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W ithin the world of science, com-
putation is now rightly seen as 
the third vertex of a triangle, 
complementing observation and 

theory. However, it has yet to reach the maturity 
of the experimental sciences in terms of reproduc-
ibility. Nowhere else in science can someone so 
easily publish observations that claim to prove a 
theory or illustrate a technique’s success without 
giving a careful description of the methods used in 
sufficient detail so that others can attempt to re-
peat the experiment. In most branches of science, 
it’s not only expected that publications contain 
such details, it’s also standard practice for other 
labs to attempt to repeat important experiments 
soon after they’re published. Although this might 
not lead to significant new publications, it’s viewed 
as a valuable piece of scholarship and a necessary 
component of the scientific method.

Scientific and mathematical journals are filled 
with pretty pictures of computational experi-
ments that the reader has no hope of repeating. 
Even brilliant and well-intentioned computational 
scientists often do a poor job of presenting their 
work in a reproducible manner. They often define 
their methods vaguely, but even if the methods 
are carefully specified, the reader would have to 
implement them from scratch to test them. Most 
modern algorithms are so complicated that there’s 

little hope of doing this properly. Many computer 
codes have evolved over time to the point where 
even the person running a program and publish-
ing the results knows little about some of the 
choices made during the implementation. And 
such poor records are typically kept of exactly 
which version of the code or parameter values 
were used that even a paper’s author can find it 
impossible to reproduce the published results at a 
later time. Regrettably, I speak from ample first-
hand experience here.

As Jonathan Buckheit and David Donoho 
point out in their classic paper on reproducible 
research (see www-stat.stanford.edu/~donoho/
Reports/1995/wavelab.pdf), the scientific method 
and style of presenting experiments in publica-
tions that we currently take for granted in the 
experimental sciences were uncommon before 
the mid 1800s. Today, they’re a required aspect 
of respectable research, and experimentalists are 
expected to spend a fair amount of time keeping 
careful lab books, fully documenting each ex-
periment, and writing their papers to include the 
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details needed to repeat experiments. The com-
putational sciences might need a paradigm shift 
of the same nature.

The idea of “reproducible research” in scientific 
computing is to archive and make publicly avail-
able all the codes used to create a paper’s figures 
or tables, preferably in such a manner that readers 
can download the codes and run them to repro-
duce the results. As Buckheit and Donoho put it, 
“An article about computational science in a sci-
entific publication is not the scholarship itself, it is 
merely advertising of the scholarship. The actual 
scholarship is the complete software development 
environment and the complete set of instructions 
which generated the figures.” They present this as 
a distillation of the insights of Jon Claerbout, an 
exploration geophysicist who has been a pioneer 
in this direction since the early 1990s.1

The development of very high-level program-
ming languages has made it easier to share codes 
and generate reproducible research. Historically, 
many papers and textbooks contained pseudocode, 
a high-level description of an algorithm intended 
to clearly explain how it works but that won’t run 
directly on a computer. Today, we can write many 
algorithms in languages such as Matlab or Python 
in a way that’s both easy for the reader to com-
prehend and is fully executable, with all details 
intact.2 In this article, I survey a set of Python 
tools for facilitating reproducible research on fi-
nite volume methods for hyperbolic conservation 
laws using the Clawpack software.

Objections and Obstacles
A natural objection to making code freely avail-
able for reproduction is that it takes a lot of work 
to clean it up to the point where someone else can 
just use it, let alone read it. Although this is cer-
tainly true, it’s still well worth doing, not only in 
the interest of good science but also for the selfish 
reason of being able to figure out later what you 
did and build on it further.

Those of us in academia should get in the habit 
of teaching good programming, documentation, 
and record-keeping practices to our students and 
then demand it of them. We owe it to them to 
teach a set of computational science skills that will 
certainly become increasingly necessary in aca-
demic research environments and that are already 
highly valued in industrial and government labs. 
Learning this skill will also improve their chances 
of building on their own work after they graduate 
and of future students being able to use their con-
tributions rather than starting from scratch, as is 
too often the case today.

Although ideally all published programs would 
be nicely structured and easily readable with am-
ple comments, as a first step, it would help simply 
to provide and archive the working code that pro-
duced the results described in a paper. Even this 
takes more effort than you might think, though. 
It’s important to begin expecting this as a natu-
ral part of the process so that researchers feel less 
like they have to make a choice between finishing 
off one project properly or going on to another 
where they can more rapidly produce additional 
publications. The current system strongly en-
courages the latter.

Requiring our students to do this might be a good 
place to start, provided we recognize how much 
time and effort it takes. Perhaps we should be more 
willing to accept an elegant and well-documented 
computer program as a substantial part of a the-
sis, for example. This isn’t unreasonable—a the-
sis in mathematics, like a research paper in this 
field, typically contains long and detailed proofs of 
theorems that are unreadable to all but a handful 
of experts around the world. Many readers will be 
interested in the results without working through 
all the details, but the details should be provided. 
It’s also expected that the student will spend con-
siderable time perfecting these details and writing 
them up. Constructing a computer program isn’t 
so different from constructing a formal proof. 

A second objection to publishing computer code 
is that a working program for solving a scientific 
or engineering problem is a valuable piece of in-
tellectual property, and there’s no way to control 
its use by others once it’s made publicly available. 
Of course, if the research goal is to develop gen-
eral software, then it’s desirable to have as many 
people using it as possible. However, for a scientist 
or mathematician primarily interested in study-
ing some specific class of problems who developed 
a computer program as a tool for that purpose, 
there’s little incentive to give this tool away free to 
other researchers. This is particularly true if the 
program has taken years to develop and provides 
a competitive edge that could potentially lead to 
several additional publications in the future. By 
making the program globally available once the 
first publication appears, other researchers can po-
tentially skip years of work and start applying the 
program to their own problems immediately. In 
this sense, providing a program is fundamentally 
different than carefully describing an experiment’s 
materials and techniques; it’s more like inviting ev-
ery scientist in the world to come use your care-
fully constructed lab apparatus free of charge.

This argument has considerable merit in some 
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situations, but several counterarguments are also 
worth mentioning:

In many cases, the code’s development is sup-••
ported by federal grants, so taxpayers have made 
the largest financial investment, not its authors. 
Accordingly, federal grant agencies increasingly 
demand that the work they support be made 
openly available. In fact, the US National In-
stitutes of Health now require that papers con-
taining work they fund must be made available 
via the National Library of Medicine’s PubMed 
Central within 12 months of publication in a 
scientific journal.3 Agencies that support code 
development take a similar attitude—a recent 
request for proposals from the US Department 
of Energy states that “successful applicants … 
must ensure that source code is fully and freely 
available for use and modification throughout 
the scientific computing community via a pre-
approved open source process” (www.er.doe.
gov/grants/FAPN06-04.html).
It’s notoriously difficult to take someone else’s ••
code and apply it to a slightly different problem, 
even when they collaborate and willingly provide 
hands-on assistance with the code’s development. 
This is often true when the code’s author de-
scribes it as general software that’s easy to adapt 
to new problems, and it’s particularly true if the 
code is obscurely written with few comments 
and the author isn’t willing to help out, as would 
probably be the case of many research codes that 
people feel the strongest attachment to.
My own experience in computational science is ••
that virtually every computational experiment 
leads to more questions than answers. There’s 
such a wealth of interesting phenomena that can 
be explored computationally these days that any 
worthwhile code can probably lead to more pub-
lications than its author can possibly produce. 
If other researchers can take the code and ap-
ply it in some direction that wouldn’t otherwise 
be pursued, this should be seen as a positive 
development, both for science and the original 
authors, provided, of course, that they get some 
credit in the process. This is especially impor-
tant for computational mathematicians, whose 
goals are often the development of a new algo-
rithm rather than the solution of specific scien-
tific problems. Even for those not interested in 
software development per se, anything we can 
do to make it easier for people to use the meth-
ods we invent will benefit our own careers.

Perhaps what’s needed is an expanded copyright 

process for scientific codes, so that programs could 
be made available for inspection and independent 
execution to verify results but with the under-
standing that they can’t be modified and used 
in new publications without the author’s express 
permission for some period of years. This permis-
sion could be granted in return for coauthorship, 
for example. In fact, such a system already works 
quite well informally, and greater emphasis on re-
producible research would make it function even 
better. It would be quite easy to determine when 
someone violates this code of ethics if everyone 
were expected to “publish” their code along with a 
paper. If the code is an unauthorized modification 
of someone else’s, it would be difficult to hide.

A third obstacle to making programs freely 
available is that they’re based on commercial, 
proprietary, or copyrighted software that can’t 
be redistributed. This is certainly a limitation if 
the proprietary code is an integral part of the pro-
gram, but in many cases it isn’t. Often the part 
of the program that corresponds to the original 
research being published is the authors’ work. 
Making it available could help readers understand 
the research even if they can’t run it, and those 
who do have access to the proprietary code (such 
as by purchasing the required packages) can also 
run it. Certainly the large number of books and 
papers that include Matlab codes are valuable in 
spite of being written for a commercial platform 
that many readers can’t afford.

Along the same lines, some codes only run on 
special hardware, such as massively parallel su-
percomputers that many readers might not have 
access to. But again, the ability to inspect the 
code and determine what parameter or algorith-
mic choices the authors made is often much more 
important than the ability to rerun the code and 
recreate the results already published.

Clawpack Software: A Case Study
The remainder of this article presents a brief case 
study to illustrate a set of tools that aid in the 
presentation of reproducible research on wave 
propagation algorithms for solving hyperbolic 
partial differential equations (PDEs). The reader 
need not be familiar with such problems to fol-
low this discussion.

Hyperbolic PDEs model a variety of wave prop-
agation and fluid flow problems, including acous-
tic and seismic waves, advective transport, shallow 
water theory, and compressible gas dynamics, to 
name just a few applications. In many cases, the 
equations are nonlinear systems of conservation 
laws whose solution contains shock waves or other 
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discontinuities in the solution that are particularly 
difficult to capture with classical finite difference 
methods. Much of my work over the past 15 years 
has been devoted to trying to make it easier for my-
self, my students, and other researchers to perform 
computational scholarship in the development of 
numerical methods for hyperbolic PDEs and also 
in a variety of other application areas in science and 
engineering that use these methods. This work re-
sulted in the Clawpack software (www.clawpack.
org) and its extensions consisting of open source 
Fortran code that has been freely available since 
1994. More than 7,000 users have registered to 
download this software since it first appeared and 
have used it on a wide variety of problems.

The details of the algorithms implemented aren’t 
important for our purposes here. The interested 
reader can learn more about them in a textbook4 
that was designed to be used in conjunction with 
the software. Virtually all the figures in the book 
are reproducible in the sense that you can down-
load the programs that generated them from a Web 
page and easily execute them. Most figure captions 
contain a link to the corresponding Web page with 
the code, along with additional material not in the 
book—for example, animations of the solution 
evolving in time. The problem-specific code for 
each example in the book is quite small and easy 
to comprehend and modify. The reader is encour-
aged to experiment with the programs and observe 
how changes in parameters or methods affect the 
results. These programs, along with others avail-
able at www.clawpack.org, can also form the basis 
for developing programs to solve similar problems.

Although Clawpack’s development was origi-
nally motivated by the desire to make a set of 
existing methods more broadly accessible, the 
software’s availability has also encouraged me to 
pursue new algorithmic advances that I otherwise 
might not have. I hope that it will also prove use-
ful to others as a programming environment for 
developing and testing new algorithms, and for 
comparing different methods on the same prob-
lems. Because the source code is available and the 
basic Clawpack routines are reasonably simple 
and well documented, it should be easy for users 
to modify them and try out new ideas. I encourage 
such use—I certainly use it this way myself.

Careful direct comparisons of different meth-
ods on the same test problems are too seldom 
performed in the study of methods for hyperbolic 
problems, as in many computational fields. One 
reason for this is the difficulty of implementing 
other peoples’ methods, so the typical paper con-
tains only those results obtained with the authors’ 

method. Sometimes (but not always), they test the 
method on standard problems and compare the 
results with others in the literature. Often the 
reader must be content with comparisons in the 
“eyeball norm” since many papers only contain 
plots of the computed solution and no quantitative 
results. Of course, many exceptions to this exist, 
including papers devoted to careful comparisons 
of different methods, but these are still a minority. 
I hope that Clawpack might facilitate this process 
more in the future and that other algorithms for 
hyperbolic PDEs might be provided in a Claw-
pack-style implementation that encourages di-
rect use and comparison by others. One example 
in this direction is the WENOCLAW software 
developed primarily by David Ketcheson5 that 
implements a class of higher-order methods.

Recently, my students and I have been devel-
oping a set of Python tools to facilitate the use of 
Clawpack. We have several goals for new features:

A wider range of graphics and visualization options ••
for viewing results computed with this software. 
Traditionally, users have relied on Matlab as the 
primary visualization tool, since we provided 
several Matlab scripts and functions as part of 
Clawpack for visualizing results. Although Mat-
lab is familiar and convenient for many users, 
this commercial package isn’t available to every-
one, and we wish to provide open source alter-
natives. Moreover, in three dimensions, Matlab 
graphics aren’t as powerful as other available 
packages, and in particular don’t provide voxel 
graphics for volume rendering. We created 
the plots presented in this article and at www.
clawpack.org/links/cise09 by using matplotlib 
in Python, available in SciPy (http://scipy.org) 
and sufficient for many 1D and 2D plotting pur-
poses (3D data requires other packages). We’re 
currently developing Python interfaces between 
Clawpack and other open source visualization 
tools, in particular the VisIt software at Law-
rence Livermore Laboratory (www.llnl.gov/
visit/), which supports a wide variety of tools for 
2D and 3D on adaptively refined grids.
Literate programming tools for documenting code ••
with mathematical expressions that are easy to read 
and that link to other parts of the code, external 
documentation, or Web pages with more informa-
tion. Donald Knuth6 coined the term literate 
programming, which refers to programs that are 
fully self-documented in a manner that’s human 
readable. Literate programming techniques can 
greatly assist in the development of reproduc-
ible research in computational science.
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A Web-based interface to Clawpack.••  The goal is 
both to facilitate its use by students learning 
about hyperbolic problems (so they can eas-
ily experiment without having to work directly 
with the Fortran code and data files) and to have 
a Web portal so that these experiments didn’t 
require downloading and installing the Claw-
pack software locally.
Templates for performing reproducible research•• . 
Many of the same tools needed for the Web 
portal (EagleClaw) are also useful in developing 
scripts that run a series of tests and collecting 
the results in a Web page or LaTex documents.

We wrote most of the Clawpack software in 
Fortran 77. The code reads in a set of param-
eters from ASCII text files with names such as  
claw2ez.data (which contains parameters that 
define the computational domain, the number 
of grid cells, the method to be used, and so on) 
and setprob.data (which contains user-defined, 
problem-specific parameters). Running the code 
creates a set of output files with the solution at sev-
eral user-defined output times. These files (either 
ASCII or hdf binary) are then read into a visual-
ization tool (Matlab or Python). In designing a 
Python interface, we retained this basic structure 
and developed tools that interact with the Fortran 
code by modifying the data files, which have es-
sentially the same form as in previous versions of 
Clawpack. This means that users can still work in 
the classical manner if they desire and need not 
use Python at all if they prefer to modify the data 
files by hand. Previous applications will continue 
to run unchanged.

To illustrate these tools and their use, let’s look 
at the simplest possible hyperbolic equation in two 
space dimensions: the advection equation model-

ing the transport of a tracer in a specified velocity 
field. As a test problem, we consider “solid body 
rotation,” in which the velocity field is

u(x; y) = –2πy,	 v(x; y) = 2πx, 

corresponding to a counterclockwise rotation 
about the origin with period 1. The initial data 
we used is also at www.clawpack.org/links/cise09, 
along with figures and animations of the numeri-
cal solution and all the source code used to gener-
ate these results.

We compare the behavior of the algorithms im-
plemented in Clawpack on three different types 
of computational grids, as illustrated in Figure 1: 
Cartesian grids with square grid cells (grid 1), po-
lar grids in an annulus (grid 2), and quadrilateral 
grids (grid 3).7

For each grid type, we compute the solution 
at four different grid resolutions to estimate the 
method’s order of accuracy. We also compare 
two different numerical methods. The first (with 
Limiter = 0) is a variant of the Lax-Wendroff 
method, which should be second-order accurate on 
smooth solutions and smooth grids but is disper-
sive and often produces nonphysical oscillations 
in the numerical solution. The second method 
is one of the high-resolution limiter techniques 
implemented in Clawpack (with Limiter = 3, a 
particular choice known as the monotonized cen-
tered limiter4). This method is no longer formally 
second-order accurate but often performs much 
better in practice, particularly on problems with 
discontinuous solutions such as the shock waves 
that often arise in solving nonlinear hyperbolic 
equations. Tables 1 through 3 display the results 
from these 24 test cases (four resolutions on each 
of three grid types, comparing two different nu-

(a) (b) (c)

Grid 1 Grid 2 Grid 3

Figure 1. Three types of grids used for the advection test. Here, we use (a) a Cartesian grid, (b) polar 
coordinates, and (c) a nonstandard quadrilateral grid recently proposed7 as an alternative.
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merical methods in each case). We compute the 
error at time t = 0.75 by comparing the numeri-

cal solution in each grid cell to the true solution 
at the cell center. The sum of the absolute value 
of all errors is scaled by the average cell area to 
give a value that approximates the 1-norm of the 
error. The value “Ave ∆x” listed in the tables is 
the square root of the average cell area for the 
grid. We also present the errors from all 24 tests 
in a single log-log plot in Figure 2 to more easily 
compare the accuracy of the methods on different 
types of grids. A slope of 2 in the log-log plot cor-
responds to second-order accuracy.

We achieve roughly second-order accuracy on 
all three grids with either choice of limiter. Errors 
are smallest in polar coordinates, which isn’t sur-
prising because the grid is aligned with the flow, 
and the advection equation reduces to 1D advec-
tion in the angular coordinate θ.

We also see that the error on grid 3 is only slightly 
larger than on grid 1, the Cartesian grid, verifying 
that we can indeed use these highly skewed quad-
rilateral grids with the algorithms implemented in 
Clawpack. Finally, we observe that, on all three 
grids, the use of the limiter improves the 1-norm 
of the error by a factor of three or more.

Table 1. Errors on grid 1.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

30 30 0.0591 0.3263 nan 0.1490 nan

60 60 0.0295 0.1336 1.29 0.0404 1.88

120 120 0.0148 0.0389 1.78 0.0088 2.20

240 240 0.0074 0.0105 1.89 0.0020 2.14

Table 2. Errors on grid 2.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

10 75 0.0634 0.0917 nan 0.0408 nan

20 150 0.0317 0.0297 1.63 0.0112 1.86

40 300 0.0159 0.0084 1.82 0.0033 1.78

80 600 0.0079 0.0023 1.89 0.0008 1.97

Table 3. Errors on grid 3.

Limiter = 0 Limiter = 3

mx my Ave ∆x Error Observed order Error Observed order

30 30 0.0591 0.3843 nan 0.1610 nan

60 60 0.0295 0.1567 1.29 0.0492 1.71

120 120 0.0148 0.0456 1.78 0.0123 1.99

240 240 0.0074 0.0123 1.89 0.0034 1.86

Log-log plot of errors
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Figure 2. Log-log plot of the errors from 24 test cases. We can run 
these cases automatically with a single Python script to test the 
accuracy of the different methods and grid choices by determining the 
error and observed order of accuracy (presented in Tables 1 through 3) 
as the grid resolution is varied.
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Python Tools
The Clawpack code is easily set up to run this 
problem for any one of the test cases described 
earlier by setting the data parameters appro-
priately. We could run the 24 tests by hand and 
collect the results, but with the newly developed 
Python tools for Clawpack, it’s much easier to au-
tomate this entire process in a way that can be 
archived and duplicated at a later time.

Figure 3 shows a simplified version of the Python 
script to run the numerical tests; it runs 16 tests 
using only grids of type 1 and 3. The polar grids 
require a different domain in the computational 
r and θ coordinates and the specification of peri-
odic boundary conditions in one direction. These 
modifications are easily accomplished by setting 
some of the parameters differently; the clawtest.
py module at www.clawpack.org/links/cise09 pro-
vides full details.

The script in Figure 3 uses several functions 
from the clawtools and clawtest modules 
that we don’t display here but that appear at the 
URL listed earlier. The ClawData class stores 
parameter values that are then written into the 
data files for use in the Fortran code. For example, 
the file setprob.data contains a line

1 =: igrid # which type grid to use

and the Python commands

data = clawtools.ClawData()

data.igrid = 2

data.write(‘setprob.data’)

will replace the value 1 in this data file with 
2. All other lines of the data file are unaltered. 
The only change made to the data files from 
previous versions of Clawpack is the introduc-
tion of the assignment operator =: in the por-
tion of each line that the Fortran code ignores 
(typically, it only reads a single number from 
each line).

T he example I just gave illustrates a 
modest attempt at providing tools to 
ease the task of doing reproducible 
research in the development of nu-

merical methods for hyperbolic problems. Use of 
these tools requires little overhead or infrastruc-
ture beyond the classical use of Clawpack. Python 
is ideally suited to this purpose and is available on 
virtually every operating system. The tools could 
easily be adapted to other contexts, for use with 

any code that reads parameters from a text file to 
set up a particular run.

The use of these tools makes it much easier to 
archive the environment used to generate a series 
of tests. Rather than requiring the retention of 24 
sets of data files, one for each test case, a single 
Python script clearly shows the parameter choices 
used for each test case and allows them all to be 
easily recreated later if needed.

Of course, researchers must also archive the 
computer code used to perform their tests. If the 
code changes in the future, having the data sets 
preserved will be insufficient to reproduce the 
tests. For ongoing research projects, versioning 
software such as Subversion (http://subversion. 
tigris.org) can easily preserve the code’s state at any 
point in time without the need to save full copies 
of the entire code. By saving the revision number 
of the code, it’s possible to recreate any past state. 
The use of versioning software should be manda-
tory among computational scientists at this point. 
It’s easy to use and extremely beneficial, even for 
a single individual developing programs and writ-
ing papers based on the results, and invaluable for 
any kind of collaborative work.

There’s an additional difficulty with attempt-
ing to perform reproducible research that I haven’t 
yet addressed—namely, the fact that even if the 
code and the data are preserved, the computer, 
operating system, or computer language could 
change in ways that render the code unusable or 
unable to reproduce previous results. As an ex-
ample particularly relevant to the tools described 
here, the Python language is undergoing revision, 
and Python 3.X won’t be backward compatible 
with the Python 2.5 used for the tools recently de-
veloped. Hence, in addition to archiving the tools, 
researchers should really archive the current state 
of the language as well, or at least assume this is 
being done somewhere (as is the case for Python). 
Archiving the computer operating system and the 
computer itself is, of course, more difficult.

Looking further down the road, there’s great 
uncertainty about the durability of digital archives 
of any sort. Although books and papyrus can last 
millennia, we often find it’s impossible to read data 
or computer codes from even a few years ago. This 
is obviously a concern that many professionals are 
working hard to address, but in the mean time, it’s not 
an excuse to avoid attempting to achieve some level 
of reproducibility with the available technology.

The Web page I created for this article (www.
clawpack.org/links/cise09) also provides a glimpse 
of the manner in which Python tools can be de-
veloped to advance the goals of literate program-
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ming. The hope is to illuminate the algorithms 
that produced the published results within the 
computer code’s documentation. When docu-
menting mathematical programs, for example, 

it’s convenient to be able to include mathemati-
cal descriptions in the code’s comments, written 
in LaTex and readable (as typeset mathematics) 
along with the code.

import clawtools
from clawtest import *

# special data structure for Clawpack parameters:
data = clawtools.ClawData()
data.tfinal = 0.75 # final time
data.nout = 1 # output solution only at final time

# List parameters for tests to be performed:
grids = [1,3] # set of grids to test
limiters = [0,3] # set of limiters (mthlim values) to test
mxvals = array([30,60,120]) # mx values
myvals = array([30,60,120]) # my values
area = pi # area of circle, for L1 norm

table = {} # dictionary of data and results for each test

for mthlim in limiters:
   data.mthlim = mthlim
   for igrid in grids:
      # Write the value igrid into data file setprob.data:
      data.igrid = igrid;
      data.write(‘setprob.data’)
      # create a dictionary to hold the data and results for this test:
      table[(mthlim,igrid)] = {}

      this_table = table[(mthlim,igrid)] # short name
      this_table[‘mxvals’] = mxvals # grid resolutions to test
      this_table[‘myvals’] = myvals
      this_table[‘ave_cell_area’] = area / (mxvals*myvals)
      this_table[‘errors’] = empty(len(mxvals)) # filled with results below

      for itest in range(len(mxvals)):
         data.mx = mxvals[itest]; mx = data.mx # short form
         data.my = myvals[itest]; my = data.my # short form
         data.write(‘claw2ez.data’) # write mx,my,tfinal,nout

         # run Fortran code:
         clawtools.runclaw()

         # compute errors:
         errors = compute_errors(frame=data.nout)
         # approx 1-norm of error:
         errorsum = abs(errors).sum()
         error1 = errorsum * this_table[‘ave_cell_area’][itest]
         this_table[‘errors’][itest] = error1

# Create Tables 1--3 and Figure 2 of this paper:
make_latex_table(table, limiters, grids, fname=‘errortables.tex’)
make_error_plots(table, limiters, grids, fname=‘errors.png’)

Figure 3. The Python script clawtestsubset.py for running 16 test problems. The full module clawtest.py for all 24 test 
cases, which also includes other functions, appears at www.clawpack.org/links/cise09.
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We recently developed a general Python script 
(mathcode2html.py) to convert source code in 
many languages (and data files) into HTML docu-
ments, with any comment statements delimited by 
begin_html and end_html treated as HTML code. 
When used in conjunction with jsMath (www.math.
union.edu/~dpvc/jsMath/), this lets the author in-
clude simple LaTex equations in the comments that 
will be properly typeset in the resulting HTML 
version of the code. Some wiki-like formatting tools 
allow links to be included in the computer code in 
a manner that’s fairly readable in the raw code and 
yet easily converted into the appropriate links in the 
HTML version. We’ve included a more specialized 
version of this script, clawcode2html.py, with 
the latest Clawpack bundle for documenting and 
cross referencing the code and examples.

Literate programming and reproducible re-
search in computational science often go hand in 
hand, and people have developed other approaches 
and systems for implementing some combination of 
these goals. A few notable projects are the CWEB 
system (www-cs-faculty.stanford.edu/~knuth/cweb. 
html), Noweb (www.eecs.harvard.edu/nr/noweb/), 
Sweave,8 AMRITA (www.amrita-cfd.org), and 
Madagascar (www.rsf.sourceforge.net/Main_Page). 
Nelson Beebe9 provides a bibliography of papers 
on literate programming, and a Web search on re-
producible research produces many other projects 
and papers on this topic.

The tools described in this article have one 
advantage, I believe, over the more ambitious ap-
proaches described in some of the works just cited: 
our tools require relatively little infrastructure 
and can be added on to existing projects incre-
mentally rather than requiring a fresh start and 
commitment to a particular large-scale software 
framework. Although all programs would ideally 
be designed from the beginning in a literate and 
reproducible manner, this isn’t likely to happen 
soon, and legacy codes from decades ago will be 
with us for some time to come. However, appro-
priate tools can greatly enhance these older codes, 
as I’ve attempted to illustrate with Clawpack. 
In my own work, I plan to use these tools in the 
future to facilitate writing papers in a more re-
producible manner, with the specific version of 
the code used recorded via a Subversion revision 
number, the data files and Python scripts used to 
run the tests archived on a Web page, and new al-
gorithmic features encapsulated in programs with 
human-readable documentation.

These tools have already gone through 
several iterations and major rewrites (see www.
clawpack.org/links/cise09 for pointers to more 

recent versions of these tools), but I believe the 
efforts we’re now investing in this will pay off 
handsomely in the future. With luck, the result-
ing tools will be easy enough to use on a daily 
basis that our future research will quite naturally 
be reproducible with little extra effort. I hope 
that some of these tools, with minor modifica-
tions, will also prove useful for research in other 
branches of computational science.�
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