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Linearization

General nonlinear conservation law: ¢; + f(q), =0

Suppose q(z,t) = qo + §(z,t) where ||G(x,t)|| = € is small.
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Linearization

General nonlinear conservation law: ¢; + f(q), =0
Suppose q(z,t) = qo + ¢(z,t) where ||g(z, t)|| = e is small.
Then

Linearization: ¢; + Ag. = 0 where A = f’(qo) = Jacobian matrix

Scalar: Advection equation
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Nonlinear Burgers’ equation

Conservation form: u; + (3u?) =0, flu) = Lu?.
Quasi-linear form: U + uug = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed «
until the wave “breaks”.
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Nonlinear Burgers’ equation

Conservation form: u; + (3u?) =0, flu) = Lu?.
Quasi-linear form: U + uug = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed «
until the wave “breaks”.

After breaking, the weak solution contains a shock wave.
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Nonlinear Burgers’ equation

Conservation form: u, + (3u?) =0, flu) = L2,

T

Linearization about wg:

flu) = 30 = /() = ug

So if u(x,0) = ug + a(z,0) with ||| small, then @(z,t)
approximately satisfies advection equation

uy + ugug = 0.
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Compressible gas dynamics (simple case)

In one space dimension (e.g. in a pipe).
p(x,t) = density, u(x,t) = velocity,
p(z,t) = pressure, p(z,t)u(zr,t) = momentum.

Conservation of:

mass: p flux: pu
momentum: pu  flux: (pu)u+p

Conservation laws:

pt+ (pu)e =0
(pu)i + (pu* +p)e =0

Equation of state:
p=P(p).
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Linearization of gas dynamics
Suppose p(z,t) ~ py and u(z,t) = up.

Model small perturbations to this steady state (sound waves).

i | = Lo ]| iy |

or q(z,t) = qo + ¢(z,t) where ||¢(z,t)|| = € is small.
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Linearization of gas dynamics
Suppose p(z,t) ~ py and u(z,t) = up.

Model small perturbations to this steady state (sound waves).

p(:L‘,t) _ £0o ﬁ(l‘,t)

[ (pu)(z, 1) } B { poto } i { (p0)(x 1) }
or q(z,t) = qo + G(z,t) where ||G(x,t)|| = € is small.
Then nonlinear equation ¢; + f(q), = 0 leads to

Gt = qt
= _f(Q)m
—f(9)¢:
—f"(q0 + @)z
—f'(q0)3z + O(€%).
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Linearization of gas dynamics
Suppose p(z,t) ~ py and u(z,t) = up.

Model small perturbations to this steady state (sound waves).

p(l‘,t) _ £0o ﬁ(l‘,t)

[ (pu)(a,1) } B { poto } i { (p0)(x 1) }
or q(z,t) = qo + G(z,t) where ||G(x,t)|| = € is small.
Then nonlinear equation ¢; + f(q), = 0 leads to

Gt = qt
= _f(Q)m
—f(9)¢:
—f"(q0 + @)z
—f'(q0)3z + O(€%).

Linearization: ¢ + A¢, = 0 where A = f/(qo).
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Linearization of gas dynamics

pt+ (pu)z =0
(pu)i + (pu* + P(p))z = 0

SO
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Linearization of gas dynamics

pt+ (pu)z =0
(pu)t + (pu® + P(p))x = 0

SO

Jacobian:
i | Oft/oq" oft /o
f (Q) = an/aql 6f2/8q2 :| .

f'(q0) = [ —u2 +OP’(po) 2io ] '
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Linearization of gas dynamics

Linearization: ¢; + Ag. = 0 where A = f'(qp).

0 1
—ug + P'(po) 2ug

This can be written out as (2.47):

A= f'(q) =

pr+ (pu)z =0
(pu)e + (—ug + P'(po))p + 2uo(ptt)z = 0.
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Linearization of gas dynamics

Linearization: ¢; + Ag. = 0 where A = f'(qp).

0 1
—ug + P'(po) 2ug

This can be written out as (2.47):

A= f'(q) =

pr+ (pu)z =0
(pu)e + (—ug + P'(po))p + 2uo(ptt)z = 0.

Rewrite in terms of p and u perturbations (Exer. 2.1):

Dt + uope + Koty =0,
polt + Pz + potoly = 0,

where Ky = poP’(po) is the bulk modulus.
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Linearization of gas dynamics

ﬁt + Uoﬁx + Koty = 0,
polit + P + pouotzy = 0,

gives the system ¢, + Aq, =0 (Drop tildes)

q@vt):[p(x’?]’ A:[lv;go I;H
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Linearization of gas dynamics

ﬁt + Uoﬁx + Koty = 0,
polit + P + pouotzy = 0,

gives the system ¢, + Aq, =0 (Drop tildes)

q(wvﬂ:[p(x’?]’ A:[lﬁo I;H

Eigenvalues: A = ug + ¢

where ¢y = \/Ko/po = \/P'(po) is the linearized sound speed.

Usually ug = 0 for linear acoustics. Then A! = —cy, A? = +c.
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Hyperbolicity

A system of m conservation laws ¢, + f(q), = 0 is called
hyperbolic at some point g is state space if

The m x m Jacobian matrix f(g) is diagonalizable
with real eigenvalues A\!(q), ..., A™(q).

Then small disturbances about the steady state ¢ = g satisfy a
linear hyperbolic system and propagate as waves.

¢ Shallow water equations are hyperbolic for h > 0.
¢ Nonlinear elasticity hyperbolic if o’(¢) > 0.
e Gas dynamics hyperbolic if P'(p) > 0.

Quasi-linear form: ¢, + f'(q)qz = 0
Usually want to use conservation form!
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