Finite Volume Methods for Hyperbolic Problems

Derivation of Conservation Laws

- Integral form in one space dimension
- Advection
- Compressible gas - mass and momentum
- Source terms
- Diffusion

First order hyperbolic PDE in 1 space dimension

Linear: $\quad q_{t}+A q_{x}=0, \quad q(x, t) \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times m}$

Conservation law: $\quad q_{t}+f(q)_{x}=0, \quad f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ (flux)

Quasilinear form: $q_{t}+f^{\prime}(q) q_{x}=0$

Hyperbolic if A or $f^{\prime}(q)$ is diagonalizable with real eigenvalues.

Models wave motion or advective transport.
Eigenvalues are wave speeds.
Note: Second order wave equation $p_{t t}=c^{2} p_{x x}$ can be written as a first-order system (acoustics).

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity, so

$$
\int_{x_{1}}^{x_{2}} q(x, t) d x=\text { total mass in interval }
$$

changes only because of fluxes at left or right of interval.

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity. Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=F_{1}(t)-F_{2}(t)
$$

where

$$
F_{j}=f\left(q\left(x_{j}, t\right)\right), \quad f(q)=\text { flux function. }
$$

Derivation of Conservation Laws

If q is smooth enough, we can rewrite

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=f\left(q\left(x_{1}, t\right)\right)-f\left(q\left(x_{2}, t\right)\right)
$$

as

$$
\int_{x_{1}}^{x_{2}} q_{t} d x=-\int_{x_{1}}^{x_{2}} f(q)_{x} d x
$$

or

$$
\int_{x_{1}}^{x_{2}}\left(q_{t}+f(q)_{x}\right) d x=0
$$

True for all $x_{1}, x_{2} \Longrightarrow$ differential form:

$$
q_{t}+f(q)_{x}=0
$$

Advective flux

If $\rho(x, t)$ is the density (mass per unit length),

$$
\int_{x_{1}}^{x_{2}} \rho(x, t) d x=\text { total mass in }\left[x_{1}, x_{2}\right]
$$

and $u(x, t)$ is the velocity, then the advective flux is

$$
\rho(x, t) u(x, t)
$$

Units: mass/length \times length/time $=$ mass/time.

Advective flux

If $\rho(x, t)$ is the density (mass per unit length),

$$
\int_{x_{1}}^{x_{2}} \rho(x, t) d x=\text { total mass in }\left[x_{1}, x_{2}\right]
$$

and $u(x, t)$ is the velocity, then the advective flux is

$$
\rho(x, t) u(x, t)
$$

Units: mass/length \times length/time $=$ mass/time.

Continuity equation (conservation of mass):

$$
\rho_{t}+(\rho u)_{x}=0
$$

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0, \quad$ with initial condition $q(x, 0)=\stackrel{\circ}{q}(x)$.
True solution: $q(x, t)=q(x-u t, 0)=\stackrel{o}{q}(x-u t)$

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0, \quad$ with initial condition $q(x, 0)=\stackrel{\circ}{q}(x)$.
True solution: $q(x, t)=q(x-u t, 0)=\stackrel{o}{q}(x-u t)$

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0, \quad$ with initial condition $q(x, 0)=\stackrel{\circ}{q}(x)$.
True solution: $q(x, t)=q(x-u t, 0)=\stackrel{\circ}{q}(x-u t)$

Compressible gas dynamics

In one space dimension (e.g. in a pipe).
$\rho(x, t)=$ density, $\quad u(x, t)=$ velocity,
$p(x, t)=$ pressure,$\quad \rho(x, t) u(x, t)=$ momentum.
Conservation of:

mass:	ρ	flux: ρu	
momentum:	ρu	flux: $\quad(\rho u) u+p$	
(energy)			

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Equation of state:

$$
p=P(\rho)
$$

(Later: p may also depend on internal energy / temperature)

Compressible gas dynamics

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Momentum flux:
$\rho u^{2}=(\rho u) u=$ advective flux
p term in flux?

- $-p_{x}=$ force in Newton's second law,
- as momentum flux: microscopic motion of gas molecules.

Momentum flux arising from pressure

Momentum flux arising from pressure

Note that:

- molecules with positive x-velocity crossing x_{1} to right increase the momentum in $\left[x_{1}, x_{2}\right]$
- molecules with negative x-velocity crossing x_{1} to left also increase the momentum in $\left[x_{1}, x_{2}\right]$
Hence momentum flux increases with pressure $p\left(x_{1}, t\right)$ even if macroscopic (average) velocity is zero.

Source terms (balance laws)

$$
q_{t}+f(q)_{x}=\psi(q)
$$

Results from integral form

$$
\frac{\partial}{\partial t} \int_{x_{1}}^{x_{2}} q(x, t) d x=f\left(q\left(x_{1}, t\right)\right)-f\left(q\left(x_{2}, t\right)\right)+\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x
$$

Examples:

- Reacting flow, e.g. combustion,
- External forces such as gravity
- Viscosity, drag
- Radiative heat transfer
- Geometric source terms (e.g., quasi-1d problems)
- Bottom topography in shallow water

Source term example: advection with decay

$q(x, t)=$ mass $/$ unit length
First suppose no advection,
but at each point, exponential decay occurs:

$$
q(x, t)_{t}=-\lambda q(x, t) \equiv \psi(q(x, t))
$$

Source term example: advection with decay

$q(x, t)=$ mass $/$ unit length
First suppose no advection,
but at each point, exponential decay occurs:

$$
q(x, t)_{t}=-\lambda q(x, t) \equiv \psi(q(x, t))
$$

Hence integrating over an interval:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x
$$

Source term example: advection with decay

$q(x, t)=$ mass $/$ unit length
First suppose no advection,
but at each point, exponential decay occurs:

$$
q(x, t)_{t}=-\lambda q(x, t) \equiv \psi(q(x, t))
$$

Hence integrating over an interval:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x
$$

With advection:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=u q\left(x_{1}, t\right)-u q\left(x_{2}, t\right)+\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x .
$$

Source term example: advection with decay

$q(x, t)=$ mass $/$ unit length
First suppose no advection,
but at each point, exponential decay occurs:

$$
q(x, t)_{t}=-\lambda q(x, t) \equiv \psi(q(x, t))
$$

Hence integrating over an interval:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x
$$

With advection:

$$
\begin{gathered}
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=u q\left(x_{1}, t\right)-u q\left(x_{2}, t\right)+\int_{x_{1}}^{x_{2}} \psi(q(x, t)) d x . \\
\int_{x_{1}}^{x_{2}} q_{t}+(u q)_{x}-\psi(q) d x=0 \text { holds for all } x_{1}, x_{2}
\end{gathered}
$$

Diffusive flux

$q(x, t)=$ concentration
$\beta=$ diffusion coefficient $(\beta>0)$
diffusive flux $=-\beta q_{x}(x, t)$
$q_{t}+f_{x}=0 \Longrightarrow$ diffusion equation:

$$
q_{t}=\left(\beta q_{x}\right)_{x}=\beta q_{x x} \text { (if } \beta=\text { const). }
$$

Diffusive flux

$q(x, t)=$ concentration
$\beta=$ diffusion coefficient $(\beta>0)$
diffusive flux $=-\beta q_{x}(x, t)$
$q_{t}+f_{x}=0 \Longrightarrow$ diffusion equation:

$$
\left.q_{t}=\left(\beta q_{x}\right)_{x}=\beta q_{x x} \text { (if } \beta=\mathrm{const}\right) .
$$

Heat equation: Same form, where
$q(x, t)=$ density of thermal energy $=\kappa T(x, t)$,
$T(x, t)=$ temperature,$\quad \kappa=$ heat capacity,
flux $=-\beta T(x, t)=-(\beta / \kappa) q(x, t) \Longrightarrow$

$$
q_{t}(x, t)=(\beta / \kappa) q_{x x}(x, t)
$$

Advection-diffusion

$q(x, t)=$ concentration that advects with velocity u and diffuses with coefficient β :

$$
\text { flux }=u q-\beta q_{x} .
$$

Advection-diffusion equation:

$$
q_{t}+u q_{x}=\beta q_{x x}
$$

If $\beta>0$ then this is a parabolic equation.
Advection dominated if u / β (the Péclet number) is large.
Fluid dynamics: "parabolic terms" arise from

- thermal diffusion and
- diffusion of momentum, where the diffusion parameter is the viscosity.

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x}
$$

For any $\epsilon>0$ this has a classical smooth solution:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.01
$$

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.001
$$

