
Finite Volume Methods for Hyperbolic Problems

Linear Systems – Nonhyperbolic Cases

• Acoustics equations if K0 < 0 (eigenvalues complex)
• Acoustics equations if K0 = 0 (not diagonalizable)
• Coupled advection equations

R. J. LeVeque, University of Washington FVMHP Chap. 3, 16



Linear acoustics

Example: Linear acoustics in a 1d gas tube

q =

[
p
u

]
p(x, t) = pressure perturbation
u(x, t) = velocity

Equations:

pt +K0ux = 0 Change in pressure due to compression
ρ0ut + px = 0 Newton’s second law, F = ma

where K0 = bulk modulus, and ρ0 = unperturbed density.

Hyperbolic system:[
p
u

]
t

+

[
0 K0

1/ρ0 0

] [
p
u

]
x

= 0.
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Acoustics equations when hyperbolicity fails

Eigenvalues are ±
√
K0/ρ (wave speeds),

real and distinct provided K0 > 0 and ρ0 > 0.

Now suppose K0 < 0. Then eigenvalues pure imaginary.

Recall K0 = ρ0P
′(ρ0) from linearization.

Physically we expect pressure to increase as density increases.

Otherwise, mass flowing in leads to decreased pressure and
hence greater mass flow, with mass growing exponentially
without bound.
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Second-order PDE form of acoustics

pt +K0ux = 0 =⇒ ptt = −K0uxt

ut + (1/ρ0)ux = 0 =⇒ utx = −(1/ρ0)pxx

Combining gives
ptt = c20pxx

with c20 = K0/ρ0. This is the wave equation provided c20 > 0.

If c20 < 0 then
ptt − c20pxx = 0

has positive coefficients and is an elliptic equation.

To solve for x1 ≤ x ≤ x2 and t0 ≤ t ≤ T , the elliptic equation
requires BCs on all four sides, including at t = T .

The initial-boundary value problem is ill-posed.
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Acoustics equations when hyperbolicity fails

Eigenvalues are ±
√
K0/ρ0 (wave speeds).

Now suppose K0 = 0. Then eigenvalues are λ1 = λ2 = 0.
Wave speeds are 0, not necessarily a problem.

But the matrix is a Jordan block, not diagonalizable:

A =

[
0 0

1/ρ0 0

]
.

Equations become:

pt = 0,

ut = −(1/ρ0)px.

p(x, t) = p
◦
(x) for all time

ut can grow arbitrarily quickly depending on p
◦
x. Ill-posed.

In particular, Riemann problem can have infinite px at origin.
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Acoustics equations in limit K0 = K → 0

A =

[
0 K

1/ρ 0

]
, Eigenvalues: λ = ±

√
K/ρ → 0.

Impedance Z =
√
Kρ → 0.

qm = ql + α1r1 =
1

2

[
(pl + pr)− Z(ur − ul)
(ul + ur)− (pr − pl)/Z

]
.

So if pr ̸= pl, then um → ∞ as K → 0
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Another non-diagonalizable example (Sec. 16.3.1)

q1t + uq1x + βq2x = 0,

q2t + vq2x = 0,

has

A =

[
u β
0 v

]
.

Eigenvalues and eigenvectors (if v ≤ u and β ̸= 0):

λ1 = v, λ2 = u,

r1 =

[
β

v − u

]
, r2 =

[
1
0

]
.

As u → v the eigenvector r1 becomes colinear with r2 and the
eigenvector matrix R becomes singular (unless β = 0).
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