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The Riemann problem

The Riemann problem consists of the hyperbolic equation
under study together with initial data of the form

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

Piecewise constant with a single jump discontinuity from ql to qr.

The Riemann problem is fundamental to understanding
• The mathematical theory of hyperbolic problems,
• Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the
Riemann problem can often be solved for general ql and qr, and
consists of a set of waves propagating at constant speeds.

R. J. LeVeque, University of Washington FVMHP Sec. 1.2.1



The Riemann problem

The Riemann problem consists of the hyperbolic equation
under study together with initial data of the form

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

Piecewise constant with a single jump discontinuity from ql to qr.

The Riemann problem is fundamental to understanding
• The mathematical theory of hyperbolic problems,
• Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the
Riemann problem can often be solved for general ql and qr, and
consists of a set of waves propagating at constant speeds.

R. J. LeVeque, University of Washington FVMHP Sec. 1.2.1



The Riemann problem for advection

The Riemann problem for the advection equation qt + uqx = 0
with

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

has solution

q(x, t) = q(x− ut, 0) =

{
ql if x < ut
qr if x ≥ ut

consisting of a single wave of strength W1 = qr − ql
propagating with speed s1 = u.
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Riemann solution for advection

q(x, T )

x–t plane

q(x, 0)
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Discontinuous solutions

Note: The Riemann solution is not a classical solution of the
PDE qt + uqx = 0, since qt and qx blow up at the discontinuity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = uq(x1, t)− uq(x2, t)

Integrate in time from t1 to t2 to obtain∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=

∫ t2

t1

uq(x1, t) dt−
∫ t2

t1

uq(x2, t) dt.

The Riemann solution satisfies the given initial conditions and
this integral form for all x2 > x1 and t2 > t1 ≥ 0.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x, t) is
the limit as ϵ → 0 of the solution qϵ(x, t) of the parabolic
advection-diffusion equation

qt + uqx = ϵqxx.

For any ϵ > 0 this has a classical smooth solution:
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Riemann Problems and Jupyter Solutions
Theory and Approximate Solvers for Hyperbolic PDEs

David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.:
bookstore.siam.org/fa16/bonus

View static version of notebooks at:
www.clawpack.org/riemann_book/html/Index.html

R. J. LeVeque, University of Washington RpJs/Advection.ipynb

https://bookstore.siam.org/fa16/bonus
http://www.clawpack.org/riemann_book/html/Index.html


Eigenvectors for acoustics

A =

[
0 K0

1/ρ0 0

]
Eigenvectors:

r1 =

[
−ρ0c0

1

]
, r2 =

[
ρ0c0
1

]
.

Check that Arp = λprp, where

λ1 = −c0, λ2 = +c0.

with c0 =
√

K0/ρ0 =⇒ K0 = ρ0c
2
0.

Let Z0 = ρ0c0 =
√
K0ρ0 = impedance.
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Physical meaning of eigenvectors

Eigenvectors for acoustics:

r1 =

[
−ρ0c0

1

]
=

[
−Z0

1

]
, r2 =

[
ρ0c0
1

]
=

[
Z0

1

]
.

Consider a pure 1-wave (simple wave), at speed λ1 = −c0,
If q◦(x) = q̄ + w

◦1
(x)r1 then

q(x, t) = q̄ + w
◦1
(x− λ1t)r1

Variation of q, as measured by qx or ∆q = q(x+∆x)− q(x)
is proportional to eigenvector r1, e.g.

qx(x, t) = w
◦1
x(x− λ1t)r1
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Linear acoustics — characteristics

q(x, t) = w1(x+ ct, 0)r1 + w2(x− ct, 0)r2

=
−p
◦
(x+ ct)

2Z0

[
−Z0

1

]
+

p
◦
(x− ct)

2Z0

[
Z0

1

]
.

For IBVP on a < x < b, must specify one incoming boundary
condition at each side: w2(a, t) and w1(b, t)
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Riemann Problem

Special initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Example: Acoustics with bursting diaphram (ul = ur = 0)

Pressure:

Acoustic waves propagate with speeds ±c.
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going wave W1 = qm − ql and
right-going wave W2 = qr − qm are eigenvectors of A.
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Riemann Problem for acoustics

In x–t plane:

q(x, t) = w1(x+ ct, 0)r1 + w2(x− ct, 0)r2

Decompose ql and qr into eigenvectors:

ql = w1
l r

1 + w2
l r

2

qr = w1
rr

1 + w2
rr

2

Then
qm = w1

rr
1 + w2

l r
2
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Riemann Problem for acoustics

In x–t plane:

Decompose qr − ql into eigenvectors: Solve Rα = ∆q

qr − ql = (w1
r − w1

r)r
1 + (w2

r − w2
r)r

2

= α1r1 + α2r2 = W1 +W2.

Then

qm = w1
rr

1 + w2
l r

2

= ql + α1r1 = qr − α2r2.
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Riemann solution for acoustics

r1 =

[
−ρc
1

]
=

[
−Z
1

]
, r2 =

[
ρc
1

]
=

[
Z
1

]
.

Solving Rα = ∆q gives:

α1 =
−∆p+ Z∆u

2Z
, α2 =

∆p+ Z∆u

2Z
,

so

qm = ql + α1r1 =
1

2

[
(pl + pr)− Z(ur − ul)
(ul + ur)− (pr − pl)/Z

]
.

Ex: shock tube with ul = ur = 0:

qm = ql + α1r1 =
1

2

[
(pl + pr)

−(pr − pl)/Z

]
.
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Phase plane solution to Riemann problem

qℓ and qm are connected by a multiple of r1

qm and qr are connected by a multiple of r2

Note that swapping qℓ and qr changes the solution!
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Phase plane solution to Riemann problem

“Shock tube” solution with uℓ = ur = 0.

qℓ and qm are connected by a multiple of r1

qm and qr are connected by a multiple of r2
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Riemann Problems and Jupyter Solutions
Theory and Approximate Solvers for Hyperbolic PDEs

David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.:
bookstore.siam.org/fa16/bonus

View static version of notebooks at:
www.clawpack.org/riemann_book/html/Index.html

R. J. LeVeque, University of Washington RpJs/Acoustics.ipynb

https://bookstore.siam.org/fa16/bonus
http://www.clawpack.org/riemann_book/html/Index.html


Riemann solution for a linear system

Linear hyperbolic system: qt +Aqx = 0 with A = RΛR−1.
General Riemann problem data ql, qr ∈ lRm.

Decompose jump in q into eigenvectors:

qr − ql =

m∑
p=1

αprp

Note: the vector α of eigen-coefficients is

α = R−1(qr − ql) = R−1qr −R−1ql = wr − wl.

Riemann solution consists of m waves Wp ∈ lRm:

Wp = αprp, propagating with speed sp = λp.
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Phase space

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from qℓ to qr that
generally has m segments, each in the direction of an
eigenvector (for a linear system; curves more generally).

If λ1 ≤ λ2 ≤ · · · ≤ λm, then first segment from qℓ to qℓ + α1r1,
next segment goes to qℓ + α1r1 + α2r2, etc.

Unique such path provided eigenvectors are linearly
independent. qℓ + α1r1 + α2r2 + · · ·+ αmrm = qr.

Visualization is most useful when m = 2 (phase plane).

But sometimes illuminating to project phase space onto a
two-dimensional plane.

R. J. LeVeque, University of Washington FVMHP Sec. 3.9



Phase space

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from qℓ to qr that
generally has m segments, each in the direction of an
eigenvector (for a linear system; curves more generally).

If λ1 ≤ λ2 ≤ · · · ≤ λm, then first segment from qℓ to qℓ + α1r1,
next segment goes to qℓ + α1r1 + α2r2, etc.

Unique such path provided eigenvectors are linearly
independent. qℓ + α1r1 + α2r2 + · · ·+ αmrm = qr.

Visualization is most useful when m = 2 (phase plane).

But sometimes illuminating to project phase space onto a
two-dimensional plane.

R. J. LeVeque, University of Washington FVMHP Sec. 3.9



Phase space

For a system of m equations, phase space is m-dimensional.

Solving the Riemann problem finds a path from qℓ to qr that
generally has m segments, each in the direction of an
eigenvector (for a linear system; curves more generally).

If λ1 ≤ λ2 ≤ · · · ≤ λm, then first segment from qℓ to qℓ + α1r1,
next segment goes to qℓ + α1r1 + α2r2, etc.

Unique such path provided eigenvectors are linearly
independent. qℓ + α1r1 + α2r2 + · · ·+ αmrm = qr.

Visualization is most useful when m = 2 (phase plane).

But sometimes illuminating to project phase space onto a
two-dimensional plane.

R. J. LeVeque, University of Washington FVMHP Sec. 3.9


	Linear Systems - Riemann Problems
	The General Riemann Problem
	Riemann Problem for Advection
	Riemann Problem for Acoustics
	Riemann Problem for Acoustics
	Phase Plane for Acoustics
	General Linear System


