Finite Volume Methods for Hyperbolic Problems

Linearization of Nonlinear Systems

- General form, Jacobian matrix
- Scalar Burgers' equation
- Compressible gas dynamics
- Linear acoustics equations

Linearization

General nonlinear conservation law: $q_t + f(q)_x = 0$

Suppose $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small.

Linearization

General nonlinear conservation law: $q_t + f(q)_x = 0$ Suppose $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small. Then

$$\begin{split} \tilde{q}_t &= q_t \\ &= -f(q)_x \\ &= -f'(q)q_x \\ &= -f'(q_0 + \tilde{q})\tilde{q}_x \\ &= -f'(q_0)\tilde{q}_x + \mathcal{O}(\epsilon^2). \end{split}$$

Linearization

General nonlinear conservation law: $q_t + f(q)_x = 0$ Suppose $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small. Then

$$\begin{split} \tilde{q}_t &= q_t \\ &= -f(q)_x \\ &= -f'(q)q_x \\ &= -f'(q_0 + \tilde{q})\tilde{q}_x \\ &= -f'(q_0)\tilde{q}_x + \mathcal{O}(\epsilon^2). \end{split}$$

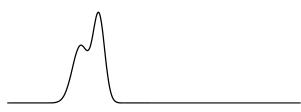
Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0) =$ Jacobian matrix Scalar: Advection equation

Conservation form:
$$u_t + \left(rac{1}{2}u^2
ight)_x = 0, \qquad f(u) = rac{1}{2}u^2.$$

Quasi-linear form: $u_t + uu_x = 0$.

This looks like an advection equation with u advected with speed u.

True solution: u is constant along characteristic with speed u until the wave "breaks".



Conservation form:
$$u_t + \left(rac{1}{2}u^2
ight)_x = 0, \qquad f(u) = rac{1}{2}u^2.$$

Quasi-linear form: $u_t + uu_x = 0$.

This looks like an advection equation with u advected with speed u.

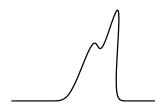
True solution: u is constant along characteristic with speed u until the wave "breaks".

Conservation form:
$$u_t + \left(rac{1}{2}u^2
ight)_x = 0, \qquad f(u) = rac{1}{2}u^2.$$

Quasi-linear form: $u_t + uu_x = 0$.

This looks like an advection equation with u advected with speed u.

True solution: u is constant along characteristic with speed u until the wave "breaks".



After breaking, the weak solution contains a shock wave.

Conservation form:
$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$$

Linearization about u_0 :

$$f(u) = \frac{1}{2}u^2 \implies f'(u_0) = u_0$$

So if $u(x,0) = u_0 + \tilde{u}(x,0)$ with $\|\tilde{u}\|$ small, then $\tilde{u}(x,t)$ approximately satisfies advection equation

$$\tilde{u}_t + u_0 u_x = 0.$$



Conservation form:
$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$$

Linearization about u_0 :

$$f(u) = \frac{1}{2}u^2 \implies f'(u_0) = u_0$$

So if $u(x,0) = u_0 + \tilde{u}(x,0)$ with $\|\tilde{u}\|$ small, then $\tilde{u}(x,t)$ approximately satisfies advection equation

$$\tilde{u}_t + u_0 u_x = 0.$$

Conservation form:
$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$$

Linearization about u_0 :

$$f(u) = \frac{1}{2}u^2 \implies f'(u_0) = u_0$$

So if $u(x,0) = u_0 + \tilde{u}(x,0)$ with $\|\tilde{u}\|$ small, then $\tilde{u}(x,t)$ approximately satisfies advection equation

$$\tilde{u}_t + u_0 u_x = 0.$$

R. J. LeVeque, University of Washington FVMHP Sec. 11.3

Compressible gas dynamics (simple case)

In one space dimension (e.g. in a pipe). $\rho(x,t) = \text{density}, \quad u(x,t) = \text{velocity},$ $p(x,t) = \text{pressure}, \quad \rho(x,t)u(x,t) = \text{momentum}.$

Conservation of:

mass: ρ flux: ρu momentum: ρu flux: $(\rho u)u + p$

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

$$p = P(\rho).$$

Suppose
$$\rho(x,t) \approx \rho_0$$
 and $u(x,t) \approx u_0$.

Model small perturbations to this steady state (sound waves).

$$\begin{bmatrix} \rho(x,t) \\ (\rho u)(x,t) \end{bmatrix} = \begin{bmatrix} \rho_0 \\ \rho_0 u_0 \end{bmatrix} + \begin{bmatrix} \tilde{\rho}(x,t) \\ (\tilde{\rho}\tilde{u})(x,t) \end{bmatrix}$$
or $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small.

Suppose
$$\rho(x,t) \approx \rho_0$$
 and $u(x,t) \approx u_0$.

Model small perturbations to this steady state (sound waves).

$$\begin{bmatrix} \rho(x,t) \\ (\rho u)(x,t) \end{bmatrix} = \begin{bmatrix} \rho_0 \\ \rho_0 u_0 \end{bmatrix} + \begin{bmatrix} \widetilde{\rho}(x,t) \\ (\widetilde{\rho u})(x,t) \end{bmatrix}$$

or $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small.

Then nonlinear equation $q_t + f(q)_x = 0$ leads to

$$\begin{split} \tilde{q}_t &= q_t \\ &= -f(q)_x \\ &= -f'(q)q_x \\ &= -f'(q_0 + \tilde{q})\tilde{q}_x \\ &= -f'(q_0)\tilde{q}_x + \mathcal{O}(\epsilon^2). \end{split}$$

Suppose
$$\rho(x,t) \approx \rho_0$$
 and $u(x,t) \approx u_0$.

Model small perturbations to this steady state (sound waves).

$$\begin{bmatrix} \rho(x,t) \\ (\rho u)(x,t) \end{bmatrix} = \begin{bmatrix} \rho_0 \\ \rho_0 u_0 \end{bmatrix} + \begin{bmatrix} \widetilde{\rho}(x,t) \\ (\widetilde{\rho u})(x,t) \end{bmatrix}$$

or $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small.

Then nonlinear equation $q_t + f(q)_x = 0$ leads to

$$\begin{split} \tilde{q}_t &= q_t \\ &= -f(q)_x \\ &= -f'(q)q_x \\ &= -f'(q_0 + \tilde{q})\tilde{q}_x \\ &= -f'(q_0)\tilde{q}_x + \mathcal{O}(\epsilon^2) \end{split}$$

Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0)$.

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + P(\rho))_x = 0$$

$$q = \begin{bmatrix} \rho \\ \rho u \end{bmatrix} = \begin{bmatrix} q^1 \\ q^2 \end{bmatrix},$$
$$f(q) = \begin{bmatrix} \rho u \\ \rho u^2 + P(\rho) \end{bmatrix} = \begin{bmatrix} f^1(q) \\ f^2(q) \end{bmatrix} = \begin{bmatrix} q^2 \\ (q^2)^2/q^1 + P(q^1) \end{bmatrix}.$$

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + P(\rho))_x = 0$$

SO

$$q = \begin{bmatrix} \rho \\ \rho u \end{bmatrix} = \begin{bmatrix} q^{1} \\ q^{2} \end{bmatrix},$$
$$f(q) = \begin{bmatrix} \rho u \\ \rho u^{2} + P(\rho) \end{bmatrix} = \begin{bmatrix} f^{1}(q) \\ f^{2}(q) \end{bmatrix} = \begin{bmatrix} q^{2} \\ (q^{2})^{2}/q^{1} + P(q^{1}) \end{bmatrix}.$$
Jacobian:

$$f'(q) = \begin{bmatrix} \frac{\partial f^1}{\partial q^1} & \frac{\partial f^1}{\partial q^2} \\ \frac{\partial f^2}{\partial q^1} & \frac{\partial f^2}{\partial q^2} \end{bmatrix}.$$
$$f'(q_0) = \begin{bmatrix} 0 & 1 \\ -u_0^2 + P'(\rho_0) & 2u_0 \end{bmatrix}.$$

Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0)$.

$$A = f'(q_0) = \begin{bmatrix} 0 & 1\\ -u_0^2 + P'(\rho_0) & 2u_0 \end{bmatrix}.$$

This can be written out as (2.47):

$$\widetilde{\rho}_t + (\widetilde{\rho u})_x = 0$$
$$(\widetilde{\rho u})_t + (-u_0^2 + P'(\rho_0))\widetilde{\rho}_x + 2u_0(\widetilde{\rho u})_x = 0.$$

Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0)$.

$$A = f'(q_0) = \begin{bmatrix} 0 & 1 \\ -u_0^2 + P'(\rho_0) & 2u_0 \end{bmatrix}$$

This can be written out as (2.47):

$$\widetilde{\rho}_t + (\widetilde{\rho u})_x = 0$$
$$(\widetilde{\rho u})_t + (-u_0^2 + P'(\rho_0))\widetilde{\rho}_x + 2u_0(\widetilde{\rho u})_x = 0.$$

Rewrite in terms of p and u perturbations (Exer. 2.1):

$$\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$$

$$\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$$

where $K_0 = \rho_0 P'(\rho_0)$ is the bulk modulus.

$$\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$$

$$\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$$

gives the system $q_t + Aq_x = 0$ (Drop tildes)

$$q(x,t) = \begin{bmatrix} p(x,t) \\ u(x,t) \end{bmatrix}, \qquad A = \begin{bmatrix} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{bmatrix}$$

$$\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$$

$$\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$$

gives the system $q_t + Aq_x = 0$ (Drop tildes)

$$q(x,t) = \begin{bmatrix} p(x,t) \\ u(x,t) \end{bmatrix}, \qquad A = \begin{bmatrix} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{bmatrix}$$

Eigenvalues: $\lambda = u_0 \pm c_0$

where $c_0 = \sqrt{K_0/\rho_0} = \sqrt{P'(\rho_0)}$ is the linearized sound speed.

$$\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$$

$$\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$$

gives the system $q_t + Aq_x = 0$ (Drop tildes)

$$q(x,t) = \begin{bmatrix} p(x,t) \\ u(x,t) \end{bmatrix}, \qquad A = \begin{bmatrix} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{bmatrix}$$

Eigenvalues: $\lambda = u_0 \pm c_0$

where $c_0 = \sqrt{K_0/\rho_0} = \sqrt{P'(\rho_0)}$ is the linearized sound speed.

Usually $u_0 = 0$ for linear acoustics. Then $\lambda^1 = -c_0$, $\lambda^2 = +c_0$.

Hyperbolicity

A system of *m* conservation laws $q_t + f(q)_x = 0$ is called hyperbolic at some point \bar{q} is state space if

The $m \times m$ Jacobian matrix $f'(\bar{q})$ is diagonalizable with real eigenvalues $\lambda^1(q), \ldots, \lambda^m(q)$.

Then small disturbances about the steady state $q = \bar{q}$ satisfy a linear hyperbolic system and propagate as waves.

- Shallow water equations are hyperbolic for h > 0.
- Nonlinear elasticity hyperbolic if $\sigma'(\epsilon) > 0$.
- Gas dynamics hyperbolic if $P'(\rho) > 0$.

Quasi-linear form: $q_t + f'(q)q_x = 0$ Usually want to use conservation form!