Finite Volume Methods for Hyperbolic Problems

Dissipation, Dispersion, Modified Equations

- Upwind, Lax-Friedrichs
- Lax-Wendroff and Beam-Warming
- Numerical dissipation and dispersion
- Modified equations

Symmetric methods

Centered in space, forward in time:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

Flux differencing with $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)=\frac{1}{2}\left(A Q_{i-1}+A Q_{i}\right)$ for $f(q)=A q$.

Symmetric methods

Centered in space, forward in time:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

Flux differencing with $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)=\frac{1}{2}\left(A Q_{i-1}+A Q_{i}\right)$ for $f(q)=A q$. $\mathcal{O}\left(\Delta x^{2}\right)$ approximation to q_{x}, but unstable for any fixed $\Delta t / \Delta x$.

Symmetric methods

Centered in space, forward in time:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

Flux differencing with $\mathcal{F}\left(Q_{i-1}, Q_{i}\right)=\frac{1}{2}\left(A Q_{i-1}+A Q_{i}\right)$ for $f(q)=A q$. $\mathcal{O}\left(\Delta x^{2}\right)$ approximation to q_{x}, but unstable for any fixed $\Delta t / \Delta x$.

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This is stable if $\left|\frac{\lambda^{p} \Delta t}{\Delta x}\right| \leq 1$ for all p.

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)
$$

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right) \\
& =Q_{i}^{n}-\Delta t A\left(\frac{Q_{i+1}^{n}-Q_{i-1}^{n}}{2 \Delta x}\right)+\Delta t\left(\frac{\Delta x^{2}}{2 \Delta t}\right)\left(\frac{Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}}{\Delta x^{2}}\right)
\end{aligned}
$$

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right) \\
& =Q_{i}^{n}-\Delta t A\left(\frac{Q_{i+1}^{n}-Q_{i-1}^{n}}{2 \Delta x}\right)+\Delta t\left(\frac{\Delta x^{2}}{2 \Delta t}\right)\left(\frac{Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}}{\Delta x^{2}}\right)
\end{aligned}
$$

The unstable method with the addition of artificial viscosity,
Approximates $q_{t}+A q_{x}=\epsilon q_{x x} \quad$ (modified equation)
with $\epsilon=\frac{\Delta x^{2}}{2 \Delta t}=\mathcal{O}(\Delta x)$ if $\Delta t / \Delta x$ is fixed as $\Delta x \rightarrow 0$.

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.
Note: No diffusion if $\frac{u \Delta t}{\Delta x}=1 \quad\left(Q_{i}^{n+1}=Q_{i-1}^{n}\right.$ exactly $)$.

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Initial data with 200 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Upwind solution with 200 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Upwind solution with 400 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Lax-Wendroff

Second-order accuracy?

Taylor series:

$$
q(x, t+\Delta t)=q(x, t)+\Delta t q_{t}(x, t)+\frac{1}{2} \Delta t^{2} q_{t t}(x, t)+\cdots
$$

From $q_{t}=-A q_{x}$ we find $q_{t t}=A^{2} q_{x x}$.

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by centered differences:
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$

Modified Equation for Lax-Wendroff

The Lax-Wendroff method
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$
gives a second-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a third-order approximation to

$$
q_{t}+u q_{x}=-\frac{u \Delta x^{2}}{6}\left(1-\left(\frac{u \Delta t}{\Delta x}\right)^{2}\right) q_{x x x} .
$$

This has a dispersive term with $O\left(\Delta x^{2}\right)$ coefficient.
Indicates that the numerical solution will become oscillatory.

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE
(dispersion relation)

$$
q_{t}=-i \omega q, \quad q_{x}=i \xi q
$$

$$
q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}
$$

(translates at speed u for all ξ)

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE (dispersion relation)

$$
q_{t}=-i \omega q, \quad q_{x}=i \xi q, \quad q_{x x}=-\xi^{2} q,
$$

$$
q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}
$$

(translates at speed u for all ξ)

$$
q_{t}+u q_{x}=\epsilon q_{x x} \Longrightarrow \quad q(x, t)=e^{-\epsilon \xi^{2} t} e^{i \xi(x-u t)} \quad \text { (decays) }
$$

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE (dispersion relation)
$q_{t}=-i \omega q, \quad q_{x}=i \xi q, \quad q_{x x}=-\xi^{2} q, \quad q_{x x x}=-i \xi^{3} q, \ldots$
$q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}$
(translates at speed u for all ξ)
$q_{t}+u q_{x}=\epsilon q_{x x} \Longrightarrow \quad q(x, t)=e^{-\epsilon \xi^{2} t} e^{i \xi(x-u t)} \quad$ (decays)
$q_{t}+u q_{x}=\beta q_{x x x} \Longrightarrow q(x, t)=e^{i \xi\left(x-\left(u+\beta \xi^{2}\right) t\right)}$
(translates at speed $u+\beta \xi^{2}$ that depends on wave number!)

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Initial data with 200 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Lax-Wendroff solution with 200 cells:

\$CLAW/apps / fvmbook/chap6/compareadv

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Lax-Wendroff solution with 400 cells:

\$CLAW/apps / fvmbook/chap6/compareadv

Beam-Warming method

Taylor series for second order accuracy:

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by one-sided differences:

$$
\begin{aligned}
& Q_{i}^{n+1}= Q_{i}^{n} \\
&-\frac{\Delta t}{2 \Delta x} A\left(3 Q_{i}^{n}-4 Q_{i-1}^{n}+Q_{i-2}^{n}\right) \\
&+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i}^{n}-2 Q_{i-1}^{n}+Q_{i-2}^{n}\right)
\end{aligned}
$$

Beam-Warming method

Taylor series for second order accuracy:

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by one-sided differences:

$$
\begin{aligned}
Q_{i}^{n+1}= & Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(3 Q_{i}^{n}-4 Q_{i-1}^{n}+Q_{i-2}^{n}\right) \\
& +\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i}^{n}-2 Q_{i-1}^{n}+Q_{i-2}^{n}\right)
\end{aligned}
$$

CFL condition: $0 \leq \frac{\lambda^{p} \Delta t}{\Delta x} \leq 2$ for all eigenvalues.
This is also the stability limit (von Neumann analysis).

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Beam-Warming solution with 200 cells:

\$CLAW/apps / fvmbook/chap6/compareadv

Advection tests

$q_{t}+q_{x}=0$ with periodic BCs
Solution at $t=1$ should agree with initial data.
Beam-Warming solution with 400 cells:

\$CLAW/apps / fvmbook/chap6/compareadv

