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Linear hyperbolic systems
Linear system of m equations: ¢(z,t) € R™ for each (z,t) and

q + Aqy = 0, —o0 < x,00, t>0.

Ais m x m matrix (constant for now, independent of z, t)
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Linear hyperbolic systems
Linear system of m equations: ¢(z,t) € R™ for each (z,t) and

q + Aqe = 0, —00 < x,00, t>0.

Ais m x m matrix (constant for now, independent of z, t)

This PDE is hyperbolic if the matrix A is diagonalizable
with real eigenvalues.

3 nonsingular R: R~ AR = A diagonal with \? > 0.
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Linear hyperbolic systems
Linear system of m equations: ¢(z,t) € R™ for each (z,t) and

q + Aqy = 0, —o0 < x,00, t>0.

Ais m x m matrix (constant for now, independent of z, t)

This PDE is hyperbolic if the matrix A is diagonalizable
with real eigenvalues.

3 nonsingular R: R~ AR = A diagonal with \? > 0.

Eigenvalues are wave speeds.

Eigenvectors used to split arbibrary data into waves.
So matrix of eigenvectors must be nonsingular.
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Advection equation as a linear system

Gt + uqy = 0
with « a constant (real) velocity. (1 x 1 diagonalizable, \' = u)

Initial condition:

q(z,0) = 8(:1:), —00 < T < 00.

The solution to this Cauchy problem is:
o
Q(xa t) = Q(x - ut)
It is constant along each characteristic curve

X(t) = xo+ut
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Characteristics for advection
q(z,t) = ?J(x —ut) = qis constant along lines
X(t) =xo+ut, t>0.

Can also see that ¢ is constant along X (¢) from:

Sa(X(0,0) = (X (0,05 () + (X (0,1
= qz(X (1), )u + q(X (1), 1)
=0.
In x—t plane:

7
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Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
* Real eigenvalues \! < \2 < ... < \™,

e Linearly independent eigenvectors ', 2, ..., r™.
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Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
* Real eigenvalues \! < \2 < ... < \™,

m

e Linearly independent eigenvectors ', 2, ..., r™.
Let R = [r!|r?|---|r™] m x m matrix of eigenvectors.
Then ArP = A\PrP means that AR = RA where

Al
)\2
A= _ =diag(\}, A%, ™).

Am
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Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
* Real eigenvalues \! < \2 < ... < \™,

m

e Linearly independent eigenvectors ', 2, ..., r™.

Let R = [r!|r?|---|r™] m x m matrix of eigenvectors.
Then Ar? = \PrP means that AR = RA where
Al
)\2
A= _ =diag(\}, A%, ™).
Am

AR=RA = A=RAR' and R !'AR=A.
Similarity transformation with R diagonalizes A.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R qi(z,t) + R Aqu(z,t) = 0.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR~! = I:

R 'q(x,t) + RTARR qu(2,t) = 0.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR™! = I:
R 'q(x,t) + RTARR qu(2,t) = 0.
Use R"'AR = A and define w(z,t) = R~ 1q(x,t):

we(z,t) + Awy(z,t) = 0. Since R is constant!

R. J. LeVeque, University of Washington FVMHP Chap. 3



Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR™! = I:
R 'q(x,t) + RTARR qu(2,t) = 0.
Use R"'AR = A and define w(z,t) = R~ 1q(x,t):

we(z,t) + Awy(z,t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wh (z,t) + MNPwl(z,t) = 0. p=1,2, ..., m
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Solution to Cauchy problem

Suppose ¢(z,0) = cq)(ac) for —oo <2 < 0.
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Solution to Cauchy problem
Suppose ¢(z,0) = 3(1’) for —oo <2 < 0.
From this initial data we can compute data

Z(L)/(.%) = R_IZ(:U)
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Solution to Cauchy problem
Suppose ¢(z,0) = Z(x) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R 'g(x)
The solution to the decoupled equation w! + N wh = 0 is

WP (z,t) = wP(z — AP, 0) = w0 (z — \Pt).
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Solution to Cauchy problem
Suppose ¢(z,0) = Z(x) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R™'q(x)
The solution to the decoupled equation w! + N wh = 0 is
wP(z,t) = wP(z — AP, 0) = 0 (z — APt).
Putting these together in vector gives w(x, t) and finally

q(z,t) = Rw(x,t).
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Solution to Cauchy problem
Suppose ¢(z,0) = Z(x) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R™'q(x)
The solution to the decoupled equation w! + N wh = 0 is
wP(z,t) = wP(z — AP, 0) = 0 (z — APt).
Putting these together in vector gives w(x, t) and finally
q(z,t) = Rw(x,t).

We can rewrite this as

q(z,t) = pr(x,t) rP = Zt?/p(:c — \Pt)rP
p=1 p=1
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Linear acoustics
Example: Linear acoustics in a 1d gas tube

o p(x,t) = pressure perturbation
= | u u(z,t) = velocity

Equations:
pt + Kouy, =0 Change in pressure due to compression
pout +pr =0 Newton’s second law, F' = ma

where Ky = bulk modulus, and py = unperturbed density.

Hyperbolic system:

Ll WL e
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Eigenvectors for acoustics

1/po O

Eigenvectors:

1_ | —Poco 2 _ | Poco
I |
Check that ArP = \PrP, where

A= —Cp, 2\ = +cp.

with Cco = \/Ko/po = Kop= poC(Z).
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Eigenvectors for acoustics

1/po O

Eigenvectors:

7,1:[—01060]7 7“2:[’00160].
Check that ArP = \PrP, where
M= —¢, M\ = 4.
with ¢g = \/m — Kp= pocg.

Let Zy = poco = v Kopo = impedance.

R. J. LeVeque, University of Washington FVMHP Sec. 3.9.1



Physical meaning of eigenvectors

Eigenvectors for acoustics:
1_ | —poco | _ | —2Zo 2 _ | poco | _ | Zo
S R I B S R
Consider a pure 1-wave (simple wave), at speed \' = —cj,
o ol
If g(z) = g+ w (x)r! then

1
q(z,t) =q+ 0 (x — Alt)rl

Variation of ¢, as measured by ¢, or Aq = q(z + Az) — q(x)
is proportional to eigenvector r', e.g.

Gz (z,t) = z?zi(x — )\lt)rl
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Physical meaning of eigenvectors

Eigenvectors for acoustics:
1_ | =poco | _ | =20 2 _ | poco | _ | Zo

I e R e

In a simple 1-wave (propagating at speed \! = —¢),

[ =

The pressure variation is — 7, times the velocity variation.
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Physical meaning of eigenvectors
Eigenvectors for acoustics:
T1Z[P1000}:{1Zo}7 T2:|:p0100:|:|:210:|'
In a simple 1-wave (propagating at speed \! = —¢),
M

The pressure variation is — 7, times the velocity variation.

Similarly, in a simple 2-wave (\? = ),

Pz | Zy
BRI
The pressure variation is Z, times the velocity variation.
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Acoustic waves




Acoustic waves




Acoustic waves




Acoustic waves




Acoustic waves




Solution by tracing back on characteristics
The general solution for acoustics:

q(z,t) = wh(z — A, 0)rt + w?(z — N2, 0)r?

= w' (z + cot, 0)r! + w?(x — cot, 0)r?
Recall that w(x,0) = R~ 1¢(z,0), i.e.
wl(.%',O) :€1q(x,0), wQ(x>O) ZEQQ(xvo)

where ¢! and ¢? are rows of R~1.
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Solution by tracing back on characteristics
The general solution for acoustics:

q(z,t) = wh(z — A, 0)rt + w?(z — N2, 0)r?

= w' (z + cot, 0)r! + w?(x — cot, 0)r?
Recall that w(x,0) = R~ 1¢(z,0), i.e.
wl(.%',O) :€1q(x,0), wQ(x>O) ZEQQ(xvo)

where ¢! and ¢? are rows of R~1.

Note: ¢! and ¢? are left-eigenvectors of A:

(PA = \PP since R~'A=ARL
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Solution by tracing back on characteristics
The general solution for acoustics:
q(z,t) = wh(z — A, 0)rt + w?(z — N2, 0)r?

= w'(z + cot, 0)r' + w?(z — cot, 0)r?

z— N\t x— At
=ax — cot =z +cl
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Solution by tracing back on characteristics

The general solution for acoustics:

q(z,t) = wh(z — A, 0)rt + w?(z — \2t,0)r2

q(z,t)

w? constant w' constant

w?(x — A*,0) wl(z — A, 0)
= 2q(x — \,0) = (tq(x — \'t,0)
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Linear acoustics

Example: Linear acoustics in a 1d gas tube,
linearized about p = pg, ©u = ug

o p(x,t) = pressure perturbation
= | u u(z,t) = velocity perturbation

Equations include advective transport at speed uy:

pt + vops + Kouy, =0 Change in pressure due to compressio
PoUt + Pz +uguy =0 Newton’s second law, F = ma

where Ky = bulk modulus, and py = unperturbed density.

Hyperbolic system:

NS IHRD
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Eigenvectors for acoustics

up Ko
A=
[ 1/po  ug ]

Eigenvectors:

1_ | —Poco 2 _ | PoCo
S
Check that ArP = \PrP, where
)\IIUO—C(), )\2:U0+Co.

with Cco = \/K()/po - K() = pocg.
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Eigenvectors for acoustics

. U Ko . 1 0 0 KO
A_{l/po UO] _u0[01]+[1/f)o 0}

Eigenvectors:

7“1:[_[)1060], T2:|:p000:|.

Check that Ar? = A\PrP, where
)\IIUO—C(), )\2:U0+Co.

with Cco = \/K()/p() - K() = pocg.
Note: Eigenvectors are independent of .
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Eigenvectors for acoustics

UuQ Ko 1 0 :| |: 0 K[) :|
A == = U +
{ 1/po w0 ] " [ 0 1 1/po 0
Eigenvectors:
1_ | —Poco 2 _ | Poco
S e B A

Check that ArP = \PrP, where

M= wy — co, A = ug + .
with ¢ = \/m = Ko = poci.
Note: Eigenvectors are independent of .

Let Zy = poco = vV Kopo = impedance.
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Initial-boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:
G +ugz; =0 a<z<b t>0,
with initial data
q(z,0) = n(z) a<x<b.

and boundary data at the inflow boundary:

If w > 0, need data at x = a:
q(a,t) = g(1), t>0,
If w < 0, need data at x = b:

q(b,t):g(t), t>0,
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Characteristics for IBVP

In x—t plane for the case u > 0:

.

Solution:

_ ) n(z —ut) if a<z—ut<b,
ale,t) = { g((x —a)/u)  otherwise .
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Periodic boundary conditions

q(a,t) = q(bt),  t=>0.

In x—t plane for the case u > 0:

M

Solution:
Q(x’ t) = U(XO(% t))v
where Xy(z,t) = a + mod(z — ut — a, b — a).
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Linear acoustics — characteristics

w' (z + ct,0)rt + w?(z — ct,0)r?

—plz+ct) [ ~Zy n p(z —ct) [ Z
270 1 270 1

q(z,t)

OO
RN
AN
LRLLRLLS

For IBVP on a < z < b, must specify one incoming boundary
condition at each side: w?(a,t) and w' (b, t)



Acoustics boundary conditions

OO
RERLS
QRS

Outflow (non-reflecting, absorbing) boundary conditions:

w?(a,t) =0, w'(b,t) = 0.
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Acoustics boundary conditions

OO
RERLS
QRS

Outflow (non-reflecting, absorbing) boundary conditions:

w?(a,t) =0, w'(b,t) = 0.

Periodic boundary conditions:
w?(a,t) = w?(b,t),  w'(b,t) =w'(a,t),

or simply
Q(a7 t) = Q(bv t)'
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Acoustics boundary conditions

Solid wall (reflecting) boundary conditions:
u(a,t) =0, u(b,t) =
which can be written in terms of characteristic variables as:
w*(a,t) = —w'(a, 1), w'(b,t) = —w?(a,t)

since u = w! + w?.

q(a,t) = wt(a,t)
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Figure 3.1

Figure 3.1 illustrates the acoustics solution with u(z,0) = 0.
An animation can be found in the Clawpack Gallery
Gallery of fvmbook applications — Chapter 3

— animation of Pressure and Velocity

Shows solution computed numerically on a fine grid, with:
e Solid wall boundary condition at the left,
e QOutflow boundary condition at the right.

R. J. LeVeque, University of Washington FVMHP Fig. 3.1


http://www.clawpack.org/gallery/
http://www.clawpack.org/gallery/_static/apps/fvmbook/chap3/acousimple/_plots/movieframe_allframesfig1.html
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