Finite Volume Methods for Hyperbolic Problems

Derivation of Conservation Laws

Integral form in one space dimension
Advection
Compressible gas — mass and momentum

e Source terms
Diffusion
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First order hyperbolic PDE in 1 space dimension

Linear: ¢ + Agy =0, qg(z,t) € R™, A € R™*™
Conservation law: ¢ + f(q). =0, f:R™ — IR™ (flux)
Quasilinear form: ¢ + f'(¢)gz =0

Hyperbolic if A or f’(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.
Eigenvalues are wave speeds.

Note: Second order wave equation p;; = c?p,, can be written
as a first-order system (acoustics).
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Derivation of Conservation Laws

q(z,t) = density function for some conserved quantity, so

€2
/ q(z,t) dx = total mass in interval

Z1

changes only because of fluxes at left or right of interval.
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Derivation of Conservation Laws

q(z,t) = density function for some conserved quantity.

Integral form:

2

% q(z,t)dx = Fi(t) — Fa(t)

where
Fj = f(q(z,1)), f(q) = flux function.
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Derivation of Conservation Laws

If ¢ is smooth enough, we can rewrite

d [

- | al@t)dr = fla(@,t) = fla(@s,1))

T2 2
/ qtdxz—/ £(q) da
Tl 1

[k faae=o

1

as

or

True for all 1, xzo = differential form:

Qt+f(Q)z =0.
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Advective flux
If p(x,t) is the density (mass per unit length),

T2
/ p(x,t)dx = total mass in [z1, 23]

1

and u(z,t) is the velocity, then the advective flux is

ol tula, 1)

Units: mass/length x length/time = mass/time.
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Advective flux
If p(x,t) is the density (mass per unit length),

T2
/ p(x,t)dx = total mass in [z1, 23]

1

and u(z,t) is the velocity, then the advective flux is

ol tula, 1)

Units: mass/length x length/time = mass/time.

Continuity equation (conservation of mass):

pr+ (pu)e =0
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Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

q(x,t) = tracer concentration, f(q) = ugq

= q: +ug, =0, withinitial condition ¢(x,0) = 8(:1:).

True solution: ¢(z,t) = q(z — ut,0) = a(x — ut)
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Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

q(x,t) = tracer concentration, f(q) = ugq
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Compressible gas dynamics

In one space dimension (e.g. in a pipe).
p(z,t) = density, wu(z,t) = velocity,
p(x,t) = pressure, p(x,t)u(x,t) = momentum.

Conservation of:

mass: p flux: pu
momentum: pu  flux: (pu)u+p
(energy)

Conservation laws:
pt+ (pu)z =0
(puw)¢ + (pu® 4+ p)z =0
Equation of state:
p=P(p).
(Later: p may also depend on internal energy / temperature)
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Compressible gas dynamics

Conservation laws:

pt + (pu)z =0
(pu)s + (pu® + p)s =0

)

% %3

-

J

Momentum flux:
pu? = (pu)u = advective flux

p term in flux?
e —p, = force in Newton’s second law,
® as momentum flux: microscopic motion of gas molecules.
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Momentum flux arising from pressure
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Momentum flux arising from pressure
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Note that:
* molecules with positive z-velocity crossing x; to right
increase the momentum in [z, x2]
e molecules with negative x-velocity crossing z; to left also
increase the momentum in [z, x9]
Hence momentum flux increases with pressure p(x1,t) even if
macroscopic (average) velocity is zero.
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Source terms (balance laws)

a + f(@)e = ¥(q)

Results from integral form

,O?t/” g(z,t) dz = fg(z1,1) — F(g(w2,t)) +/x2¢,(q(x,t))d$

1

Examples:
e Reacting flow, e.g. combustion,
External forces such as gravity
Viscosity, drag
Radiative heat transfer
e Geometric source terms (e.g., quasi-1d problems)
Bottom topography in shallow water
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Source term example: advection with decay

q(z,t) = mass / unit length
First suppose no advection,
but at each point, exponential decay occurs:

Q(xat)t = _)\Q(x7t) = ¢(Q(9ﬁat))-

R. J. LeVeque, University of Washington FVMHP Sec. 2.5



Source term example: advection with decay

q(z,t) = mass / unit length
First suppose no advection,
but at each point, exponential decay occurs:

Q(xat)t = _)\Q(xvt) = ¢(Q($at))-
Hence integrating over an interval:

2

% q(z,t)dx = / : Y(q(x,t)) de.
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Source term example: advection with decay

q(z,t) = mass / unit length
First suppose no advection,
but at each point, exponential decay occurs:

Q(xat)t = _)\Q(xvt) = ¢(Q($at))-
Hence integrating over an interval:

2

% q(z,t)dx = / i Y(q(x,t))dx

With advection:

d [
*/ q(z,t) de = ug(z1,t) — ug(zs, t / Y(g(z,t))
dt J,,
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Source term example: advection with decay

q(z,t) = mass / unit length
First suppose no advection,
but at each point, exponential decay occurs:

Q(xat)t = _)\Q(xvt) = ¢(Q($at))-
Hence integrating over an interval:
]

% q(z,t)dx = / i Y(q(x,t))dx

With advection:

d [
*/ q(z,t) de = ug(z1,t) — ug(zs, t / Y(g(z,t))
dt J,,

T2
/ gt + (uq)z — ¥(g)dx =0 holds for all x1, x2
T
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Diffusive flux

q(x,t) = concentration
B = diffusion coefficient (5 > 0)
diffusive flux = —fq.(x, 1)

q: + f = 0 = diffusion equation:

¢t = (Bqz)z = Bas (if B = const).
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Diffusive flux
q(x,t) = concentration
B = diffusion coefficient (5 > 0)
diffusive flux = —fq.(x, 1)

q: + f. = 0 = diffusion equation:
@t = (B4z)s = Baas (if B = const).

Heat equation: Same form, where

q(z,t) = density of thermal energy = xkT'(x,t),
T'(x,t) = temperature, = heat capacity,
flux = —ﬁT(.%’,t) = _(ﬁ/&)Q(x7t) ==

Qt(I', t) = (ﬁ/’{)qzx(x7 t)'
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Advection-diffusion

q(z,t) = concentration that advects with velocity «
and diffuses with coefficient 3:

flux = uq — Bq,.

Advection-diffusion equation:

qt + U = Buz-
If 5 > 0 then this is a parabolic equation.
Advection dominated if u/3 (the Péclet number) is large.

Fluid dynamics: “parabolic terms” arise from
e thermal diffusion and

e diffusion of momentum, where the diffusion parameter is
the viscosity.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

e=0.1
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

€= 0.01
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

e = 0.001

I
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