
Finite Volume Methods for Hyperbolic Problems

Dissipation, Dispersion,
Modified Equations

• Upwind, Lax-Friedrichs
• Lax-Wendroff and Beam-Warming
• Numerical dissipation and dispersion
• Modified equations
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Symmetric methods

Centered in space, forward in time:

Qn+1
i = Qn

i − ∆t

2∆x
A(Qn

i+1 −Qn
i−1)

Flux differencing with F(Qi−1, Qi) =
1
2 (AQi−1 +AQi) for f(q) = Aq.

O(∆x2) approximation to qx, but unstable for any fixed ∆t/∆x.

Lax-Friedrichs:

Qn+1
i =

1

2
(Qn

i−1 +Qn
i+1)−

∆t

2∆x
A(Qn

i+1 −Qn
i−1)

This is stable if
∣∣λp∆t

∆x

∣∣ ≤ 1 for all p.
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Numerical dissipation

Lax-Friedrichs:

Qn+1
i =

1

2
(Qn

i−1 +Qn
i+1)−

∆t

2∆x
A(Qn

i+1 −Qn
i−1)

This can be rewritten as

Qn+1
i = Qn

i − ∆t

2∆x
A(Qn

i+1 −Qn
i−1) +

1

2
(Qn

i−1 − 2Qn
i +Qn

i+1)

= Qn
i −∆tA

(
Qn

i+1 −Qn
i−1

2∆x

)
+∆t

(
∆x2

2∆t

)(
Qn

i−1 − 2Qn
i +Qn

i+1

∆x2

)
The unstable method with the addition of artificial viscosity,

Approximates qt +Aqx = ϵqxx (modified equation)

with ϵ = ∆x2

2∆t = O(∆x) if ∆t/∆x is fixed as ∆x → 0.
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Modified Equations

The upwind method

Qn+1
i = Qn

i − ∆t

∆x
u(Qn

i −Qn
i−1).

gives a first-order accurate approximation to qt + uqx = 0.

But it gives a second-order approximation to

qt + uqx =
u∆x

2

(
1− u∆t

∆x

)
qxx.

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is O(∆x).

Note: No diffusion if u∆t
∆x = 1 (Qn+1

i = Qn
i−1 exactly).
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Initial data with 200 cells:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html
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qt + qx = 0 with periodic BCs
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Lax-Wendroff

Second-order accuracy?

Taylor series:

q(x, t+∆t) = q(x, t) + ∆tqt(x, t) +
1

2
∆t2qtt(x, t) + · · ·

From qt = −Aqx we find qtt = A2qxx.

q(x, t+∆t) = q(x, t)−∆tAqx(x, t) +
1

2
∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by centered differences:

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1

2

∆t2

∆x2
A2(Qn

i−1−2Qn
i +Qn

i+1)
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Modified Equation for Lax-Wendroff

The Lax-Wendroff method

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1

2

∆t2

∆x2
A2(Qn

i−1−2Qn
i +Qn

i+1)

gives a second-order accurate approximation to qt + uqx = 0.

But it gives a third-order approximation to

qt + uqx = −u∆x2

6

(
1−

(
u∆t

∆x

)2
)
qxxx.

This has a dispersive term with O(∆x2) coefficient.

Indicates that the numerical solution will become oscillatory.
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Dispersion relation

Consider a single Fourier mode:

q(x, 0) = eiξx =⇒ q(x, t) = ei(ξx−ωt)

Determine ω(ξ) based on the PDE (dispersion relation)

qt = −iωq, qx = iξq,

qxx = −ξ2q, qxxx = −iξ3q, . . .

qt + uqx = 0 =⇒ ω(ξ) = uξ, q(x, t) = eiξ(x−ut)

(translates at speed u for all ξ)

qt + uqx = ϵqxx =⇒ q(x, t) = e−ϵξ2teiξ(x−ut) (decays)

qt + uqx = βqxxx =⇒ q(x, t) = eiξ(x−(u+βξ2)t)

(translates at speed u+ βξ2 that depends on wave number!)
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Advection tests
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Beam-Warming method

Taylor series for second order accuracy:

q(x, t+∆t) = q(x, t)−∆tAqx(x, t) +
1

2
∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by one-sided differences:

Qn+1
i = Qn

i − ∆t

2∆x
A(3Qn

i − 4Qn
i−1 +Qn

i−2)

+
1

2

∆t2

∆x2
A2(Qn

i − 2Qn
i−1 +Qn

i−2)

CFL condition: 0 ≤ λp∆t
∆x ≤ 2 for all eigenvalues.

This is also the stability limit (von Neumann analysis).

R. J. LeVeque, University of Washington FVMHP Sec. 6.2
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