Finite Volume Methods for Hyperbolic Problems

Linear Systems - Riemann Problems

- Riemann problems
- Riemann problem for advection
- Riemann problem for acoustics
- Phase plane

The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Piecewise constant with a single jump discontinuity from q_{l} to q_{r}.

The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Piecewise constant with a single jump discontinuity from q_{l} to q_{r}.
The Riemann problem is fundamental to understanding

- The mathematical theory of hyperbolic problems,
- Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the Riemann problem can often be solved for general q_{l} and q_{r}, and consists of a set of waves propagating at constant speeds.

The Riemann problem for advection

The Riemann problem for the advection equation $q_{t}+u q_{x}=0$ with

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

has solution

$$
q(x, t)=q(x-u t, 0)= \begin{cases}q_{l} & \text { if } x<u t \\ q_{r} & \text { if } x \geq u t\end{cases}
$$

consisting of a single wave of strength $\mathcal{W}^{1}=q_{r}-q_{l}$ propagating with speed $s^{1}=u$.

Riemann solution for advection

$q(x, T)$
$x-t$ plane

$q(x, 0)$

Discontinuous solutions

Note: The Riemann solution is not a classical solution of the PDE $q_{t}+u q_{x}=0$, since q_{t} and q_{x} blow up at the discontinuity.

Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=u q\left(x_{1}, t\right)-u q\left(x_{2}, t\right)
$$

Integrate in time from t_{1} to t_{2} to obtain

$$
\begin{array}{rl}
\int_{x_{1}}^{x_{2}} & q\left(x, t_{2}\right) d x-\int_{x_{1}}^{x_{2}} q\left(x, t_{1}\right) d x \\
& =\int_{t_{1}}^{t_{2}} u q\left(x_{1}, t\right) d t-\int_{t_{1}}^{t_{2}} u q\left(x_{2}, t\right) d t
\end{array}
$$

The Riemann solution satisfies the given initial conditions and this integral form for all $x_{2}>x_{1}$ and $t_{2}>t_{1} \geq 0$.

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x}
$$

For any $\epsilon>0$ this has a classical smooth solution:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.01
$$

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.001
$$

Riemann Problems and Jupyter Solutions

Theory and Approximate Solvers for Hyperbolic PDEs
David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right] .
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=-c_{0}, \quad \lambda^{2}=+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right] .
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=-c_{0}, \quad \lambda^{2}=+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Let $Z_{0}=\rho_{0} c_{0}=\sqrt{K_{0} \rho_{0}}=$ impedance.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Consider a pure 1 -wave (simple wave), at speed $\lambda^{1}=-c_{0}$, If $q(x)=\bar{q}+\stackrel{\circ}{w}^{1}(x) r^{1}$ then

$$
q(x, t)=\bar{q}+\stackrel{\circ}{w}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Variation of q, as measured by q_{x} or $\Delta q=q(x+\Delta x)-q(x)$ is proportional to eigenvector r^{1}, e.g.

$$
q_{x}(x, t)={\stackrel{o}{w_{x}}}_{x}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Linear acoustics - characteristics

$$
\begin{aligned}
q(x, t) & =w^{1}(x+c t, 0) r^{1}+w^{2}(x-c t, 0) r^{2} \\
& =\frac{-\stackrel{\circ}{p}(x+c t)}{2 Z_{0}}\left[\begin{array}{r}
-Z_{0} \\
1
\end{array}\right]+\frac{\stackrel{\circ}{p(x-c t)}}{2 Z_{0}}\left[\begin{array}{r}
Z_{0} \\
1
\end{array}\right]
\end{aligned}
$$

For IBVP on $a<x<b$, must specify one incoming boundary condition at each side: $w^{2}(a, t)$ and $w^{1}(b, t)$

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

\qquad

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

Riemann Problem for acoustics

In $x-t$ plane:

$$
q(x, t)=w^{1}(x+c t, 0) r^{1}+w^{2}(x-c t, 0) r^{2}
$$

Decompose q_{l} and q_{r} into eigenvectors:

$$
\begin{aligned}
q_{l} & =w_{l}^{1} r^{1}+w_{l}^{2} r^{2} \\
q_{r} & =w_{r}^{1} r^{1}+w_{r}^{2} r^{2}
\end{aligned}
$$

Then

$$
q_{m}=w_{r}^{1} r^{1}+w_{l}^{2} r^{2}
$$

Riemann Problem for acoustics

In $x-t$ plane:

Decompose $q_{r}-q_{l}$ into eigenvectors: Solve $R \alpha=\Delta q$

$$
\begin{aligned}
q_{r}-q_{l} & =\left(w_{r}^{1}-w_{r}^{1}\right) r^{1}+\left(w_{r}^{2}-w_{r}^{2}\right) r^{2} \\
& =\alpha^{1} r^{1}+\alpha^{2} r^{2}=\mathcal{W}^{1}+\mathcal{W}^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
q_{m} & =w_{r}^{1} r^{1}+w_{l}^{2} r^{2} \\
& =q_{l}+\alpha^{1} r^{1} \quad=q_{r}-\alpha^{2} r^{2} .
\end{aligned}
$$

Riemann solution for acoustics

$$
r^{1}=\left[\begin{array}{c}
-\rho c \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho c \\
1
\end{array}\right]=\left[\begin{array}{c}
Z \\
1
\end{array}\right]
$$

Solving $R \alpha=\Delta q$ gives:

$$
\alpha^{1}=\frac{-\Delta p+Z \Delta u}{2 Z}, \quad \alpha^{2}=\frac{\Delta p+Z \Delta u}{2 Z}
$$

SO

$$
q_{m}=q_{l}+\alpha^{1} r^{1}=\frac{1}{2}\left[\begin{array}{c}
\left(p_{l}+p_{r}\right)-Z\left(u_{r}-u_{l}\right) \\
\left(u_{l}+u_{r}\right)-\left(p_{r}-p_{l}\right) / Z
\end{array}\right] .
$$

Riemann solution for acoustics

$$
r^{1}=\left[\begin{array}{c}
-\rho c \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho c \\
1
\end{array}\right]=\left[\begin{array}{c}
Z \\
1
\end{array}\right]
$$

Solving $R \alpha=\Delta q$ gives:

$$
\alpha^{1}=\frac{-\Delta p+Z \Delta u}{2 Z}, \quad \alpha^{2}=\frac{\Delta p+Z \Delta u}{2 Z}
$$

SO

$$
q_{m}=q_{l}+\alpha^{1} r^{1}=\frac{1}{2}\left[\begin{array}{c}
\left(p_{l}+p_{r}\right)-Z\left(u_{r}-u_{l}\right) \\
\left(u_{l}+u_{r}\right)-\left(p_{r}-p_{l}\right) / Z
\end{array}\right] .
$$

Ex: shock tube with $u_{l}=u_{r}=0$:

$$
q_{m}=q_{l}+\alpha^{1} r^{1}=\frac{1}{2}\left[\begin{array}{c}
\left(p_{l}+p_{r}\right) \\
-\left(p_{r}-p_{l}\right) / Z
\end{array}\right] .
$$

Phase plane solution to Riemann problem

q_{ℓ} and q_{m} are connected by a multiple of r^{1} q_{m} and q_{r} are connected by a multiple of r^{2}

Phase plane solution to Riemann problem

q_{ℓ} and q_{m} are connected by a multiple of r^{1} q_{m} and q_{r} are connected by a multiple of r^{2}

Note that swapping q_{ℓ} and q_{r} changes the solution!

Phase plane solution to Riemann problem

"Shock tube" solution with $u_{\ell}=u_{r}=0$.
q_{ℓ} and q_{m} are connected by a multiple of r^{1} q_{m} and q_{r} are connected by a multiple of r^{2}

Phase plane solution to Riemann problem

"Shock tube" solution with $u_{\ell}=u_{r}=0$.
q_{ℓ} and q_{m} are connected by a multiple of r^{1} q_{m} and q_{r} are connected by a multiple of r^{2}

Riemann Problems and Jupyter Solutions

Theory and Approximate Solvers for Hyperbolic PDEs
David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

Riemann solution for a linear system

Linear hyperbolic system: $q_{t}+A q_{x}=0$ with $A=R \Lambda R^{-1}$.
General Riemann problem data $q_{l}, q_{r} \in \mathbb{R}^{m}$.
Decompose jump in q into eigenvectors:

$$
q_{r}-q_{l}=\sum_{p=1}^{m} \alpha^{p} r^{p}
$$

Note: the vector α of eigen-coefficients is

$$
\alpha=R^{-1}\left(q_{r}-q_{l}\right)=R^{-1} q_{r}-R^{-1} q_{l}=w_{r}-w_{l} .
$$

Riemann solution consists of m waves $\mathcal{W}^{p} \in \mathbb{R}^{m}$:

$$
\mathcal{W}^{p}=\alpha^{p} r^{p}, \quad \text { propagating with speed } s^{p}=\lambda^{p}
$$

Phase space

For a system of m equations, phase space is m-dimensional.
Solving the Riemann problem finds a path from q_{ℓ} to q_{r} that generally has m segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$, then first segment from q_{ℓ} to $q_{\ell}+\alpha^{1} r^{1}$, next segment goes to $q_{\ell}+\alpha^{1} r^{1}+\alpha^{2} r^{2}$, etc.

Phase space

For a system of m equations, phase space is m-dimensional.
Solving the Riemann problem finds a path from q_{ℓ} to q_{r} that generally has m segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$, then first segment from q_{ℓ} to $q_{\ell}+\alpha^{1} r^{1}$, next segment goes to $q_{\ell}+\alpha^{1} r^{1}+\alpha^{2} r^{2}$, etc.

Unique such path provided eigenvectors are linearly independent. $q_{\ell}+\alpha^{1} r^{1}+\alpha^{2} r^{2}+\cdots+\alpha^{m} r^{m}=q_{r}$.

Phase space

For a system of m equations, phase space is m-dimensional.
Solving the Riemann problem finds a path from q_{ℓ} to q_{r} that generally has m segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$, then first segment from q_{ℓ} to $q_{\ell}+\alpha^{1} r^{1}$, next segment goes to $q_{\ell}+\alpha^{1} r^{1}+\alpha^{2} r^{2}$, etc.

Unique such path provided eigenvectors are linearly independent. $q_{\ell}+\alpha^{1} r^{1}+\alpha^{2} r^{2}+\cdots+\alpha^{m} r^{m}=q_{r}$.

Visualization is most useful when $m=2$ (phase plane).
But sometimes illuminating to project phase space onto a two-dimensional plane.

