
Finite Volume Methods for Hyperbolic Problems

Accuracy, Consistency, Stability,

CFL Condition

• Order of accuracy, local and global error
• Consistent numerical flux functions
• Stability
• CFL Condition

For more details see e.g. Chapter 10 of
Finite Difference Methods for ODEs and PDEs

R. J. LeVeque, University of Washington FVMHP Chap. 4, 8

http://faculty.washington.edu/rjl/fdmbook/


Finite differences vs. finite volumes

Finite difference Methods
• Pointwise values Qn

i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Order of Accuracy — upwind method

Upwind method for advection qt + uqx = 0 with u > 0:

Qn+1
i = Qn

i − u∆t

∆x
(Qn

i −Qn
i−1)

Written in form that mimics PDE:(
Qn+1

i −Qn
i

∆t

)
+ u

(
Qn

i −Qn
i−1

∆x

)
= 0

Local truncation error:
Insert true solution u(x, t) into difference equation

τ(x, t) =

(
q(xi, tn+1)− q(xi, tn)

∆t

)
+ u

(
q(xi, tn)− q(xi−1, tn)

∆x

)
Assume smoothness and expand in Taylor series:

q(xi, tn+1) = q(xi, tn) + ∆tqt(xi, tn) +
1

2
∆t2qtt(xi, tn) + · · ·

q(xi−1, tn) = q(xi, tn)−∆xqx(xi, tn) +
1

2
∆x2qxx(xi, tn) + · · ·
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Order of Accuracy — upwind method

Insert Taylor series into

τ(x, t) =

(
q(xi, tn+1)− q(xi, tn)

∆t

)
+ u

(
q(xi, tn)− q(xi−1, tn)

∆x

)
gives (with everything evaluated at (xi, tn)):

τ(xi, tn) =

(
∆tqt +

1
2∆t2qtt + · · ·
∆t

)
+ u

(
∆xqx +

1
2∆x2qxx + · · ·
∆x

)
= (qt + uqx) +

1

2
(∆tqtt − u∆xqxx) +O(∆x2,∆t2)

Since q is the exact solution, qt + uqx = 0 and qtt = u2qxx, so

τ(xi, tn) =
1

2
∆x

(
u∆t

∆x
− 1

)
uqxx +O(∆x2)
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Order of Accuracy — upwind method

Local truncation error:

τ(xi, tn) =
1

2
∆x

(
u∆t

∆x
− 1

)
uqxx +O(∆x2)

Assuming ∆t/∆x is constant as we refine the grid.

The method is said to be first order accurate.

Can show that if the method is also stable as ∆x → 0 then the
global error will also be first order for smooth enough solutions.

E(x, t) ≡ Q(x, t)− q(x, t) = O(∆x)

where we fix (x, t) and let Q(x, t) denote the numerical
approximation at this point as the grid is refined.

R. J. LeVeque, University of Washington FVMHP Chap. 8



Order of Accuracy — upwind method

Local truncation error:

τ(xi, tn) =
1

2
∆x

(
u∆t

∆x
− 1

)
uqxx +O(∆x2)

Assuming ∆t/∆x is constant as we refine the grid.

The method is said to be first order accurate.

Can show that if the method is also stable as ∆x → 0 then the
global error will also be first order for smooth enough solutions.

E(x, t) ≡ Q(x, t)− q(x, t) = O(∆x)

where we fix (x, t) and let Q(x, t) denote the numerical
approximation at this point as the grid is refined.

R. J. LeVeque, University of Washington FVMHP Chap. 8



Order of Accuracy — upwind method

Global error: E(x, t) ≡ Q(x, t)− q(x, t)

Discontinuous solutions?
If q(x, t) has a discontinuity then we cannot expect
convergence pointwise or in the max-norm

∥E(·, t)∥∞ = max
a≤x≤b

|E(x, t)|.

The numerical method is almost always smeared out.

Best we can hope for is convergence in some norm like

∥E(·, t)∥1 =
∫ b

a
|E(x, t)| dx ≈ ∆x

∑
i

|Qn
i − q(xi, tn)|.

For upwind on discontinuous data, we expect

∥E(·, t)∥1 = O(∆x1/2).
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Initial data with 200 cells:

$CLAW/apps/fvmbook/chap6/compareadv

R. J. LeVeque, University of Washington FVMHP Fig. 6.1

http://www.clawpack.org/gallery/_static/apps/fvmbook/chap6/compareadv/README.html
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Advection tests

qt + qx = 0 with periodic BCs
Solution at t = 1 should agree with initial data.

Upwind solution with 400 cells:
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Consistency

A method is consistent if τ → 0 as ∆t, ∆x → 0.

The one-step error is ∆t τ :

∆t τ = q(x, t+∆t)−
(
q(x, t)− u∆t

∆x
(q(x, t)− q(x−∆x, t))

)
.

An error of this magnitude is made in each of T/∆t time steps.

This suggests E ≈ (T/∆t)(∆t τ) = Tτ :
τ = O(∆xp +∆tp) =⇒ global error is O(∆xp +∆tp)

The method is pth order accurate

This is valid provided the method is stable!

Consistency + stability = convergence

R. J. LeVeque, University of Washington FVMHP Sec. 4.3
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Consistency for conservation law

For qt + f(q)x = 0, consider a method in conservation form,

Qn+1
i = Qn

i +
∆t

∆x
(Fn

i+1/2 − Fn
i−1/2).

The method is consistent with the PDE if

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and the numerical flux function is Lipschitz continuous,

|F(qℓ, qr)− f(q̄)| ≤ Cmax(|qℓ − q̄|, |qr − q̄|).

for all qℓ, qr in a neighborhood of q̄.

Example: F(qℓ, qr) = uqℓ for upwind, with C = u.
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Consistency for conservation law

Qn+1
i = Qn

i +
∆t

∆x
(F(Qn

i , Q
n
i+1)−F(Qn

i−1, Q
n
i ))

Consistent if F(q̄, q̄) = f(q̄) and Lipschitz continuous.

Upwind for u > 0: f(q) = uq, F(qℓ, qr) = uqℓ, with C = u.

For nonlinear problems, C can depend on q̄, e.g.
Burgers’: f(q) = 1

2q
2, F(qℓ, qr) =

1
2q

2
ℓ , can take C = q̄ + ϵ.

Godunov’s method (upwind) for qt +Aqx = 0:

F(qℓ, qr) = A+qℓ+A−qr =⇒ F(q̄, q̄) = A+q̄+A−q̄ = Aq̄ = f(q̄)

Centered flux: F(qℓ, qr) =
1
2A(qℓ + qr)

Centered flux for qt + f(q)x = 0: F(qℓ, qr) =
1
2(f(qℓ) + f(qr))

Consistent provided f(q) is Lipschitz, but unstable!
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Fundamental Theorem

Consistency + Stability = Convergence

ODE: zero-stability, stability on q′(t) = 0 is enough.
Dahlquist Theorem.

Linear PDE: Lax-Richtmyer stability
Uniform power boundedness of a family of matrices
Lax equivalence Theorem.

Scalar conservation law: total variation stability, entropy stability

Systems of conservation laws: few convergence proofs

R. J. LeVeque, University of Washington FVMHP Sec. 4.1
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Stability of the upwind method

Upwind method for advection qt + uqx = 0 with u > 0:

Qn+1
i = Qn

i − u∆t

∆x
(Qn

i −Qn
i−1)

The quantity
u∆t

∆x
is called the Courant number or the CFL number after
Courant, Friedrichs, and Lewy (1928 paper on existence and
uniqueness of PDE solutions).

Godunov method interpretation: this is the fraction of a grid cell
that the wave moves through in one time step.

Can prove that the upwind method is stable provided

0 ≤ u∆t

∆x
≤ 1.

Then the method converges in the 1-norm as ∆x → 0.
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The CFL Condition (Courant-Friedrichs-Lewy)

Domain of dependence: The solution q(X,T ) depends on the
data q(x, 0) over some set of x values, x ∈ D(X,T ).

Advection: q(X,T ) = q(X −uT, 0) and so D(X,T ) = {X −uT}.

The CFL Condition: A numerical method can be convergent
only if its numerical domain of dependence contains the true
domain of dependence of the PDE, at least in the limit as ∆t
and ∆x go to zero.

Note: Necessary but not sufficient for stability!

R. J. LeVeque, University of Washington FVMHP Sec. 4.4



Numerical domain of dependence

With a 3-point explicit method:

On a finer grid with ∆t/∆x fixed:

R. J. LeVeque, University of Washington FVMHP Sec. 4.4



The CFL Condition

For the method to be stable, the numerical domain of
dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

q(x, t) = q(x− ut, 0)

For a 3-point method, CFL condition requires
∣∣u∆t
∆x

∣∣ ≤ 1.

If this is violated:
True solution is determined
by data at a point x − ut that
is ignored by the numerical
method, even as the grid is
refined.

R. J. LeVeque, University of Washington FVMHP Sec. 4.4
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Stencil CFL Condition

0 ≤ u∆t

∆x
≤ 1

−1 ≤ u∆t

∆x
≤ 0

−1 ≤ u∆t

∆x
≤ 1

0 ≤ u∆t

∆x
≤ 2

−∞ <
u∆t

∆x
< ∞
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Parabolic equations

Examples: Heat equation qt = βqxx,
Advection-diffusion equation qt + uqx = βqxx,
Fluid dynamics with viscosity

Domain of dependence for any point (x, t) with t > 0 is:
Entire axis −∞ < x < ∞ for Cauchy problem,
All initial and boundary data up to time t for IBVP.

Example: Heat equation with q(x, 0) = δ(x).
Solution to Cauchy problem is q(x, t) = 1√

4πt
exp

(
−x2/4t

)
.

CFL condition requires either:
Implicit method, or
Explicit method with ∆t/∆x → 0 as grid is refined,

e.g. ∆t = (∆x)2.
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Explicit method with ∆t/∆x → 0 as grid is refined,

e.g. ∆t = (∆x)2.
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Parabolic equations

Examples: Heat equation qt = βqxx,
Advection-diffusion equation qt + uqx = βqxx,
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Linear hyperbolic systems

Linear system of m equations: q(x, t) ∈ lRm for each (x, t) and

qt +Aqx = 0, −∞ < x,∞, t ≥ 0.

A is m×m with eigenvalues λp and eigenvectors rp,
for p = 1, 2, , . . . , m:

Arp = λprp.

Combining these for p = 1, 2, , . . . , m gives

AR = RΛ

where

R = [r1 r2 · · · rm], Λ = diag(λ1, λ2, . . . , λm).

The system is hyperbolic if the eigenvalues are real and
R is invertible. Then A can be diagonalized:

R−1AR = Λ
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Stencil CFL Condition

0 ≤ λp∆t

∆x
≤ 1, ∀p

−1 ≤ λp∆t

∆x
≤ 0, ∀p

−1 ≤ λp∆t

∆x
≤ 1, ∀p

0 ≤ λp∆t

∆x
≤ 2, ∀p

−∞ <
λp∆t

∆x
< ∞, ∀p
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