Finite Volume Methods for Hyperbolic Problems

Linear Hyperbolic Systems

- General form, coefficient matrix, hyperbolicity
- Scalar advection equation
- Linear acoustics equations
- Eigen decomposition
- Characteristics and general solution
- Boundary conditions

Linear hyperbolic systems

Linear system of m equations: $\quad q(x, t) \in \mathbb{R}^{m}$ for each (x, t) and

$$
q_{t}+A q_{x}=0, \quad-\infty<x, \infty, \quad t \geq 0
$$

A is $m \times m$ matrix (constant for now, independent of x, t)

Linear hyperbolic systems

Linear system of m equations: $q(x, t) \in \mathbb{R}^{m}$ for each (x, t) and

$$
q_{t}+A q_{x}=0, \quad-\infty<x, \infty, \quad t \geq 0
$$

A is $m \times m$ matrix (constant for now, independent of x, t)

This PDE is hyperbolic if the matrix A is diagonalizable with real eigenvalues.
\exists nonsingular $R: R^{-1} A R=\Lambda$ diagonal with $\lambda^{p} \geq 0$.

Linear hyperbolic systems

Linear system of m equations: $\quad q(x, t) \in \mathbb{R}^{m}$ for each (x, t) and

$$
q_{t}+A q_{x}=0, \quad-\infty<x, \infty, \quad t \geq 0
$$

A is $m \times m$ matrix (constant for now, independent of x, t)

This PDE is hyperbolic if the matrix A is diagonalizable with real eigenvalues.
\exists nonsingular $R: R^{-1} A R=\Lambda$ diagonal with $\lambda^{p} \geq 0$.

Eigenvalues are wave speeds.
Eigenvectors used to split arbibrary data into waves. So matrix of eigenvectors must be nonsingular.

Advection equation as a linear system

$$
q_{t}+u q_{x}=0
$$

with u a constant (real) velocity. $\left(1 \times 1\right.$ diagonalizable, $\left.\lambda^{1}=u\right)$ Initial condition:

$$
q(x, 0)=\stackrel{\circ}{q}(x), \quad-\infty<x<\infty
$$

The solution to this Cauchy problem is:

$$
q(x, t)=\stackrel{\circ}{q}(x-u t)
$$

It is constant along each characteristic curve

$$
X(t)=x_{0}+u t
$$

Characteristics for advection

$q(x, t)=\stackrel{\circ}{q}(x-u t) \Longrightarrow q$ is constant along lines

$$
X(t)=x_{0}+u t, \quad t \geq 0
$$

Can also see that q is constant along $X(t)$ from:

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) u+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

In $x-t$ plane:

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{llll}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{cccc}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

$A R=R \Lambda \Longrightarrow A=R \Lambda R^{-1}$ and $R^{-1} A R=\Lambda$.
Similarity transformation with R diagonalizes A.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0 .
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant }!
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant! }
$$

This decouples to m independent scalar advection equations:

$$
w_{t}^{p}(x, t)+\lambda^{p} w_{x}^{p}(x, t)=0 . \quad p=1,2, \ldots, m
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x) \quad$ for $-\infty<x<\infty$.

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x) \quad$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

We can rewrite this as

$$
q(x, t)=\sum_{p=1}^{m} w^{p}(x, t) r^{p}=\sum_{p=1}^{m} \stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right) r^{p}
$$

Linear acoustics

Example: Linear acoustics in a 1 d gas tube

$$
q=\left[\begin{array}{l}
p \\
u
\end{array}\right] \quad \begin{aligned}
& p(x, t)=\text { pressure perturbation } \\
& u(x, t)=\text { velocity }
\end{aligned}
$$

Equations:

$$
\begin{aligned}
p_{t}+K_{0} u_{x} & =0 & & \text { Change in pressure due to compression } \\
\rho_{0} u_{t}+p_{x} & =0 & & \text { Newton's second law, } F=m a
\end{aligned}
$$

where $K_{0}=$ bulk modulus, and $\rho_{0}=$ unperturbed density.
Hyperbolic system:

$$
\left[\begin{array}{l}
p \\
u
\end{array}\right]_{t}+\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
u
\end{array}\right]_{x}=0
$$

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right] .
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=-c_{0}, \quad \lambda^{2}=+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right] .
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=-c_{0}, \quad \lambda^{2}=+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Let $Z_{0}=\rho_{0} c_{0}=\sqrt{K_{0} \rho_{0}}=$ impedance.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Consider a pure 1 -wave (simple wave), at speed $\lambda^{1}=-c_{0}$, If $q(x)=\bar{q}+\stackrel{\circ}{w}^{1}(x) r^{1}$ then

$$
q(x, t)=\bar{q}+\stackrel{\circ}{w}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Variation of q, as measured by q_{x} or $\Delta q=q(x+\Delta x)-q(x)$ is proportional to eigenvector r^{1}, e.g.

$$
q_{x}(x, t)={\stackrel{o}{w_{x}}}_{x}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.
Similarly, in a simple 2-wave $\left(\lambda^{2}=c_{0}\right)$,

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is Z_{0} times the velocity variation.

Acoustic waves

$$
\begin{aligned}
q(x, 0)=\left[\begin{array}{c}
p(x) \\
0
\end{array}\right] & =-\frac{p(x)}{2 Z}\left[\begin{array}{c}
-Z \\
1
\end{array}\right]+\begin{array}{c}
\frac{p(x)}{2 Z}\left[\begin{array}{c}
Z \\
1
\end{array}\right] \\
\end{array} \\
& =\left[\begin{array}{c}
p(x) / 2 \\
-p(x) /(2 Z)
\end{array}\right]+\left[\begin{array}{c}
p(x) / 2 \\
p(x) /(2 Z)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
q(x, 0)=\left[\begin{array}{c}
p(x) \\
0
\end{array}\right] & =-\frac{p(x)}{2 Z}\left[\begin{array}{c}
-Z \\
1
\end{array}\right]+\frac{p(x)}{2 Z}\left[\begin{array}{c}
Z \\
1
\end{array}\right] \\
& =\begin{array}{c}
w^{1}(x, 0) r^{1}+
\end{array} w^{2}(x, 0) r^{2} \\
& =\left[\begin{array}{c}
p(x) / 2 \\
-p(x) /(2 Z)
\end{array}\right]+\left[\begin{array}{c}
p(x) / 2 \\
p(x) /(2 Z)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
p(x) \\
0
\end{array}\right]=-\frac{p(x)}{2 Z}\left[\begin{array}{c}
-Z \\
1
\end{array}\right]+\quad \frac{p(x)}{2 Z}\left[\begin{array}{c}
Z \\
1
\end{array}\right] \\
& =w^{1}(x, 0) r^{1}+w^{2}(x, 0) r^{2} \\
& =\left[\begin{array}{c}
p(x) / 2 \\
-p(x) /(2 Z)
\end{array}\right]+\left[\begin{array}{c}
p(x) / 2 \\
p(x) /(2 Z)
\end{array}\right] .
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
p(x) \\
0
\end{array}\right]\left.=-\frac{p(x)}{2 Z}\left[\begin{array}{c}
-Z \\
1
\end{array}\right]+\begin{array}{c}
p(x) \\
2 Z
\end{array} \begin{array}{c}
Z \\
1
\end{array}\right] \\
&=w^{1}(x, 0) r^{1}+c \begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
p(x) / 2 \\
-p(x) /(2 Z)
\end{array}\right]+\left[\begin{array}{c}
p(x) / 2 \\
p(x) /(2 Z)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
p(x) \\
0
\end{array}\right]\left.=-\frac{p(x)}{2 Z}\left[\begin{array}{c}
-Z \\
1
\end{array}\right]+\begin{array}{c}
p(x) \\
2 Z
\end{array} \begin{array}{c}
Z \\
1
\end{array}\right] \\
&=w^{1}(x, 0) r^{1}+c \begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
p(x) / 2 \\
-p(x) /(2 Z)
\end{array}\right]+\left[\begin{array}{c}
p(x) / 2 \\
p(x) /(2 Z)
\end{array}\right]
\end{aligned}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Recall that $w(x, 0)=R^{-1} q(x, 0)$, i.e.

$$
w^{1}(x, 0)=\ell^{1} q(x, 0), \quad w^{2}(x, 0)=\ell^{2} q(x, 0)
$$

where ℓ^{1} and ℓ^{2} are rows of R^{-1}.

$$
R^{-1}=\left[\begin{array}{l}
\ell^{1} \\
\ell^{2}
\end{array}\right]
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Recall that $w(x, 0)=R^{-1} q(x, 0)$, i.e.

$$
w^{1}(x, 0)=\ell^{1} q(x, 0), \quad w^{2}(x, 0)=\ell^{2} q(x, 0)
$$

where ℓ^{1} and ℓ^{2} are rows of R^{-1}.

$$
R^{-1}=\left[\begin{array}{l}
\ell^{1} \\
\ell^{2}
\end{array}\right]
$$

Note: ℓ^{1} and ℓ^{2} are left-eigenvectors of A :

$$
\ell^{p} A=\lambda^{p} \ell^{p} \quad \text { since } \quad R^{-1} A=\Lambda R^{-1}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
q(x, t)=w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2}
$$

Linear acoustics

Example: Linear acoustics in a 1d gas tube, linearized about $p=p_{0}, u=u_{0}$

$$
q=\left[\begin{array}{l}
p \\
u
\end{array}\right] \quad \begin{aligned}
& p(x, t)=\text { pressure perturbation } \\
& u(x, t)=\text { velocity perturbation }
\end{aligned}
$$

Equations include advective transport at speed u_{0} :

$$
\begin{aligned}
p_{t}+u_{0} p_{x}+K_{0} u_{x} & =0 \\
\rho_{0} u_{t}+p_{x}+u_{0} u_{x} & =0
\end{aligned}
$$

Change in pressure due to compressio Newton's second law, $F=m a$
where $K_{0}=$ bulk modulus, and $\rho_{0}=$ unperturbed density.
Hyperbolic system:

$$
\left[\begin{array}{l}
p \\
u
\end{array}\right]_{t}+\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]\left[\begin{array}{l}
p \\
u
\end{array}\right]_{x}=0
$$

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right] \quad=u_{0}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Note: Eigenvectors are independent of u_{0}.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right] \quad=u_{0}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & K_{0} \\
1 / \rho_{0} & 0
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0} .
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Note: Eigenvectors are independent of u_{0}.
Let $Z_{0}=\rho_{0} c_{0}=\sqrt{K_{0} \rho_{0}}=$ impedance.

Initial-boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:

$$
q_{t}+u q_{x}=0 \quad a<x<b, \quad t \geq 0
$$

with initial data

$$
q(x, 0)=\eta(x) \quad a<x<b .
$$

and boundary data at the inflow boundary:
If $u>0$, need data at $x=a$:

$$
q(a, t)=g(t), \quad t \geq 0
$$

If $u<0$, need data at $x=b$:

$$
q(b, t)=g(t), \quad t \geq 0
$$

Characteristics for IBVP

In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)= \begin{cases}\eta(x-u t) & \text { if } a \leq x-u t \leq b \\ g((x-a) / u) & \text { otherwise }\end{cases}
$$

Periodic boundary conditions

$q(a, t)=q(b, t), \quad t \geq 0$.
In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)=\eta\left(X_{0}(x, t)\right)
$$

where $X_{0}(x, t)=a+\bmod (x-u t-a, b-a)$.

Linear acoustics - characteristics

$$
\begin{aligned}
q(x, t) & =w^{1}(x+c t, 0) r^{1}+w^{2}(x-c t, 0) r^{2} \\
& =\frac{-\stackrel{\circ}{p}(x+c t)}{2 Z_{0}}\left[\begin{array}{r}
-Z_{0} \\
1
\end{array}\right]+\frac{\stackrel{\circ}{p(x-c t)}}{2 Z_{0}}\left[\begin{array}{r}
Z_{0} \\
1
\end{array}\right]
\end{aligned}
$$

For IBVP on $a<x<b$, must specify one incoming boundary condition at each side: $w^{2}(a, t)$ and $w^{1}(b, t)$

Acoustics boundary conditions

Outflow (non-reflecting, absorbing) boundary conditions:

$$
w^{2}(a, t)=0, \quad w^{1}(b, t)=0
$$

Acoustics boundary conditions

Outflow (non-reflecting, absorbing) boundary conditions:

$$
w^{2}(a, t)=0, \quad w^{1}(b, t)=0
$$

Periodic boundary conditions:

$$
w^{2}(a, t)=w^{2}(b, t), \quad w^{1}(b, t)=w^{1}(a, t)
$$

or simply

$$
q(a, t)=q(b, t) .
$$

Acoustics boundary conditions

Solid wall (reflecting) boundary conditions:

$$
u(a, t)=0, \quad u(b, t)=0 .
$$

which can be written in terms of characteristic variables as:

$$
w^{2}(a, t)=-w^{1}(a, t), \quad w^{1}(b, t)=-w^{2}(a, t)
$$

since $u=w^{1}+w^{2}$.

$$
\begin{gathered}
q(a, t)=w^{1}(a, t)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+w^{2}(a, t)\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
p(a, t) \\
u(a, t)
\end{array}\right]=\left[\begin{array}{c}
\left(-w^{1}(a, t)+w^{2}(a, t)\right) Z_{0} \\
w^{1}(a, t)+w^{2}(a, t)
\end{array}\right]=\left[\begin{array}{c}
-2 w^{1}(a, t) Z_{0} \\
0
\end{array}\right] .}
\end{gathered}
$$

Figure 3.1

Figure 3.1 illustrates the acoustics solution with $u(x, 0) \equiv 0$.
An animation can be found in the Clawpack Gallery
Gallery of fvmbook applications \longrightarrow Chapter 3
\longrightarrow animation of Pressure and Velocity
Shows solution computed numerically on a fine grid, with:

- Solid wall boundary condition at the left,
- Outflow boundary condition at the right.

