7Ang (@1 —2Q7 +Q)
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Modified Equation for Lax-Wendroff

The Lax-Wendroff method

At 1 At?
n+l _ Hn n n 2 n n n
QT =Q; —EA( i1 Fl)*‘ifng‘l (@1 —2Q7 + Qi)

gives a second-order accurate approximation to ¢; + ug, = 0.

But it gives a third-order approximation to

n B ulAz? 1 uAt\?
gt T Ugy = 6 Ax Qrxx-

This has a dispersive term with O(Axz?) coefficient.

Indicates that the numerical solution will become oscillatory.
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Dispersion relation

Consider a single Fourier mode:

q(z,0) = * = g(x,t) = el(€z—wt)
Determine w(&) based on the PDE  (dispersion relation)
q = —iwq, gz = i€q,

G tug =0 = w(©) =u,  qla,1) =€
(translates at speed u for all &)
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Dispersion relation

Consider a single Fourier mode:
Q(xa 0) =t = Q(-TU, t) = ei(fx—wt)
Determine w(&) based on the PDE  (dispersion relation)

@ = —iwg, gy =1iq, G = —E&%q,

G tug =0 = w(§) =ug,  qla,1) = €
(translates at speed u for all &)

Gt + Uy = €Qua = g(z,t) = e teié@=ut)  (decays)
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Dispersion relation
Consider a single Fourier mode:
q(x,0) = PL— q(x,t) = gl(6r—wt)
Determine w(&) based on the PDE  (dispersion relation)

gt = —iwq, qp=18q, GQuz = _52(]7 Qrzx = _ZEg% ce

g + uqy = 0 == w(g) = ué" q(l’,t) — eif(xfut)
(translates at speed  for all &)

Gt + Uy = €Qua = g(z,t) = e teié@=ut)  (decays)
Gt + Uy = Bloze = qla,t) = 6@ AN

(translates at speed « + 3¢2 that depends on wave number!)
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Advection tests
q: + g = 0 with periodic BCs
Solution at ¢t = 1 should agree with initial data.

Initial data with 200 cells:

qattimet= 0.00000000

1.2 1 —— true solution
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Advection tests
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Lax-Wendroff solution with 200 cells:

qattimet= 1.00000000

1.2 1 —— true solution
1.0
0.8 1
0.6 1
0.4

1)

0.01

0:0 0:2 0:4 0.‘6 0:8 l.IO
SCLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1


http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html

Advection tests
q: + g = 0 with periodic BCs
Solution at ¢t = 1 should agree with initial data.

Lax-Wendroff solution with 400 cells:

qattimet= 1.00000000
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Beam-Warming method

Taylor series for second order accuracy:
1

Replace ¢, and g,, by one-sided differences:

At

QM =qr - EA(?)Q? —4Q7 + Qi)
1 At? n n n
YN ANQF ~ 2011 + QL)
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Beam-Warming method

Taylor series for second order accuracy:
1
gzt + At) = q(z,t) — AtAge(z,t) + §At2A2qm(a:,t) e

Replace ¢, and g,, by one-sided differences:

At

QM =qr - mA(i%Q? —4Q7 + Qi)
1 At? n n n
YN ANQF ~ 2011 + QL)

CFL condition: 0 < 2%&f < 2 for all eigenvalues.

This is also the stability limit (von Neumann analysis).
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Advection tests

qt + g = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Beam-Warming solution with 200 cells:

qattimet=  1.00000000

1.2 4 —— true solution

104

0.8 1

0.6

0.4+

0.2+

0.0+

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

SCLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1


http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html

Advection tests

qt + g = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Beam-Warming solution with 400 cells:

qattimet=  1.00000000
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