
Computing in Science & Engineering 	 This article has been peer-reviewed.� 19

R e p r o d u c i b l e
R e s e a r c h

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

W ithin the world of science, com-
putation is now rightly seen as
the third vertex of a triangle,
complementing observation and

theory. However, it has yet to reach the maturity
of the experimental sciences in terms of reproduc-
ibility. Nowhere else in science can someone so
easily publish observations that claim to prove a
theory or illustrate a technique’s success without
giving a careful description of the methods used in
sufficient detail so that others can attempt to re-
peat the experiment. In most branches of science,
it’s not only expected that publications contain
such details, it’s also standard practice for other
labs to attempt to repeat important experiments
soon after they’re published. Although this might
not lead to significant new publications, it’s viewed
as a valuable piece of scholarship and a necessary
component of the scientific method.

Scientific and mathematical journals are filled
with pretty pictures of computational experi-
ments that the reader has no hope of repeating.
Even brilliant and well-intentioned computational
scientists often do a poor job of presenting their
work in a reproducible manner. They often define
their methods vaguely, but even if the methods
are carefully specified, the reader would have to
implement them from scratch to test them. Most
modern algorithms are so complicated that there’s

little hope of doing this properly. Many computer
codes have evolved over time to the point where
even the person running a program and publish-
ing the results knows little about some of the
choices made during the implementation. And
such poor records are typically kept of exactly
which version of the code or parameter values
were used that even a paper’s author can find it
impossible to reproduce the published results at a
later time. Regrettably, I speak from ample first-
hand experience here.

As Jonathan Buckheit and David Donoho
point out in their classic paper on reproducible
research (see www-stat.stanford.edu/~donoho/
Reports/1995/wavelab.pdf), the scientific method
and style of presenting experiments in publica-
tions that we currently take for granted in the
experimental sciences were uncommon before
the mid 1800s. Today, they’re a required aspect
of respectable research, and experimentalists are
expected to spend a fair amount of time keeping
careful lab books, fully documenting each ex-
periment, and writing their papers to include the

Reproducible research in computational science is only possible if scientists distribute the
computer codes they used to generate their published results or archive them in such a way
that other researchers can later examine them. The author describes some difficulties in
achieving this goal, along with a set of Python tools for facilitating reproducible research on
finite volume methods.

Randall J. LeVeque
University of Washington

Python Tools for Reproducible
Research on Hyperbolic Problems

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

20� Computing in Science & Engineering

details needed to repeat experiments. The com-
putational sciences might need a paradigm shift
of the same nature.

The idea of “reproducible research” in scientific
computing is to archive and make publicly avail-
able all the codes used to create a paper’s figures
or tables, preferably in such a manner that readers
can download the codes and run them to repro-
duce the results. As Buckheit and Donoho put it,
“An article about computational science in a sci-
entific publication is not the scholarship itself, it is
merely advertising of the scholarship. The actual
scholarship is the complete software development
environment and the complete set of instructions
which generated the figures.” They present this as
a distillation of the insights of Jon Claerbout, an
exploration geophysicist who has been a pioneer
in this direction since the early 1990s.1

The development of very high-level program-
ming languages has made it easier to share codes
and generate reproducible research. Historically,
many papers and textbooks contained pseudocode,
a high-level description of an algorithm intended
to clearly explain how it works but that won’t run
directly on a computer. Today, we can write many
algorithms in languages such as Matlab or Python
in a way that’s both easy for the reader to com-
prehend and is fully executable, with all details
intact.2 In this article, I survey a set of Python
tools for facilitating reproducible research on fi-
nite volume methods for hyperbolic conservation
laws using the Clawpack software.

Objections and Obstacles
A natural objection to making code freely avail-
able for reproduction is that it takes a lot of work
to clean it up to the point where someone else can
just use it, let alone read it. Although this is cer-
tainly true, it’s still well worth doing, not only in
the interest of good science but also for the selfish
reason of being able to figure out later what you
did and build on it further.

Those of us in academia should get in the habit
of teaching good programming, documentation,
and record-keeping practices to our students and
then demand it of them. We owe it to them to
teach a set of computational science skills that will
certainly become increasingly necessary in aca-
demic research environments and that are already
highly valued in industrial and government labs.
Learning this skill will also improve their chances
of building on their own work after they graduate
and of future students being able to use their con-
tributions rather than starting from scratch, as is
too often the case today.

Although ideally all published programs would
be nicely structured and easily readable with am-
ple comments, as a first step, it would help simply
to provide and archive the working code that pro-
duced the results described in a paper. Even this
takes more effort than you might think, though.
It’s important to begin expecting this as a natu-
ral part of the process so that researchers feel less
like they have to make a choice between finishing
off one project properly or going on to another
where they can more rapidly produce additional
publications. The current system strongly en-
courages the latter.

Requiring our students to do this might be a good
place to start, provided we recognize how much
time and effort it takes. Perhaps we should be more
willing to accept an elegant and well-documented
computer program as a substantial part of a the-
sis, for example. This isn’t unreasonable—a the-
sis in mathematics, like a research paper in this
field, typically contains long and detailed proofs of
theorems that are unreadable to all but a handful
of experts around the world. Many readers will be
interested in the results without working through
all the details, but the details should be provided.
It’s also expected that the student will spend con-
siderable time perfecting these details and writing
them up. Constructing a computer program isn’t
so different from constructing a formal proof.

A second objection to publishing computer code
is that a working program for solving a scientific
or engineering problem is a valuable piece of in-
tellectual property, and there’s no way to control
its use by others once it’s made publicly available.
Of course, if the research goal is to develop gen-
eral software, then it’s desirable to have as many
people using it as possible. However, for a scientist
or mathematician primarily interested in study-
ing some specific class of problems who developed
a computer program as a tool for that purpose,
there’s little incentive to give this tool away free to
other researchers. This is particularly true if the
program has taken years to develop and provides
a competitive edge that could potentially lead to
several additional publications in the future. By
making the program globally available once the
first publication appears, other researchers can po-
tentially skip years of work and start applying the
program to their own problems immediately. In
this sense, providing a program is fundamentally
different than carefully describing an experiment’s
materials and techniques; it’s more like inviting ev-
ery scientist in the world to come use your care-
fully constructed lab apparatus free of charge.

This argument has considerable merit in some

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

January/February 2009 � 21

situations, but several counterarguments are also
worth mentioning:

In many cases, the code’s development is sup-••
ported by federal grants, so taxpayers have made
the largest financial investment, not its authors.
Accordingly, federal grant agencies increasingly
demand that the work they support be made
openly available. In fact, the US National In-
stitutes of Health now require that papers con-
taining work they fund must be made available
via the National Library of Medicine’s PubMed
Central within 12 months of publication in a
scientific journal.3 Agencies that support code
development take a similar attitude—a recent
request for proposals from the US Department
of Energy states that “successful applicants …
must ensure that source code is fully and freely
available for use and modification throughout
the scientific computing community via a pre-
approved open source process” (www.er.doe.
gov/grants/FAPN06-04.html).
It’s notoriously difficult to take someone else’s ••
code and apply it to a slightly different problem,
even when they collaborate and willingly provide
hands-on assistance with the code’s development.
This is often true when the code’s author de-
scribes it as general software that’s easy to adapt
to new problems, and it’s particularly true if the
code is obscurely written with few comments
and the author isn’t willing to help out, as would
probably be the case of many research codes that
people feel the strongest attachment to.
My own experience in computational science is ••
that virtually every computational experiment
leads to more questions than answers. There’s
such a wealth of interesting phenomena that can
be explored computationally these days that any
worthwhile code can probably lead to more pub-
lications than its author can possibly produce.
If other researchers can take the code and ap-
ply it in some direction that wouldn’t otherwise
be pursued, this should be seen as a positive
development, both for science and the original
authors, provided, of course, that they get some
credit in the process. This is especially impor-
tant for computational mathematicians, whose
goals are often the development of a new algo-
rithm rather than the solution of specific scien-
tific problems. Even for those not interested in
software development per se, anything we can
do to make it easier for people to use the meth-
ods we invent will benefit our own careers.

Perhaps what’s needed is an expanded copyright

process for scientific codes, so that programs could
be made available for inspection and independent
execution to verify results but with the under-
standing that they can’t be modified and used
in new publications without the author’s express
permission for some period of years. This permis-
sion could be granted in return for coauthorship,
for example. In fact, such a system already works
quite well informally, and greater emphasis on re-
producible research would make it function even
better. It would be quite easy to determine when
someone violates this code of ethics if everyone
were expected to “publish” their code along with a
paper. If the code is an unauthorized modification
of someone else’s, it would be difficult to hide.

A third obstacle to making programs freely
available is that they’re based on commercial,
proprietary, or copyrighted software that can’t
be redistributed. This is certainly a limitation if
the proprietary code is an integral part of the pro-
gram, but in many cases it isn’t. Often the part
of the program that corresponds to the original
research being published is the authors’ work.
Making it available could help readers understand
the research even if they can’t run it, and those
who do have access to the proprietary code (such
as by purchasing the required packages) can also
run it. Certainly the large number of books and
papers that include Matlab codes are valuable in
spite of being written for a commercial platform
that many readers can’t afford.

Along the same lines, some codes only run on
special hardware, such as massively parallel su-
percomputers that many readers might not have
access to. But again, the ability to inspect the
code and determine what parameter or algorith-
mic choices the authors made is often much more
important than the ability to rerun the code and
recreate the results already published.

Clawpack Software: A Case Study
The remainder of this article presents a brief case
study to illustrate a set of tools that aid in the
presentation of reproducible research on wave
propagation algorithms for solving hyperbolic
partial differential equations (PDEs). The reader
need not be familiar with such problems to fol-
low this discussion.

Hyperbolic PDEs model a variety of wave prop-
agation and fluid flow problems, including acous-
tic and seismic waves, advective transport, shallow
water theory, and compressible gas dynamics, to
name just a few applications. In many cases, the
equations are nonlinear systems of conservation
laws whose solution contains shock waves or other

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

22� Computing in Science & Engineering

discontinuities in the solution that are particularly
difficult to capture with classical finite difference
methods. Much of my work over the past 15 years
has been devoted to trying to make it easier for my-
self, my students, and other researchers to perform
computational scholarship in the development of
numerical methods for hyperbolic PDEs and also
in a variety of other application areas in science and
engineering that use these methods. This work re-
sulted in the Clawpack software (www.clawpack.
org) and its extensions consisting of open source
Fortran code that has been freely available since
1994. More than 7,000 users have registered to
download this software since it first appeared and
have used it on a wide variety of problems.

The details of the algorithms implemented aren’t
important for our purposes here. The interested
reader can learn more about them in a textbook4
that was designed to be used in conjunction with
the software. Virtually all the figures in the book
are reproducible in the sense that you can down-
load the programs that generated them from a Web
page and easily execute them. Most figure captions
contain a link to the corresponding Web page with
the code, along with additional material not in the
book—for example, animations of the solution
evolving in time. The problem-specific code for
each example in the book is quite small and easy
to comprehend and modify. The reader is encour-
aged to experiment with the programs and observe
how changes in parameters or methods affect the
results. These programs, along with others avail-
able at www.clawpack.org, can also form the basis
for developing programs to solve similar problems.

Although Clawpack’s development was origi-
nally motivated by the desire to make a set of
existing methods more broadly accessible, the
software’s availability has also encouraged me to
pursue new algorithmic advances that I otherwise
might not have. I hope that it will also prove use-
ful to others as a programming environment for
developing and testing new algorithms, and for
comparing different methods on the same prob-
lems. Because the source code is available and the
basic Clawpack routines are reasonably simple
and well documented, it should be easy for users
to modify them and try out new ideas. I encourage
such use—I certainly use it this way myself.

Careful direct comparisons of different meth-
ods on the same test problems are too seldom
performed in the study of methods for hyperbolic
problems, as in many computational fields. One
reason for this is the difficulty of implementing
other peoples’ methods, so the typical paper con-
tains only those results obtained with the authors’

method. Sometimes (but not always), they test the
method on standard problems and compare the
results with others in the literature. Often the
reader must be content with comparisons in the
“eyeball norm” since many papers only contain
plots of the computed solution and no quantitative
results. Of course, many exceptions to this exist,
including papers devoted to careful comparisons
of different methods, but these are still a minority.
I hope that Clawpack might facilitate this process
more in the future and that other algorithms for
hyperbolic PDEs might be provided in a Claw-
pack-style implementation that encourages di-
rect use and comparison by others. One example
in this direction is the WENOCLAW software
developed primarily by David Ketcheson5 that
implements a class of higher-order methods.

Recently, my students and I have been devel-
oping a set of Python tools to facilitate the use of
Clawpack. We have several goals for new features:

A wider range of graphics and visualization options ••
for viewing results computed with this software.
Traditionally, users have relied on Matlab as the
primary visualization tool, since we provided
several Matlab scripts and functions as part of
Clawpack for visualizing results. Although Mat-
lab is familiar and convenient for many users,
this commercial package isn’t available to every-
one, and we wish to provide open source alter-
natives. Moreover, in three dimensions, Matlab
graphics aren’t as powerful as other available
packages, and in particular don’t provide voxel
graphics for volume rendering. We created
the plots presented in this article and at www.
clawpack.org/links/cise09 by using matplotlib
in Python, available in SciPy (http://scipy.org)
and sufficient for many 1D and 2D plotting pur-
poses (3D data requires other packages). We’re
currently developing Python interfaces between
Clawpack and other open source visualization
tools, in particular the VisIt software at Law-
rence Livermore Laboratory (www.llnl.gov/
visit/), which supports a wide variety of tools for
2D and 3D on adaptively refined grids.
Literate programming tools for documenting code ••
with mathematical expressions that are easy to read
and that link to other parts of the code, external
documentation, or Web pages with more informa-
tion. Donald Knuth6 coined the term literate
programming, which refers to programs that are
fully self-documented in a manner that’s human
readable. Literate programming techniques can
greatly assist in the development of reproduc-
ible research in computational science.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

January/February 2009 � 23

A Web-based interface to Clawpack.•• The goal is
both to facilitate its use by students learning
about hyperbolic problems (so they can eas-
ily experiment without having to work directly
with the Fortran code and data files) and to have
a Web portal so that these experiments didn’t
require downloading and installing the Claw-
pack software locally.
Templates for performing reproducible research•• .
Many of the same tools needed for the Web
portal (EagleClaw) are also useful in developing
scripts that run a series of tests and collecting
the results in a Web page or LaTex documents.

We wrote most of the Clawpack software in
Fortran 77. The code reads in a set of param-
eters from ASCII text files with names such as
claw2ez.data (which contains parameters that
define the computational domain, the number
of grid cells, the method to be used, and so on)
and setprob.data (which contains user-defined,
problem-specific parameters). Running the code
creates a set of output files with the solution at sev-
eral user-defined output times. These files (either
ASCII or hdf binary) are then read into a visual-
ization tool (Matlab or Python). In designing a
Python interface, we retained this basic structure
and developed tools that interact with the Fortran
code by modifying the data files, which have es-
sentially the same form as in previous versions of
Clawpack. This means that users can still work in
the classical manner if they desire and need not
use Python at all if they prefer to modify the data
files by hand. Previous applications will continue
to run unchanged.

To illustrate these tools and their use, let’s look
at the simplest possible hyperbolic equation in two
space dimensions: the advection equation model-

ing the transport of a tracer in a specified velocity
field. As a test problem, we consider “solid body
rotation,” in which the velocity field is

u(x; y) = –2πy,	 v(x; y) = 2πx,

corresponding to a counterclockwise rotation
about the origin with period 1. The initial data
we used is also at www.clawpack.org/links/cise09,
along with figures and animations of the numeri-
cal solution and all the source code used to gener-
ate these results.

We compare the behavior of the algorithms im-
plemented in Clawpack on three different types
of computational grids, as illustrated in Figure 1:
Cartesian grids with square grid cells (grid 1), po-
lar grids in an annulus (grid 2), and quadrilateral
grids (grid 3).7

For each grid type, we compute the solution
at four different grid resolutions to estimate the
method’s order of accuracy. We also compare
two different numerical methods. The first (with
Limiter = 0) is a variant of the Lax-Wendroff
method, which should be second-order accurate on
smooth solutions and smooth grids but is disper-
sive and often produces nonphysical oscillations
in the numerical solution. The second method
is one of the high-resolution limiter techniques
implemented in Clawpack (with Limiter = 3, a
particular choice known as the monotonized cen-
tered limiter4). This method is no longer formally
second-order accurate but often performs much
better in practice, particularly on problems with
discontinuous solutions such as the shock waves
that often arise in solving nonlinear hyperbolic
equations. Tables 1 through 3 display the results
from these 24 test cases (four resolutions on each
of three grid types, comparing two different nu-

(a) (b) (c)

Grid 1 Grid 2 Grid 3

Figure 1. Three types of grids used for the advection test. Here, we use (a) a Cartesian grid, (b) polar
coordinates, and (c) a nonstandard quadrilateral grid recently proposed7 as an alternative.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

24� Computing in Science & Engineering

merical methods in each case). We compute the
error at time t = 0.75 by comparing the numeri-

cal solution in each grid cell to the true solution
at the cell center. The sum of the absolute value
of all errors is scaled by the average cell area to
give a value that approximates the 1-norm of the
error. The value “Ave ∆x” listed in the tables is
the square root of the average cell area for the
grid. We also present the errors from all 24 tests
in a single log-log plot in Figure 2 to more easily
compare the accuracy of the methods on different
types of grids. A slope of 2 in the log-log plot cor-
responds to second-order accuracy.

We achieve roughly second-order accuracy on
all three grids with either choice of limiter. Errors
are smallest in polar coordinates, which isn’t sur-
prising because the grid is aligned with the flow,
and the advection equation reduces to 1D advec-
tion in the angular coordinate θ.

We also see that the error on grid 3 is only slightly
larger than on grid 1, the Cartesian grid, verifying
that we can indeed use these highly skewed quad-
rilateral grids with the algorithms implemented in
Clawpack. Finally, we observe that, on all three
grids, the use of the limiter improves the 1-norm
of the error by a factor of three or more.

Table 1. Errors on grid 1.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

30 30 0.0591 0.3263 nan 0.1490 nan

60 60 0.0295 0.1336 1.29 0.0404 1.88

120 120 0.0148 0.0389 1.78 0.0088 2.20

240 240 0.0074 0.0105 1.89 0.0020 2.14

Table 2. Errors on grid 2.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

10 75 0.0634 0.0917 nan 0.0408 nan

20 150 0.0317 0.0297 1.63 0.0112 1.86

40 300 0.0159 0.0084 1.82 0.0033 1.78

80 600 0.0079 0.0023 1.89 0.0008 1.97

Table 3. Errors on grid 3.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

30 30 0.0591 0.3843 nan 0.1610 nan

60 60 0.0295 0.1567 1.29 0.0492 1.71

120 120 0.0148 0.0456 1.78 0.0123 1.99

240 240 0.0074 0.0123 1.89 0.0034 1.86

Log-log plot of errors

Ave ∆x

1-
no

rm
 o

f e
rr

or

100

10–1

10–1

10–2

10–2

10–3

10–4

Grid 3, Limiter 0
Grid 1, Limiter 0
Grid 3, Limiter 3
Grid 1, Limiter 3
Grid 2, Limiter 0
Grid 2, Limiter 3

Figure 2. Log-log plot of the errors from 24 test cases. We can run
these cases automatically with a single Python script to test the
accuracy of the different methods and grid choices by determining the
error and observed order of accuracy (presented in Tables 1 through 3)
as the grid resolution is varied.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

January/February 2009 � 25

Python Tools
The Clawpack code is easily set up to run this
problem for any one of the test cases described
earlier by setting the data parameters appro-
priately. We could run the 24 tests by hand and
collect the results, but with the newly developed
Python tools for Clawpack, it’s much easier to au-
tomate this entire process in a way that can be
archived and duplicated at a later time.

Figure 3 shows a simplified version of the Python
script to run the numerical tests; it runs 16 tests
using only grids of type 1 and 3. The polar grids
require a different domain in the computational
r and θ coordinates and the specification of peri-
odic boundary conditions in one direction. These
modifications are easily accomplished by setting
some of the parameters differently; the clawtest.
py module at www.clawpack.org/links/cise09 pro-
vides full details.

The script in Figure 3 uses several functions
from the clawtools and clawtest modules
that we don’t display here but that appear at the
URL listed earlier. The ClawData class stores
parameter values that are then written into the
data files for use in the Fortran code. For example,
the file setprob.data contains a line

1 =: igrid # which type grid to use

and the Python commands

data = clawtools.ClawData()

data.igrid = 2

data.write(‘setprob.data’)

will replace the value 1 in this data file with
2. All other lines of the data file are unaltered.
The only change made to the data files from
previous versions of Clawpack is the introduc-
tion of the assignment operator =: in the por-
tion of each line that the Fortran code ignores
(typically, it only reads a single number from
each line).

T he example I just gave illustrates a
modest attempt at providing tools to
ease the task of doing reproducible
research in the development of nu-

merical methods for hyperbolic problems. Use of
these tools requires little overhead or infrastruc-
ture beyond the classical use of Clawpack. Python
is ideally suited to this purpose and is available on
virtually every operating system. The tools could
easily be adapted to other contexts, for use with

any code that reads parameters from a text file to
set up a particular run.

The use of these tools makes it much easier to
archive the environment used to generate a series
of tests. Rather than requiring the retention of 24
sets of data files, one for each test case, a single
Python script clearly shows the parameter choices
used for each test case and allows them all to be
easily recreated later if needed.

Of course, researchers must also archive the
computer code used to perform their tests. If the
code changes in the future, having the data sets
preserved will be insufficient to reproduce the
tests. For ongoing research projects, versioning
software such as Subversion (http://subversion.
tigris.org) can easily preserve the code’s state at any
point in time without the need to save full copies
of the entire code. By saving the revision number
of the code, it’s possible to recreate any past state.
The use of versioning software should be manda-
tory among computational scientists at this point.
It’s easy to use and extremely beneficial, even for
a single individual developing programs and writ-
ing papers based on the results, and invaluable for
any kind of collaborative work.

There’s an additional difficulty with attempt-
ing to perform reproducible research that I haven’t
yet addressed—namely, the fact that even if the
code and the data are preserved, the computer,
operating system, or computer language could
change in ways that render the code unusable or
unable to reproduce previous results. As an ex-
ample particularly relevant to the tools described
here, the Python language is undergoing revision,
and Python 3.X won’t be backward compatible
with the Python 2.5 used for the tools recently de-
veloped. Hence, in addition to archiving the tools,
researchers should really archive the current state
of the language as well, or at least assume this is
being done somewhere (as is the case for Python).
Archiving the computer operating system and the
computer itself is, of course, more difficult.

Looking further down the road, there’s great
uncertainty about the durability of digital archives
of any sort. Although books and papyrus can last
millennia, we often find it’s impossible to read data
or computer codes from even a few years ago. This
is obviously a concern that many professionals are
working hard to address, but in the mean time, it’s not
an excuse to avoid attempting to achieve some level
of reproducibility with the available technology.

The Web page I created for this article (www.
clawpack.org/links/cise09) also provides a glimpse
of the manner in which Python tools can be de-
veloped to advance the goals of literate program-

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

26� Computing in Science & Engineering

ming. The hope is to illuminate the algorithms
that produced the published results within the
computer code’s documentation. When docu-
menting mathematical programs, for example,

it’s convenient to be able to include mathemati-
cal descriptions in the code’s comments, written
in LaTex and readable (as typeset mathematics)
along with the code.

import clawtools
from clawtest import *

special data structure for Clawpack parameters:
data = clawtools.ClawData()
data.tfinal = 0.75 # final time
data.nout = 1 # output solution only at final time

List parameters for tests to be performed:
grids = [1,3] # set of grids to test
limiters = [0,3] # set of limiters (mthlim values) to test
mxvals = array([30,60,120]) # mx values
myvals = array([30,60,120]) # my values
area = pi # area of circle, for L1 norm

table = {} # dictionary of data and results for each test

for mthlim in limiters:
 data.mthlim = mthlim
 for igrid in grids:
 # Write the value igrid into data file setprob.data:
 data.igrid = igrid;
 data.write(‘setprob.data’)
 # create a dictionary to hold the data and results for this test:
 table[(mthlim,igrid)] = {}

 this_table = table[(mthlim,igrid)] # short name
 this_table[‘mxvals’] = mxvals # grid resolutions to test
 this_table[‘myvals’] = myvals
 this_table[‘ave_cell_area’] = area / (mxvals*myvals)
 this_table[‘errors’] = empty(len(mxvals)) # filled with results below

 for itest in range(len(mxvals)):
 data.mx = mxvals[itest]; mx = data.mx # short form
 data.my = myvals[itest]; my = data.my # short form
 data.write(‘claw2ez.data’) # write mx,my,tfinal,nout

 # run Fortran code:
 clawtools.runclaw()

 # compute errors:
 errors = compute_errors(frame=data.nout)
 # approx 1-norm of error:
 errorsum = abs(errors).sum()
 error1 = errorsum * this_table[‘ave_cell_area’][itest]
 this_table[‘errors’][itest] = error1

Create Tables 1--3 and Figure 2 of this paper:
make_latex_table(table, limiters, grids, fname=‘errortables.tex’)
make_error_plots(table, limiters, grids, fname=‘errors.png’)

Figure 3. The Python script clawtestsubset.py for running 16 test problems. The full module clawtest.py for all 24 test
cases, which also includes other functions, appears at www.clawpack.org/links/cise09.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

January/February 2009 � 27

We recently developed a general Python script
(mathcode2html.py) to convert source code in
many languages (and data files) into HTML docu-
ments, with any comment statements delimited by
begin_html and end_html treated as HTML code.
When used in conjunction with jsMath (www.math.
union.edu/~dpvc/jsMath/), this lets the author in-
clude simple LaTex equations in the comments that
will be properly typeset in the resulting HTML
version of the code. Some wiki-like formatting tools
allow links to be included in the computer code in
a manner that’s fairly readable in the raw code and
yet easily converted into the appropriate links in the
HTML version. We’ve included a more specialized
version of this script, clawcode2html.py, with
the latest Clawpack bundle for documenting and
cross referencing the code and examples.

Literate programming and reproducible re-
search in computational science often go hand in
hand, and people have developed other approaches
and systems for implementing some combination of
these goals. A few notable projects are the CWEB
system (www-cs-faculty.stanford.edu/~knuth/cweb.
html), Noweb (www.eecs.harvard.edu/nr/noweb/),
Sweave,8 AMRITA (www.amrita-cfd.org), and
Madagascar (www.rsf.sourceforge.net/Main_Page).
Nelson Beebe9 provides a bibliography of papers
on literate programming, and a Web search on re-
producible research produces many other projects
and papers on this topic.

The tools described in this article have one
advantage, I believe, over the more ambitious ap-
proaches described in some of the works just cited:
our tools require relatively little infrastructure
and can be added on to existing projects incre-
mentally rather than requiring a fresh start and
commitment to a particular large-scale software
framework. Although all programs would ideally
be designed from the beginning in a literate and
reproducible manner, this isn’t likely to happen
soon, and legacy codes from decades ago will be
with us for some time to come. However, appro-
priate tools can greatly enhance these older codes,
as I’ve attempted to illustrate with Clawpack.
In my own work, I plan to use these tools in the
future to facilitate writing papers in a more re-
producible manner, with the specific version of
the code used recorded via a Subversion revision
number, the data files and Python scripts used to
run the tests archived on a Web page, and new al-
gorithmic features encapsulated in programs with
human-readable documentation.

These tools have already gone through
several iterations and major rewrites (see www.
clawpack.org/links/cise09 for pointers to more

recent versions of these tools), but I believe the
efforts we’re now investing in this will pay off
handsomely in the future. With luck, the result-
ing tools will be easy enough to use on a daily
basis that our future research will quite naturally
be reproducible with little extra effort. I hope
that some of these tools, with minor modifica-
tions, will also prove useful for research in other
branches of computational science.�

Acknowledgments
The introductory part of this article is based on an
invited talk and paper that appeared in the Proceed-
ings of the International Conference of Math-
ematicians (www.amath.washington.edu/~rjl/pubs/
icm06); numerous people provided valuable feedback
during the preparation of that paper and in response
to it. I also thank the editor and anonymous review-
ers, who further helped improve this work. Thanks
are due also to Kyle Mandli for assistance in devel-
oping the Python and Web portal tools used with
Clawpack. This work was supported in part by US
National Science Foundation grant DMS-0609661.

References
M. Schwab, N. Karrenbach, and J. Claerbout, “Making 1.	
Scientific Computations Reproducible,” Computing in Science
& Eng., vol. 2, no. 6, 2000, pp. 61–67.

L.N. Trefethen, 2.	 Spectral Methods in Matlab, SIAM, 2000.

“Revised Policy on Enhancing Public Access to Archived 3.	
Publications Resulting from NIH-Funded Research,” Nat’l In-
stitutes of Health, 2008; www.grants.nih.gov/grants/guide/
notice-files/NOT-OD-08-033.html.

R.J. LeVeque, 4.	 Finite Volume Methods for Hyperbolic Problems,
Cambridge University Press, 2002.

D.I. Ketcheson and R.J. LeVeque, “WENOCLAW: A Higher 5.	
Order Wave Propagation Method. In Hyperbolic Problems:
Theory, Numerics, Applications,” Proc. 11th Intl. Conf.
Hyperbolic Problems, S. Benzoni-Gavage and D. Serre, eds.,
Springer, 2006, pp. 609–616.

D.E. Knuth, “Literate Programming,” 6.	 The Computer J., vol.
27, no. 97, 1984, p. 111.

D.A. Calhoun, C. Helzel, and R.J. LeVeque, “Logically Rect-7.	
angular Finite Volume Grids and Methods for ‘Circular’ and
‘Spherical’ Domains,” SIAM Rev., vol. 50, 2008, pp. 723–752.

F. Leisch, “Sweave: Dynamic Generation of Statistical Re-8.	
ports Using Literate Data Analysis,” W. Härdle and B. Rönz,
eds., Compstat 2002—Proc. Computational Statistics, Physica
Verlag, 2002, pp. 575–580.

N.H.F. Beebe, “A Bibliography of Literate Programming,” 9.	
2002; www.literateprogramming.com/litprog-bib.pdf.

Randall J. LeVeque is a professor of applied math-
ematics at the University of Washington. His research
interests include numerical analysis, nonlinear dif-
ferential equations, and applications in geo-, bio-,
and astrophysics. LeVeque has a PhD in computer
science from Stanford University. Contact him at rjl@
washington.edu.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

