
Finite Volume Methods for Hyperbolic Problems

Derivation of Conservation Laws

• Integral form in one space dimension
• Advection
• Compressible gas – mass and momentum
• Source terms
• Diffusion
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First order hyperbolic PDE in 1 space dimension

Linear: qt +Aqx = 0, q(x, t) ∈ lRm, A ∈ lRm×m

Conservation law: qt + f(q)x = 0, f : lRm → lRm (flux)

Quasilinear form: qt + f ′(q)qx = 0

Hyperbolic if A or f ′(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.

Eigenvalues are wave speeds.

Note: Second order wave equation ptt = c2pxx can be written
as a first-order system (acoustics).
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity, so

∫ x2

x1

q(x, t) dx = total mass in interval

changes only because of fluxes at left or right of interval.
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = F1(t)− F2(t)

where
Fj = f(q(xj , t)), f(q) = flux function.
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Derivation of Conservation Laws

If q is smooth enough, we can rewrite

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

as ∫ x2

x1

qt dx = −
∫ x2

x1

f(q)x dx

or ∫ x2

x1

(qt + f(q)x) dx = 0

True for all x1, x2 =⇒ differential form:

qt + f(q)x = 0.
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Advective flux

If ρ(x, t) is the density (mass per unit length),∫ x2

x1

ρ(x, t) dx = total mass in [x1, x2]

and u(x, t) is the velocity, then the advective flux is

ρ(x, t)u(x, t)

Units: mass/length × length/time = mass/time.

Continuity equation (conservation of mass):

ρt + (ρu)x = 0
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Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

q(x, t) = tracer concentration, f(q) = uq

=⇒ qt + uqx = 0, with initial condition q(x, 0) = q
◦
(x).

True solution: q(x, t) = q(x− ut, 0) = q
◦
(x− ut)
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Compressible gas dynamics

In one space dimension (e.g. in a pipe).
ρ(x, t) = density, u(x, t) = velocity,
p(x, t) = pressure, ρ(x, t)u(x, t) = momentum.

Conservation of:

mass: ρ flux: ρu
momentum: ρu flux: (ρu)u+ p
(energy)

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

(Later: p may also depend on internal energy / temperature)
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Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Momentum flux:
ρu2 = (ρu)u = advective flux

p term in flux?
• −px = force in Newton’s second law,
• as momentum flux: microscopic motion of gas molecules.
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Momentum flux arising from pressure

Note that:
• molecules with positive x-velocity crossing x1 to right

increase the momentum in [x1, x2]

• molecules with negative x-velocity crossing x1 to left also
increase the momentum in [x1, x2]

Hence momentum flux increases with pressure p(x1, t) even if
macroscopic (average) velocity is zero.
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Source terms (balance laws)

qt + f(q)x = ψ(q)

Results from integral form

∂

∂t

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t)) +

∫ x2

x1

ψ(q(x, t)) dx

Examples:
• Reacting flow, e.g. combustion,
• External forces such as gravity
• Viscosity, drag
• Radiative heat transfer
• Geometric source terms (e.g., quasi-1d problems)
• Bottom topography in shallow water
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Source term example: advection with decay

q(x, t) = mass / unit length
First suppose no advection,

but at each point, exponential decay occurs:

q(x, t)t = −λq(x, t) ≡ ψ(q(x, t)).

Hence integrating over an interval:

d

dt

∫ x2

x1

q(x, t) dx =

∫ x2

x1

ψ(q(x, t)) dx.

With advection:
d

dt

∫ x2

x1

q(x, t) dx = uq(x1, t)− uq(x2, t) +

∫ x2

x1

ψ(q(x, t)) dx.

∫ x2

x1

qt + (uq)x − ψ(q) dx = 0 holds for all x1, x2
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Diffusive flux

q(x, t) = concentration
β = diffusion coefficient (β > 0)

diffusive flux = −βqx(x, t)

qt + fx = 0 =⇒ diffusion equation:

qt = (βqx)x = βqxx (if β = const).

Heat equation: Same form, where

q(x, t) = density of thermal energy = κT (x, t),
T (x, t) = temperature, κ = heat capacity,
flux = −βT (x, t) = −(β/κ)q(x, t) =⇒

qt(x, t) = (β/κ)qxx(x, t).
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Advection-diffusion

q(x, t) = concentration that advects with velocity u
and diffuses with coefficient β:

flux = uq − βqx.

Advection-diffusion equation:

qt + uqx = βqxx.

If β > 0 then this is a parabolic equation.

Advection dominated if u/β (the Péclet number) is large.

Fluid dynamics: “parabolic terms” arise from
• thermal diffusion and
• diffusion of momentum, where the diffusion parameter is

the viscosity.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x, t) is
the limit as ϵ→ 0 of the solution qϵ(x, t) of the parabolic
advection-diffusion equation

qt + uqx = ϵqxx.

For any ϵ > 0 this has a classical smooth solution:
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