Finite Volume Methods for Hyperbolic Problems

Variable Coefficient Advection

- Quasi-1D pipe
- Units in one space dimension
- Conservative form: $q_{t}+(u(x) q)_{x}=0$
- Advective form: $\quad q_{t}+u(x) q_{x}=0 \quad$ (color equation)

Variable-coefficient advection

Incompressible flow in 1D pipe with constant cross section
$\Longrightarrow u \equiv$ constant in space.

Variable-coefficient advection

Incompressible flow in 1D pipe with constant cross section
$\Longrightarrow u \equiv$ constant in space.
If cross-sectional area $\kappa(x)$ varies, then so does $u(x)$.

Variable-coefficient advection

Incompressible flow in 1D pipe with constant cross section $\Longrightarrow u \equiv$ constant in space.

If cross-sectional area $\kappa(x)$ varies, then so does $u(x)$.

Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U=\text { constant }
$$

Variable-coefficient advection

Incompressible flow in 1D pipe with constant cross section $\Longrightarrow u \equiv$ constant in space.

If cross-sectional area $\kappa(x)$ varies, then so does $u(x)$.

Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U=\text { constant }
$$

PDE for concentration of a passive tracer advected with flow?

Variable-coefficient advection

Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U \Longrightarrow u(x)=U / \kappa(x) .
$$

Concentration of passive tracer: $q(x, t)$
If units of q are mass / unit length, then q is conserved quantity with flux $u q$, and we obtain the conservation law

$$
q_{t}(x, t)+(u(x) q(x, t))_{x}=0
$$

Variable-coefficient advection

Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U \Longrightarrow u(x)=U / \kappa(x) .
$$

Concentration of passive tracer: $q(x, t)$
If units of q are mass / unit length, then q is conserved quantity with flux $u q$, and we obtain the conservation law

$$
q_{t}(x, t)+(u(x) q(x, t))_{x}=0
$$

However, if q is in units of mass / unit volume, then:

$$
q_{t}(x, t)+u(x) q_{x}(x, t)=0 . \quad \text { (color equation) }
$$

Variable-coefficient advection

Derivation of color equation: Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U \Longrightarrow u(x)=U / \kappa(x) .
$$

If $q(x, t)$ in units of mass/volume, the mass/length is $\kappa(x) q(x, t)$. This is now the conserved quantity.

Variable-coefficient advection

Derivation of color equation: Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U \Longrightarrow u(x)=U / \kappa(x) .
$$

If $q(x, t)$ in units of mass/volume, the mass/length is $\kappa(x) q(x, t)$. This is now the conserved quantity.
Its flux is $u(x) \kappa(x) q(x, t)=U q(x, t)$.

Variable-coefficient advection

Derivation of color equation: Incompressible \Longrightarrow flux of fluid must be constant, so

$$
\kappa(x) u(x) \equiv U \Longrightarrow u(x)=U / \kappa(x)
$$

If $q(x, t)$ in units of mass/volume, the mass/length is $\kappa(x) q(x, t)$. This is now the conserved quantity.

Its flux is $u(x) \kappa(x) q(x, t)=U q(x, t)$.
Conservation law is:

$$
\begin{gathered}
(\kappa(x) q(x, t))_{t}+(U q(x, t))_{x}=0 \\
\left.\kappa(x) q_{t}(x, t)+U q_{x}(x, t)\right)=0 \\
\left.q_{t}(x, t)+u(x) q_{x}(x, t)\right)=0
\end{gathered}
$$

Variable-coefficient advection

Color equation:

$$
q_{t}(x, t)+u(x) q_{x}(x, t)=0
$$

Can be rewriten as a balance law
(conservation law plus source term):

$$
q_{t}(x, t)+(u(x) q(x, t))_{x}=u^{\prime}(x) q(x, t)
$$

Will revisit different forms when studying numerical methods.

