
Finite Volume Methods for Hyperbolic Problems

Linearization of Nonlinear Systems

• General form, Jacobian matrix
• Scalar Burgers’ equation
• Compressible gas dynamics
• Linear acoustics equations
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Linearization

General nonlinear conservation law: qt + f(q)x = 0

Suppose q(x, t) = q0 + q̃(x, t) where ∥q̃(x, t)∥ = ϵ is small.

Then

q̃t = qt

= −f(q)x

= −f ′(q)qx

= −f ′(q0 + q̃)q̃x

= −f ′(q0)q̃x +O(ϵ2).

Linearization: q̃t +Aq̃x = 0 where A = f ′(q0) = Jacobian matrix

Scalar: Advection equation
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Nonlinear Burgers’ equation

Conservation form: ut +
(
1
2u

2
)
x
= 0, f(u) = 1

2u
2.

Quasi-linear form: ut + uux = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed u
until the wave “breaks”.

After breaking, the weak solution contains a shock wave.
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Nonlinear Burgers’ equation

Conservation form: ut +
(
1
2u

2
)
x
= 0, f(u) = 1

2u
2.

Linearization about u0:

f(u) =
1

2
u2 =⇒ f ′(u0) = u0

So if u(x, 0) = u0 + ũ(x, 0) with ∥ũ∥ small, then ũ(x, t)
approximately satisfies advection equation

ũt + u0ux = 0.
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approximately satisfies advection equation
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Compressible gas dynamics (simple case)

In one space dimension (e.g. in a pipe).
ρ(x, t) = density, u(x, t) = velocity,
p(x, t) = pressure, ρ(x, t)u(x, t) = momentum.

Conservation of:

mass: ρ flux: ρu
momentum: ρu flux: (ρu)u+ p

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).
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Linearization of gas dynamics

Suppose ρ(x, t) ≈ ρ0 and u(x, t) ≈ u0.

Model small perturbations to this steady state (sound waves).[
ρ(x, t)

(ρu)(x, t)

]
=

[
ρ0

ρ0u0

]
+

[
ρ̃(x, t)

(ρ̃u)(x, t)

]
or q(x, t) = q0 + q̃(x, t) where ∥q̃(x, t)∥ = ϵ is small.

Then nonlinear equation qt + f(q)x = 0 leads to

q̃t = qt

= −f(q)x

= −f ′(q)qx
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Linearization of gas dynamics

ρt + (ρu)x = 0

(ρu)t + (ρu2 + P (ρ))x = 0

so

q =

[
ρ
ρu

]
=

[
q1

q2

]
,

f(q) =

[
ρu

ρu2 + P (ρ)

]
=

[
f1(q)
f2(q)

]
=

[
q2

(q2)2/q1 + P (q1)

]
.

Jacobian:

f ′(q) =

[
∂f1/∂q1 ∂f1/∂q2

∂f2/∂q1 ∂f2/∂q2

]
.

f ′(q0) =

[
0 1

−u20 + P ′(ρ0) 2u0

]
.
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Linearization of gas dynamics

Linearization: q̃t +Aq̃x = 0 where A = f ′(q0).

A = f ′(q0) =

[
0 1

−u20 + P ′(ρ0) 2u0

]
.

This can be written out as (2.47):

ρ̃t + (ρ̃u)x = 0

(ρ̃u)t + (−u20 + P ′(ρ0))ρ̃x + 2u0(ρ̃u)x = 0.

Rewrite in terms of p and u perturbations (Exer. 2.1):

p̃t + u0p̃x +K0ũx = 0,

ρ0ũt + p̃x + ρ0u0ũx = 0,

where K0 = ρ0P
′(ρ0) is the bulk modulus.
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Linearization of gas dynamics

p̃t + u0p̃x +K0ũx = 0,

ρ0ũt + p̃x + ρ0u0ũx = 0,

gives the system qt +Aqx = 0 (Drop tildes)

q(x, t) =

[
p(x, t)
u(x, t)

]
, A =

[
u0 K0

1/ρ0 u0

]

Eigenvalues: λ = u0 ± c0

where c0 =
√

K0/ρ0 =
√

P ′(ρ0) is the linearized sound speed.

Usually u0 = 0 for linear acoustics. Then λ1 = −c0, λ2 = +c0.
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gives the system qt +Aqx = 0 (Drop tildes)

q(x, t) =

[
p(x, t)
u(x, t)

]
, A =

[
u0 K0

1/ρ0 u0

]

Eigenvalues: λ = u0 ± c0

where c0 =
√
K0/ρ0 =

√
P ′(ρ0) is the linearized sound speed.

Usually u0 = 0 for linear acoustics. Then λ1 = −c0, λ2 = +c0.

R. J. LeVeque, University of Washington FVMHP Sec. 2.7



Linearization of gas dynamics

p̃t + u0p̃x +K0ũx = 0,
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Hyperbolicity

A system of m conservation laws qt + f(q)x = 0 is called
hyperbolic at some point q̄ is state space if

The m×m Jacobian matrix f ′(q̄) is diagonalizable
with real eigenvalues λ1(q), . . . , λm(q).

Then small disturbances about the steady state q = q̄ satisfy a
linear hyperbolic system and propagate as waves.

• Shallow water equations are hyperbolic for h > 0.
• Nonlinear elasticity hyperbolic if σ′(ϵ) > 0.
• Gas dynamics hyperbolic if P ′(ρ) > 0.

Quasi-linear form: qt + f ′(q)qx = 0
Usually want to use conservation form!
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