Finite Volume Methods for Hyperbolic Problems

Linear Systems – Nonhyperbolic Cases

- Acoustics equations if $K_0 < 0$ (eigenvalues complex)
- Acoustics equations if $K_0 = 0$ (not diagonalizable)
- Coupled advection equations

Linear acoustics

Example: Linear acoustics in a 1d gas tube

$$q = \left[\begin{array}{c} p \\ u \end{array} \right] \qquad \begin{array}{c} p(x,t) = \text{pressure perturbation} \\ u(x,t) = \text{velocity} \end{array}$$

Equations:

 $p_t + K_0 u_x = 0$ Change in pressure due to compression $\rho_0 u_t + p_x = 0$ Newton's second law, F = ma

where K_0 = bulk modulus, and ρ_0 = unperturbed density. Hyperbolic system:

$$\left[\begin{array}{c}p\\u\end{array}\right]_t+\left[\begin{array}{cc}0&K_0\\1/\rho_0&0\end{array}\right]\left[\begin{array}{c}p\\u\end{array}\right]_x=0.$$

Eigenvalues are $\pm \sqrt{K_0/\rho}$ (wave speeds), real and distinct provided $K_0 > 0$ and $\rho_0 > 0$.

Now suppose $K_0 < 0$. Then eigenvalues pure imaginary.

Recall $K_0 = \rho_0 P'(\rho_0)$ from linearization.

Physically we expect pressure to increase as density increases.

Eigenvalues are $\pm \sqrt{K_0/\rho}$ (wave speeds), real and distinct provided $K_0 > 0$ and $\rho_0 > 0$.

Now suppose $K_0 < 0$. Then eigenvalues pure imaginary.

Recall $K_0 = \rho_0 P'(\rho_0)$ from linearization.

Physically we expect pressure to increase as density increases.

Otherwise, mass flowing in leads to decreased pressure and hence greater mass flow, with mass growing exponentially without bound.

Second-order PDE form of acoustics

$$p_t + K_0 u_x = 0 \implies p_{tt} = -K_0 u_{xt}$$
$$u_t + (1/\rho_0) u_x = 0 \implies u_{tx} = -(1/\rho_0) p_{xx}$$

Combining gives

$$p_{tt} = c_0^2 p_{xx}$$

with $c_0^2 = K_0/\rho_0$. This is the wave equation provided $c_0^2 > 0$.

Second-order PDE form of acoustics

$$p_t + K_0 u_x = 0 \implies p_{tt} = -K_0 u_{xt}$$
$$u_t + (1/\rho_0) u_x = 0 \implies u_{tx} = -(1/\rho_0) p_{xx}$$

Combining gives

$$p_{tt} = c_0^2 p_{xx}$$

with $c_0^2 = K_0/\rho_0$. This is the wave equation provided $c_0^2 > 0$.

If $c_0^2 < 0$ then

$$p_{tt} - c_0^2 p_{xx} = 0$$

has positive coefficients and is an elliptic equation.

Second-order PDE form of acoustics

$$p_t + K_0 u_x = 0 \implies p_{tt} = -K_0 u_{xt}$$
$$u_t + (1/\rho_0) u_x = 0 \implies u_{tx} = -(1/\rho_0) p_{xx}$$

Combining gives

$$p_{tt} = c_0^2 p_{xx}$$

with $c_0^2 = K_0/\rho_0$. This is the wave equation provided $c_0^2 > 0$.

If $c_0^2 < 0$ then

$$p_{tt} - c_0^2 p_{xx} = 0$$

has positive coefficients and is an elliptic equation.

To solve for $x_1 \le x \le x_2$ and $t_0 \le t \le T$, the elliptic equation requires BCs on all four sides, including at t = T.

The initial-boundary value problem is ill-posed.

Acoustics equations when hyperbolicity fails

Eigenvalues are $\pm \sqrt{K_0/\rho_0}$ (wave speeds).

Now suppose $K_0 = 0$. Then eigenvalues are $\lambda^1 = \lambda^2 = 0$. Wave speeds are 0, not necessarily a problem.

But the matrix is a Jordan block, not diagonalizable:

$$A = \left[\begin{array}{cc} 0 & 0\\ 1/\rho_0 & 0 \end{array} \right].$$

Acoustics equations when hyperbolicity fails

Eigenvalues are $\pm \sqrt{K_0/\rho_0}$ (wave speeds).

Now suppose $K_0 = 0$. Then eigenvalues are $\lambda^1 = \lambda^2 = 0$. Wave speeds are 0, not necessarily a problem.

But the matrix is a Jordan block, not diagonalizable:

$$A = \left[\begin{array}{cc} 0 & 0\\ 1/\rho_0 & 0 \end{array} \right].$$

Equations become:

$$p_t = 0,$$

$$u_t = -(1/\rho_0)p_x.$$

 $p(x,t) = \overset{\circ}{p}(x)$ for all time u_t can grow arbitrarily quickly depending on $\overset{\circ}{p}_x$. Ill-posed.

Acoustics equations when hyperbolicity fails

Eigenvalues are $\pm \sqrt{K_0/\rho_0}$ (wave speeds).

Now suppose $K_0 = 0$. Then eigenvalues are $\lambda^1 = \lambda^2 = 0$. Wave speeds are 0, not necessarily a problem.

But the matrix is a Jordan block, not diagonalizable:

$$A = \left[\begin{array}{cc} 0 & 0\\ 1/\rho_0 & 0 \end{array} \right].$$

Equations become:

$$p_t = 0,$$

$$u_t = -(1/\rho_0)p_x.$$

 $p(x,t) = \overset{\circ}{p}(x)$ for all time u_t can grow arbitrarily quickly depending on $\overset{\circ}{p}_x$. Ill-posed.

In particular, Riemann problem can have infinite p_x at origin.

Acoustics equations in limit $K_0 = K \rightarrow 0$

$$A = \begin{bmatrix} 0 & K \\ 1/\rho & 0 \end{bmatrix}, \quad \text{Eigenvalues: } \lambda = \pm \sqrt{K/\rho} \to 0.$$

Impedance $Z = \sqrt{K\rho} \rightarrow 0$.

$$q_m = q_l + \alpha^1 r^1 = \frac{1}{2} \left[\begin{array}{c} (p_l + p_r) - Z(u_r - u_l) \\ (u_l + u_r) - (p_r - p_l)/Z \end{array} \right].$$

Acoustics equations in limit $K_0 = K \rightarrow 0$

$$A = \begin{bmatrix} 0 & K \\ 1/\rho & 0 \end{bmatrix}, \quad \text{Eigenvalues: } \lambda = \pm \sqrt{K/\rho} \to 0.$$

Impedance $Z = \sqrt{K\rho} \rightarrow 0$.

$$q_m = q_l + \alpha^1 r^1 = \frac{1}{2} \left[\begin{array}{c} (p_l + p_r) - Z(u_r - u_l) \\ (u_l + u_r) - (p_r - p_l)/Z \end{array} \right].$$

So if $p_r \neq p_l$, then $u_m \to \infty$ as $K \to 0$

Another non-diagonalizable example (Sec. 16.3.1)

$$\begin{aligned} q_t^1 + uq_x^1 + \beta q_x^2 &= 0, \\ q_t^2 &+ vq_x^2 &= 0, \end{aligned}$$

has

$$A = \left[\begin{array}{cc} u & \beta \\ 0 & v \end{array} \right].$$

Eigenvalues and eigenvectors (if $v \le u$ and $\beta \ne 0$):

$$\begin{split} \lambda^1 &= v, \qquad \lambda^2 = u, \\ r^1 &= \left[\begin{array}{c} \beta \\ v - u \end{array} \right], \qquad r^2 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]. \end{split}$$

Another non-diagonalizable example (Sec. 16.3.1)

$$\begin{aligned} q_t^1 + uq_x^1 + \beta q_x^2 &= 0, \\ q_t^2 &+ vq_x^2 &= 0, \end{aligned}$$

has

$$A = \left[\begin{array}{cc} u & \beta \\ 0 & v \end{array} \right].$$

Eigenvalues and eigenvectors (if $v \leq u$ and $\beta \neq 0$):

$$\begin{split} \lambda^1 &= v, \qquad \lambda^2 = u, \\ r^1 &= \left[\begin{array}{c} \beta \\ v - u \end{array} \right], \qquad r^2 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]. \end{split}$$

As $u \to v$ the eigenvector r^1 becomes colinear with r^2 and the eigenvector matrix R becomes singular (unless $\beta = 0$).

R. J. LeVeque, University of Washington FVMHP Sec. 16.3.1