Finite Volume Methods for Hyperbolic Problems

Linear Systems – Riemann Problems

- Riemann problems
- Riemann problem for advection
- Riemann problem for acoustics
- Phase plane

The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

Piecewise constant with a single jump discontinuity from q_l to q_r .

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

Piecewise constant with a single jump discontinuity from q_l to q_r .

The Riemann problem is fundamental to understanding

- The mathematical theory of hyperbolic problems,
- Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the Riemann problem can often be solved for general q_l and q_r , and consists of a set of waves propagating at constant speeds.

The Riemann problem for the advection equation $q_t + uq_x = 0$ with

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

has solution

$$q(x,t) = q(x-ut,0) = \begin{cases} q_l & \text{if } x < ut \\ q_r & \text{if } x \ge ut \end{cases}$$

consisting of a single wave of strength $W^1 = q_r - q_l$ propagating with speed $s^1 = u$.

Riemann solution for advection

Note: The Riemann solution is not a classical solution of the PDE $q_t + uq_x = 0$, since q_t and q_x blow up at the discontinuity.

Integral form:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = uq(x_1,t) - uq(x_2,t)$$

Integrate in time from t_1 to t_2 to obtain

$$\int_{x_1}^{x_2} q(x, t_2) \, dx - \int_{x_1}^{x_2} q(x, t_1) \, dx$$
$$= \int_{t_1}^{t_2} uq(x_1, t) \, dt - \int_{t_1}^{t_2} uq(x_2, t) \, dt$$

The Riemann solution satisfies the given initial conditions and this integral form for all $x_2 > x_1$ and $t_2 > t_1 \ge 0$.

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^{\epsilon}(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^{\epsilon}(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^{\epsilon}(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Riemann Problems and Jupyter Solutions Theory and Approximate Solvers for Hyperbolic PDEs David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

Eigenvectors for acoustics

$$A = \left[\begin{array}{cc} 0 & K_0 \\ 1/\rho_0 & 0 \end{array} \right]$$

Eigenvectors:

$$r^1 = \begin{bmatrix} -\rho_0 c_0 \\ 1 \end{bmatrix}, \qquad r^2 = \begin{bmatrix} \rho_0 c_0 \\ 1 \end{bmatrix}.$$

Check that $Ar^p = \lambda^p r^p$, where

$$\lambda^1 = -c_0, \qquad \lambda^2 = +c_0.$$

with $c_0 = \sqrt{K_0/\rho_0} \implies K_0 = \rho_0 c_0^2$.

Eigenvectors for acoustics

$$A = \left[\begin{array}{cc} 0 & K_0 \\ 1/\rho_0 & 0 \end{array} \right]$$

Eigenvectors:

$$r^1 = \begin{bmatrix} -\rho_0 c_0 \\ 1 \end{bmatrix}, \qquad r^2 = \begin{bmatrix} \rho_0 c_0 \\ 1 \end{bmatrix}.$$

Check that $Ar^p = \lambda^p r^p$, where

$$\lambda^1 = -c_0, \qquad \lambda^2 = +c_0.$$

with $c_0 = \sqrt{K_0/\rho_0} \implies K_0 = \rho_0 c_0^2$. Let $Z_0 = \rho_0 c_0 = \sqrt{K_0 \rho_0} = \text{impedance}$.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$r^{1} = \begin{bmatrix} -\rho_{0}c_{0} \\ 1 \end{bmatrix} = \begin{bmatrix} -Z_{0} \\ 1 \end{bmatrix}, \qquad r^{2} = \begin{bmatrix} \rho_{0}c_{0} \\ 1 \end{bmatrix} = \begin{bmatrix} Z_{0} \\ 1 \end{bmatrix}$$

Consider a pure 1-wave (simple wave), at speed $\lambda^1 = -c_0$, If $\overset{\circ}{q}(x) = \bar{q} + \overset{\circ}{w}^1(x)r^1$ then

$$q(x,t) = \bar{q} + \overset{\circ}{w}^{1}(x - \lambda^{1}t)r^{1}$$

Variation of q, as measured by q_x or $\Delta q = q(x + \Delta x) - q(x)$ is proportional to eigenvector r^1 , e.g.

$$q_x(x,t) = \overset{\circ}{w}^1_x(x-\lambda^1 t)r^1$$

Linear acoustics — characteristics

$$q(x,t) = w^{1}(x+ct,0)r^{1} + w^{2}(x-ct,0)r^{2}$$
$$= \frac{-\overset{\circ}{p}(x+ct)}{2Z_{0}} \begin{bmatrix} -Z_{0} \\ 1 \end{bmatrix} + \frac{\overset{\circ}{p}(x-ct)}{2Z_{0}} \begin{bmatrix} Z_{0} \\ 1 \end{bmatrix}.$$

For IBVP on a < x < b, must specify one incoming boundary condition at each side: $w^2(a, t)$ and $w^1(b, t)$

Special initial data:

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

Example: Acoustics with bursting diaphram ($u_l = u_r = 0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Special initial data:

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

Example: Acoustics with bursting diaphram ($u_l = u_r = 0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Special initial data:

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

Example: Acoustics with bursting diaphram ($u_l = u_r = 0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Special initial data:

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

Example: Acoustics with bursting diaphram ($u_l = u_r = 0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in x-t space:

Left-going wave $W^1 = q_m - q_l$ and right-going wave $W^2 = q_r - q_m$ are eigenvectors of A.

Riemann Problem for acoustics

In x-t plane:

ne:

$$q_{l}$$
 q_{m}
 q_{r}
 q_{r}
 $q(x,t) = w^{1}(x + ct, 0)r^{1} + w^{2}(x - ct, 0)r^{2}$

1

Decompose q_l and q_r into eigenvectors:

١

$$q_l = w_l^1 r^1 + w_l^2 r^2$$
$$q_r = w_r^1 r^1 + w_r^2 r^2$$

Then

$$q_m = w_r^1 r^1 + w_l^2 r^2$$

Riemann Problem for acoustics

In x-t plane:

Decompose $q_r - q_l$ into eigenvectors: Solve $R\alpha = \Delta q$

q

$$q_r - q_l = (w_r^1 - w_r^1)r^1 + (w_r^2 - w_r^2)r^2$$

= $\alpha^1 r^1 + \alpha^2 r^2 = \mathcal{W}^1 + \mathcal{W}^2.$

 $\mathbf{q}_{\mathbf{m}}$

q,

Then

$$q_m = \frac{w_r^1 r^1 + w_l^2 r^2}{= q_l + \alpha^1 r^1} = q_r - \alpha^2 r^2.$$

Riemann solution for acoustics

$$r^{1} = \begin{bmatrix} -\rho c \\ 1 \end{bmatrix} = \begin{bmatrix} -Z \\ 1 \end{bmatrix}, \quad r^{2} = \begin{bmatrix} \rho c \\ 1 \end{bmatrix} = \begin{bmatrix} Z \\ 1 \end{bmatrix}$$

•

Solving $R\alpha = \Delta q$ gives:

$$\alpha^1 = \frac{-\Delta p + Z\Delta u}{2Z}, \qquad \alpha^2 = \frac{\Delta p + Z\Delta u}{2Z},$$

SO

$$q_m = q_l + \alpha^1 r^1 = \frac{1}{2} \left[\begin{array}{c} (p_l + p_r) - Z(u_r - u_l) \\ (u_l + u_r) - (p_r - p_l)/Z \end{array} \right].$$

Riemann solution for acoustics

$$r^{1} = \begin{bmatrix} -\rho c \\ 1 \end{bmatrix} = \begin{bmatrix} -Z \\ 1 \end{bmatrix}, \quad r^{2} = \begin{bmatrix} \rho c \\ 1 \end{bmatrix} = \begin{bmatrix} Z \\ 1 \end{bmatrix}$$

•

Solving $R\alpha = \Delta q$ gives:

$$\alpha^1 = \frac{-\Delta p + Z\Delta u}{2Z}, \qquad \alpha^2 = \frac{\Delta p + Z\Delta u}{2Z},$$

SO

$$q_m = q_l + \alpha^1 r^1 = \frac{1}{2} \begin{bmatrix} (p_l + p_r) - Z(u_r - u_l) \\ (u_l + u_r) - (p_r - p_l)/Z \end{bmatrix}.$$

Ex: shock tube with $u_l = u_r = 0$:

$$q_m = q_l + \alpha^1 r^1 = \frac{1}{2} \begin{bmatrix} (p_l + p_r) \\ -(p_r - p_l)/Z \end{bmatrix}.$$

 q_{ℓ} and q_m are connected by a multiple of r^1 q_m and q_r are connected by a multiple of r^2

 q_{ℓ} and q_m are connected by a multiple of r^1 q_m and q_r are connected by a multiple of r^2

Note that swapping q_{ℓ} and q_r changes the solution!

"Shock tube" solution with $u_{\ell} = u_r = 0$.

 q_ℓ and q_m are connected by a multiple of r^1 q_m and q_r are connected by a multiple of r^2

"Shock tube" solution with $u_{\ell} = u_r = 0$.

 q_ℓ and q_m are connected by a multiple of r^1 q_m and q_r are connected by a multiple of r^2

Riemann Problems and Jupyter Solutions Theory and Approximate Solvers for Hyperbolic PDEs David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

Riemann solution for a linear system

Linear hyperbolic system: $q_t + Aq_x = 0$ with $A = R\Lambda R^{-1}$. General Riemann problem data $q_l, q_r \in \mathbb{R}^m$.

Decompose jump in q into eigenvectors:

$$q_r - q_l = \sum_{p=1}^m \alpha^p r^p$$

Note: the vector α of eigen-coefficients is

$$\alpha = R^{-1}(q_r - q_l) = R^{-1}q_r - R^{-1}q_l = w_r - w_l.$$

Riemann solution consists of m waves $\mathcal{W}^p \in \mathbb{R}^m$:

$$\mathcal{W}^p = \alpha^p r^p$$
, propagating with speed $s^p = \lambda^p$.

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from q_{ℓ} to q_r that generally has *m* segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^1 \leq \lambda^2 \leq \cdots \leq \lambda^m$, then first segment from q_ℓ to $q_\ell + \alpha^1 r^1$, next segment goes to $q_\ell + \alpha^1 r^1 + \alpha^2 r^2$, etc.

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from q_{ℓ} to q_r that generally has *m* segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^1 \leq \lambda^2 \leq \cdots \leq \lambda^m$, then first segment from q_ℓ to $q_\ell + \alpha^1 r^1$, next segment goes to $q_\ell + \alpha^1 r^1 + \alpha^2 r^2$, etc.

Unique such path provided eigenvectors are linearly independent. $q_{\ell} + \alpha^1 r^1 + \alpha^2 r^2 + \cdots + \alpha^m r^m = q_r$.

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from q_{ℓ} to q_r that generally has *m* segments, each in the direction of an eigenvector (for a linear system; curves more generally).

If $\lambda^1 \leq \lambda^2 \leq \cdots \leq \lambda^m$, then first segment from q_ℓ to $q_\ell + \alpha^1 r^1$, next segment goes to $q_\ell + \alpha^1 r^1 + \alpha^2 r^2$, etc.

Unique such path provided eigenvectors are linearly independent. $q_{\ell} + \alpha^1 r^1 + \alpha^2 r^2 + \cdots + \alpha^m r^m = q_r$.

Visualization is most useful when m = 2 (phase plane).

But sometimes illuminating to project phase space onto a two-dimensional plane.