
Python Tools for Reproducible Research on
Hyperbolic Problems

Randall J. LeVeque1

Abstract. Reproducible research in computational science is only possible if the computer codes used to

generate published results are archived in a form that can later be used to regenerate the results and can be

examined to determine details of the method used. Some difficulties in achieving this goal are discussed. A set

of Python tools for facilitating reproducible research on finite volume methods for hyperbolic conservation laws

using the Clawpack software are briefly surveyed and illustrated on a sample application.

1 Introduction

Within the world of science, computation is now rightly seen as the third vertex of a triangle, comple-
menting experiment and theory. However, it has yet to reach the maturity of the experimental sciences
in terms of the reproducibility of research.

Nowhere else in science can one so easily publish observations that are claimed to prove a theory,
or illustrate the success of a technique, without giving a careful description of the methods used in
sufficient detail that others can attempt to repeat the experiment. In most branches of science it is
not only expected that publications contain such details, it is also standard practice for other labs to
attempt to repeat important experiments soon after they are published. Even though this may not lead
to significant new publications, it is viewed as a valuable piece of scholarship and a necessary component
of the scientific method.

Scientific and mathematical journals are filled with pretty pictures of computational experiments
that the reader has no hope of repeating. Even brilliant and well intentioned computational scientists
often do a poor job of presenting their work in a reproducible manner. The methods are often very
vaguely defined, and even if they are carefully specified they would normally have to be implemented
from scratch by the reader in order to test them. Most modern algorithms are so complicated that
there is little hope of doing this properly. Many computer codes have evolved over time to the point
where even the person running a program and publishing the results knows little about some of the
choices made in the implementation. And such poor records are typically kept of exactly which version
of the code was used or of the parameter values chosen that even the author of a paper often finds it
impossible to reproduce the published results at a later time. Regrettably, I speak from ample first
hand experience.

As Buckheit and Donoho [3] point out in their classic paper on reproducible research, the scientific
method and style of presenting experiments in publications that is currently taken for granted in the
experimental sciences was uncommon before the mid-1800s. Now it is a required aspect of respectable
research and experimentalists are expected to spend a fair amount of time keeping careful lab books,
fully documenting each experiment, and writing their papers to include the details needed to repeat
the experiments. A paradigm shift of the same nature may be needed in the computational sciences.

The idea of “reproducible research” in scientific computing is to archive and make publicly available
all of the codes used to create the figures or tables in a paper, preferably in such a manner that the
reader can download the codes and run them to reproduce the results. The program can then be
examined to see exactly what has been done. As Buckheit and Donoho [3] put it,

An article about computational science in a scientific publication is not the scholarship
itself, it is merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions which generated the
figures.

1Department of Applied Mathematics and Department of Mathematics, University of Washington, Box 352420, Seattle,
WA 98195-2420. rjl@amath.washington.edu

Version of June 29, 2008.

1

They present this as a distillation of the insights of Jon Claerbout, an exploration geophysicist who has
been a pioneer in this direction since the early 90’s (e.g., [30]).

The development of very high level programming languages has made it easier to share codes and
generate reproducible research. Historically, many papers and text books contained pseudo-code, a high
level description of an algorithm that is intended to clearly explain how it works, but that would not
run directly on a computer. These days many algorithms can be written in languages such as Matlab
or Python in a way that is both easy for the reader to comprehend and also executable, with all details
intact.

Trefethen’s book on spectral methods [33] is a good example of a textbook along these lines, in
which each figure is generated by a 1-page Matlab program. These are all included in the book and
nicely complement the mathematical description of the methods discussed. Trefethen makes a plea for
more attention to short and elegant computer programs in his recent essay [34].

2 Objections to reproducible computational science

For the larger scale computer programs used to obtain most published results in computational science,
there are many possible objections to making the code freely available in a form sufficient to reproduce
the research. I will discuss three of these, perhaps the primary stumbling blocks.

One natural objection is that it’s a lot of work to clean up a code to the point where someone else
can even use it, let alone read it. This is certainly true, but it is often well worth doing, not only in
the interest of good science but also for the selfish reason of being able to figure out later what you did
and build further on it.

Those of us in academia should get in the habit of teaching good programming, documentation, and
record keeping practices to our students, and then demand it of them. We owe it to them to teach this
set of computational science skills, ones that will certainly become increasingly necessary in academic
research environments and that are already highly valued in industrial and government labs. It will also
improve the chances that we will be able to build on the work they have done once they graduate, and
that future students will be able to make use of their contributions rather than starting from scratch
as is too often the case today.

While ideally all published programs would be nicely structured and easily readable with ample
comments, as a first step it would be valuable simply to provide and archive the working code that
produced the results in a paper. Even this takes more effort than one might think. It is important to
begin expecting this as a natural part of the process so that people will feel less like they have to make
a choice between finishing off one project properly or going on to another where they can more rapidly
produce additional publications. The current system strongly encourages the latter.

Requiring it of our students may be a good place to start, provided we recognize how much time
and effort it takes. Perhaps we should be more willing to accept an elegant and well documented
computer program as a substantial part of a thesis, for example. This is not unreasonable. A thesis in
mathematics, like a research paper in this field, typically contains long and detailed proofs of theorems
that are unreadable to all but a handful of experts around the world. Many readers will be interested
in the results without working through all the details, but it is expected that the details are provided.
It is also expected that the student will spend considerable time perfecting these details and writing
them up. Constructing a computer program is not so different from constructing a formal proof.

A second objection to publishing computer code is that a working program for solving a scientific or
engineering problem is a valuable piece of intellectual property and there is no way to control its use by
others once it is made publicly available. Of course if the research goal is to develop general software
then it is desirable to have as many people using it as possible. However, for a scientist or mathematician
who is primarily interested in studying some specific class of problems and has developed a computer
program as a tool for that purpose, there is little incentive to give this tool away free to other researchers.
This is particularly true if the program has taken years to develop and provides a competitive edge
that could potentially lead to several additional publications in the future. By making the program
globally available once the first publication appears, other researchers can potentially skip years of work
and start applying the program to other problems immediately. In this sense providing a program is

2

fundamentally different than carefully describing the materials and techniques of an experiment; it is
more like inviting every scientist in the world to come use your carefully constructed lab apparatus free
of charge.

This argument has considerable merit in some situations, but there are also several counter-arguments
worth mentioning.

• It is true that a code that successfully solves a scientific problem has value as intellectual property,
but who should own it? In many cases the development of the code has been supported by federal
grants and hence the financial investment in the code is made in large part by the taxpayers, not
by its authors. There is an increasing tendency for federal grant agencies to demand that the
work they support be made openly available to the scientific community.

The National Institutes of Health now require (as of April 7, 2008) that papers containing work
they fund must be made available via the National Library of Medicine’s PubMed Central within
12 months of publication in a scientific journal [25]. Agencies supporting code development
are starting to take a similar attitude. For example, a recent request for proposals from the
Department of Energy [6] states that

“Successful applicants of Enabling Technologies must ensure that source code is fully and
freely available for use and modification throughout the scientific computing community
via a preapproved open source process.”

• It is notoriously difficult to take someone else’s code and apply it to a slightly different problem.
This is true even when people are trying to collaborate and willing to provide hands-on assistance
with the code. It is often true even when the author of the code claims it is general software that
is easy to adapt to new problems. It is particularly true if the code is obscurely written with few
comments and the author is not willing to help out, as would probably be true of many of the
research codes people feel the strongest attachment to.

• My own experience in computational science is that virtually every computational experiment
leads to more questions than answers. There is such a wealth of interesting phenomena that
can be explored computationally these days that any worthwhile code can probably lead to more
publications than its author can possibly produce. If other researchers are able to take the code
and apply it in some direction that wouldn’t otherwise be pursued, that should be seen as a
positive development, both for science and for its original author, provided of course that s/he
gets some credit in the process. This is particularly true for computational mathematicians, whose
goals are often the development of a new algorithm rather than the solution of specific scientific
problems. Even for those not interested in software development per se, anything we can do to
make it easier for others to use the methods we invent will be beneficial to our own careers.

Perhaps what’s needed is an expanded copyright process for scientific codes, so that programs could
be made available for inspection and independent execution to verify results, but with the understanding
that they cannot be modified and used in new publications without the express permission of the author
for some period of years. Permission could be granted in return for co-authorship, for example. In fact
such a system already works quite well informally, and greater emphasis on reproducible research would
make it function even better. It would be quite easy to determine when people are violating this code
of ethics if everyone were expected to “publish” their code along with any paper. If the code is an
unauthorized modification of someone else’s, this would be hard to hide.

A third obstacle to making some programs freely available is that they are based on commercial,
proprietary, or copyrighted software that cannot be redistributed. This is certainly a limitation if the
proprietary code is in integral part of the program, but in many cases it is not. Often the part of the
program that corresponds to the original research being published is the work of the author. Making
it available can help the reader understand the research even if they cannot run it, while those who do
have access to the proprietary code (e.g. by purchasing the required packages) can also run it. Certainly
the large number of books and papers that include Matlab codes are valuable in spite of being written
in a commercial language that many readers cannot afford.

3

Along the same lines, some codes only run on special hardware, such as massively parallel super-
computers that many readers may not have access to. But again the ability to inspect the code and
determine what parameter or algorithmic choices were made is often much more important than the
ability to re-run the code and re-create the results already published.

3 Clawpack software for hyperbolic problems

The remainder of this paper presents a brief case study to illustrate a set of tools for aiding in the
presentation of reproducible research on wave propagation algorithms for solving hyperbolic partial
differential equations. The reader need not be familiar with such problems to follow this discussion.

Hyperbolic partial differential equations (PDEs) model a variety of wave propagation and fluid
flow problems, including acoustic and seismic waves, advective transport, shallow water theory, and
compressible gas dynamics, to name just a few applications. In many case the equations are nonlinear
systems of conservation laws whose solution contains shock waves or other discontinuities in the solution
that are particularly difficult to capture with classical finite difference methods. Much of my work
over the past 15 years has been devoted to trying to make it easier for myself, my students, and
other researchers to perform computational scholarship in the development of numerical methods for
hyperbolic PDEs, and also in a variety of application areas in science and engineering where these
methods are used. This work has resulted in the Clawpack software [23] (Conservation Laws Package)
and various extensions, open source Fortran code that has been freely available since 1994. More than
7000 users have registered to download this software since it first appeared, and it has been used on a
wide variety of problems.

The details of the algorithms implemented are not important for our purposes here. The interested
reader can learn more about them in the textbook [19], which was designed to be used in conjunction
with the software. Virtually all of the figures in this book are reproducible, in the sense that the
programs that generated them can be downloaded from the web and easily executed. Most figure
captions contain a link to the corresponding web page where the code can be found, along with additional
material not in the book, for example animations of the solution evolving in time. The problem-specific
code for each example in the book is quite small and easy to comprehend and modify. The reader is
encouraged to experiment with the programs and observe how changes in parameters or methods affect
the results. These programs, along with others on the Clawpack website [23], can also form the basis
for developing programs to solve similar problems.

Although the development of the Clawpack software was originally motivated by the desire to make
a set of existing methods more broadly accessible, the availability of this software has also encouraged
me to pursue new algorithmic advances that I otherwise might not have. I hope that the software will
also prove useful to others as a programming environment for developing and testing new algorithms,
and for comparing different methods on the same problems. Since the source code is available and
the basic Clawpack routines are reasonably simple and well documented, it should be easy for users to
modify them and try out new ideas. I encourage such use, and I certainly use it this way myself.

Careful direct comparisons of different methods on the same test problems are too seldom performed
in the study of methods for hyperbolic problems, as in many computational fields. One reason for this
is the difficulty of implementing other peoples’ methods, so the typical paper contains only results
obtained with the authors’ method. Sometimes (not always) the method has been tested on standard
test problems and the results can be compared with others in the literature, with some work on the
reader’s part, and assuming the reader is content with comparisons in the “eyeball norm” since many
papers only contain plots of the computed solution and no quantitative results. Of course there are
many exceptions to this, including papers devoted to careful comparisons of different methods, but
these papers are still a minority. I hope that Clawpack might facilitate this process more in the future,
and that other algorithms for hyperbolic PDEs might be provided in a Clawpack-style implementation
that allows direct use and comparison by others. One example in this direction is the WENO-Claw
software developed primarily by David Ketcheson [14] that implements a class of higher-order methods.

4

4 Python tools for Clawpack experimentation

Recently my students and I have been developing a set of Python tools to facilitate the use of Clawpack.
We have several goals, including:

• To provide a wider range of graphics and visualization options for viewing results computed with
this software. Traditionally Matlab has been used as the primary visualization tool and a number
of Matlab scripts and functions are provided as part of Clawpack for visualizing results. While
Matlab is familiar and convenient for many users, it is a commercial package that is not available
to everyone and we wish to provide open source alternatives. Moreover, in three space dimensions
Matlab graphics are not as powerful as other available packages, and in particular do not provide
voxel graphics for volume rendering.
The plots presented in this paper and on the webpage [22] were created using matplotlib in
Python, available in SciPy [8], [31] and sufficient for many 1d and 2d plotting purposes. For
three-dimensional data other packages must be used, and we are currently developing Python
interfaces between Clawpack and other open source visualization tools, in particular the VisIt
software being developed at Lawrence Livermore Laboratory [35], which supports a wide variety
of tools for two- and three-dimensional data on adaptively refined grids.

• To provide literate programming tools for documenting code with mathematical expressions that
are easy to read, and with links to other parts of the code, external documentation, or to web
pages where more information can be found. The term literate programming was coined by Knuth
[15] and refers to programs that are fully self documented in a manner that is readable by humans.
Literate programming techniques can greatly assist in the development of reproducible research
in computational science. This is discussed further in the Conclusions section of this paper.

• To provide a web-based interface to Clawpack, both to facilitate its use by students learning
about hyperbolic problems (so they can easily experiment without having to work directly with
the Fortran code and data files) and as a web portal so that these experiments can be conducted
without having to download and install the Clawpack software locally. A preliminary version
of this “Easy Access Graphical Laboratory for Exploring Conservation Laws” (EagleClaw) is
available via [23].

• To provide templates for performing reproducible research. Many of the same tools needed for the
web portal EagleClaw are useful also in developing scripts that run a series of tests and collecting
the results of these tests into webpage or LATEX documents. The remainder of this paper concerns
this topic and contains a brief description of one case study.

Most of the Clawpack software is written in Fortran 77. The code reads in a set of parameters from
ASCII text files with names like claw2ez.data (which contains parameters defining the computational
domain, the number of grid cells, the method to be used, etc.) and setprob.data (which contains
problem-specific parameters as defined by the user). Running the code creates a set of output files
containing the solution at several specified times. These files (either ASCII or hdf binary) are then read
into the visualization tool (Matlab or Python).

In designing a Python interface, we have retained this basic structure and developed tools that
interact with the Fortran code by modifying the data files. These files have essentially the same form
as in previous versions of Clawpack. This means that users can still work in the classical manner if
they desire, and need not use Python at all if they prefer to modify the data files by hand. Previous
applications will continue to run unchanged.

To illustrate these tools and their use, we consider the simplest possible hyperbolic equation in two
space dimensions, the advection equation modeling the transport of a tracer in a specified velocity field.
As a test problem we consider “solid body rotation”, in which the velocity field is

u(x, y) = −2πy, v(x, y) = 2πx,

corresponding to counterclockwise rotation about the origin with period 1. The initial data used can
be found on the webpage [22], along with figures and animations of the numerical solution and all the
source code used to generate these results and the table and log-log plot below.

5

Figure 1: The three types of grids used for the advection test.

We compare the behavior of the algorithms implemented in Clawpack on three different types of
computational grids, as illustrated in Figure 1:

Grid 1: Cartesian grids with square grid cells,
Grid 2: Polar grids in an annulus,
Grid 3: Quadrilateral grids of the type described in [4].

For each grid type, we compute the solution at four different grid resolutions in order to estimate the
order of accuracy of the method. We also compare two different numerical methods. The first (with
Limiter = 0) is a variant of the Lax-Wendroff method. This method should be second order accurate
on smooth solutions and smooth grids, but is dispersive and often produces nonphysical oscillations in
the numerical solution. The other method we test is one of the high-resolution limiter methods also
implemented in Clawpack (with Limiter = 3, a particular choice known as the monotonized centered
limiter [19]). This method is no longer formally second order accurate but often performs much better
in practice, particularly on problems with discontinuous solutions such as the shock waves that often
arise in solving nonlinear hyperbolic equations.

Tables 1–3 display the results from these 24 test cases (4 resolutions on each of 3 grid types,
comparing 2 different numerical methods in each case). The error at time t = 0.75 is computed by
comparing the numerical solution in each grid cell to the true solution at the cell center. The sum of
the absolute value of all errors is scaled by the average cell area to give a value that approximates the
1-norm of the error. The value “Ave ∆x” listed in the tables is the square root of the average cell area
for the grid. We also present the errors from all 24 tests in a single log-log plot in Figure 2 to more
easily compare the accuracy of the methods on different types of grids. A slope of 2 in the log-log plot
corresponds to second order accuracy.

We see that roughly second order accuracy is achieved on all three grids with either choice of limiter.
Errors are smallest in polar coordinates, which is not surprising since the grid is aligned with the flow
and the advection equation reduces to one-dimensional advection in θ.

We also see that the error on Grid 3 is only slightly larger than on Grid 1, the Cartesian grid, verifying
that these highly skewed quadrilateral grids can indeed be used with the algorithms implemented in
Clawpack. Finally, we observe that on all three grids use of the limiter improves the 1-norm of the error
by a factor of 3 or more.

5 Python tools

The Clawpack code is easily set up to run this problem and the traditional form of the code allows one
to change data parameters in input files that are read by the Fortran code. One can run the 24 tests
described above by hand and collect the results. With the newly developed Python tools for Clawpack,
it is much easier to automate this entire process in a way that can be archived and easily duplicated at
a later time.

Figure 3 shows a simplified version of the Python script to run the numerical tests, one that runs 16
tests using only grids of type 1 and 3. The polar grids require a different domain in r and θ coordinates

6

and the specification of periodic boundary conditions, which is easily accomplished by setting some of
the parameters differently. See the clawtest.py module on the webpage [22] for full details.

The script shown in Figure 3 employs a number of functions from the clawtools and clawtest
modules that will not be displayed here but that can be found on the webpage. The ClawData class
is used to store data values that will be written into the data files for use in the Fortran code. For
example, the file setprob.data contains a line

1 =: igrid # which type grid to use

The Python commands

data = clawtools.ClawData()
data.igrid = 2
data.write(’setprob.data’)

would cause the value 1 in the data file to be replaced by 2. All other lines of the data file are unaltered.
The only change made to the data files from previous versions of Clawpack is the introduction of the
assignment operator =: in the portion of each line that is ignored by the Fortran code (which typically
only reads a single number from each line).

Table 1: Errors on Grid 1

Limiter = 0 Limiter = 3
mx my Ave ∆x Error Observed order Error Observed order
30 30 0.0591 0.3263 nan 0.1490 nan
60 60 0.0295 0.1336 1.29 0.0404 1.88
120 120 0.0148 0.0389 1.78 0.0088 2.20
240 240 0.0074 0.0105 1.89 0.0020 2.14

Table 2: Errors on Grid 2

Limiter = 0 Limiter = 3
mx my Ave ∆x Error Observed order Error Observed order
10 75 0.0634 0.0917 nan 0.0408 nan
20 150 0.0317 0.0297 1.63 0.0112 1.86
40 300 0.0159 0.0084 1.82 0.0033 1.78
80 600 0.0079 0.0023 1.89 0.0008 1.97

Table 3: Errors on Grid 3

Limiter = 0 Limiter = 3
mx my Ave ∆x Error Observed order Error Observed order
30 30 0.0591 0.3843 nan 0.1610 nan
60 60 0.0295 0.1567 1.29 0.0492 1.71
120 120 0.0148 0.0456 1.78 0.0123 1.99
240 240 0.0074 0.0123 1.89 0.0034 1.86

7

Figure 2: Log-log plot of the errors from 24 test cases as described in the text.

6 Conclusions and additional thoughts

The example just given illustrates one modest attempt at providing tools to ease the task of doing
reproducible research in the development of numerical methods for hyperbolic problems. Use of these
tools requires little overhead or infrastructure beyond the classical use of Clawpack. Python is ideally
suited to this purpose and is available on virtually every operating system. The tools could easily be
adapted to other contexts, for use with any code that reads parameters from a text file to set up a
particular run.

The use of these tools makes it much easier to archive the environment used to generate a series
of tests. Rather than requiring the retention of 24 sets of data files, one for each test case, a single
Python script clearly shows the parameter choices used for each test case and allows them all to be
easily recreated later if needed.

Of course one must also archive the computer code used to perform the tests. If the code changes
in the future then having the data sets preserved will be insufficient to reproduce the tests. For the
purposes of this paper a webpage [22] has been created with a full copy of all the Clawpack code actually
used for this example, which in this case is quite small. For on-going research projects, it is desirable to
use versioning software such as Subversion [5], [32] in order to easily preserve the state of the code at
any point in time without the need to save full copies of the entire code. By saving the revision number
of the code it is possible to recreate any past state. The Subversion repository for recent versions of
Clawpack can be accessed via [23].

The use of versioning software should be mandatory among computational scientists at this point.
It is easy to use and extremely beneficial even for a single individual who is developing programs and
writing papers based on the results, and invaluable for any kind of collaborative work.

There is an additional difficulty with attempting to perform reproducible research that I have not
yet addressed, namely the fact that even if the code and the data are preserved, the computer, operating
system, or computer language may change in ways that render the code unusable or unable to reproduce
previous results. As one example particularly relevant to the tools described here, the Python language
is undergoing revision and Python 3.X will not be backward compatible with the Python 2.5 used for
the tools recently developed. Hence in addition to archiving the tools, one should really archive the
current state of the language as well, or at least assume this is being done somewhere (as is the case for

8

Python). Archiving the computer operating system and the computer itself is of course more difficult.
Looking further down the road, there is great uncertainty about the durability of digital archives

of any sort. While books and papyrus can last millennia, we often find it is impossible to read data or
computer codes from a few years ago. This is obviously a concern that many professionals are working
hard to address, but in the meantime should not be used as an excuse to avoid attempting to achieve
some level of reproducibility with the available technology.

The webpage for this paper [22] also provides a glimpse of the manner in which Python tools can
be developed to advance the goals of literate programming as laid out by Knuth [15]. The hope is
to illuminate, for the interested reader, the algorithms that produced the published results within the
documentation of the computer code. For documenting mathematical programs it is convenient to be
able to include mathematical descriptions in the comments of the code, written in LATEX and readable
(as typeset mathematics) along with the code.

A general Python script mathcode2html.py, available from [21], can been used to convert source
code in many languages (and also data files) into html documents, with any comment statements
delimited by begin_html and end_html treated as html code. When used in conjunction with jsMath
[13], this allows simple LATEX equations to be included in the comments and properly typeset in the
resulting html version of the code. Some wiki-like formatting tools allow links to be included in the
computer code in a manner that is fairly readable in the raw code and yet easily converted into the
appropriate links in the html version. A more specialized version of this script, clawcode2html.py, is
included with the latest Clawpack bundle and is used for documenting and cross referencing the code
and examples.

Literate programming and reproducible research in computational science often go hand in hand,
and a number of other approaches and systems have been developed for implementing some combination
of these goals. A few notable projects are the CWEB system of Knuth and Levy [16], Noweb [12], [27],
[28], Sweave [18], AMRITA [26], and Madagascar [24]. Other recent papers on literate programming
and reproducible research include [1], [2], [7], [9], [10], [11], [17], [29], [30].

The tools described in this paper have one advantage, I believe, over the more ambitious approaches
described in some of these references. They require relatively little infrastructure and can be be added
on to existing projects in an incremental manner rather than requiring a fresh start. While ideally
all software would be designed from the beginning in a literate and reproducible manner, this is not
likely to happen soon and legacy codes from decades ago will be with us for some time to come. With
appropriate tools I believe even these can be greatly enhanced, as I have attempted to illustrate with
Clawpack.

Acknowledgments. The introductory part of this article is based on an invited talk and paper
that appeared in the proceedings of the International Conference of Mathematicians [20], and numerous
people provided valuable feedback during the preparation of that paper and in response to it. I would
also like to thank the editor and anonymous reviewers of this paper, who further helped to improve this
paper. Thanks are due also to Kyle Mandli for assistance in developing some of the Python and web
portal tools being used with Clawpack. This work was supported in part by NSF grant DMS-0609661.

References

[1] G. Baiocchi. Reproducible research in computational economics: guidelines, integrated approaches,
and open source software. Computational Economics, 30:19–40, 2007.

[2] N. H. F. Beebe. A bibliography of literate programming.
http://www.literateprogramming.com/litprog-bib.pdf, 2002.

[3] J. B Buckheit and D. L. Donoho. WaveLab and reproducible research.
http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf, 1995.

[4] D. A. Calhoun, C. Helzel, and R. J. LeVeque. Logically rectangular finite volume grids and methods
for “circular” and “spherical” domains. SIAM Review, 2008.

9

[5] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version control with Subversion, 2004.
http://svnbook.red-bean.com/.

[6] Department of Energy. SciDAC request for proposals.
http://www.er.doe.gov/grants/FAPN06-04.html, 2006.

[7] D. L. Donoho and X. Huo. BeamLab and reproducible research. Int. J. Wavelets, Multires. and
Inf. Proc., to appear, 2005.

[8] Enthought Python Distribution. http://www.enthought.com/products/epd.php.

[9] R. Gentleman and D. Temple Lang. Statistical analyses and reproducible research. Bioconductor
Project Working Papers. Working Paper 2.
http://www.bepress.com/bioconductor/paper2, 2004.

[10] R. C. Gentleman et al. Bioconductor: open software development for computational biology and
bioinformatics. Genome Biology, 5:R80.1–R80.16, 2004.

[11] R. H. F. Jackson, P. T. Boggs, S. G. Nash, and S. Powell. Guidelines for reporting results of
computational experiments. Report of the ad hoc committee. Math. Programming, 49:413–425,
1991.

[12] A. L. Johnson and B. C. Johnson. Literate programming using noweb. Linux Journal, October:64–
69, 1997.

[13] jsMath software. http://www.math.union.edu/~dpvc/jsMath/.

[14] D. I. Ketcheson and R. J. LeVeque. WENOCLAW: A higher order wave propagation method.
In Hyperbolic Problems: Theory, Numerics, Applications, Proc. 11’th Intl. Conf. on Hyperbolic
Problems, page to appear, 2006.

[15] D. E. Knuth. Literate programming. The Computer Journal, 27:97–111, 1984.

[16] D. E. Knuth and S. Levy. The CWEB System of Structured Documentation. Addison-Wesley,
Reading, MA, 1993. http://www-cs-faculty.stanford.edu/~knuth/cweb.html.

[17] J. Kovačević. How to encourage and publish reproducible research. Proc IEEE Int. Conf. Acoust.
Speech, and Signal Proc., pages IV:1273–1276, 2007.

[18] F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In
W. Härdle and B. Rönz, editors, Compstat 2002 — Proceedings in Computational Statistics, pages
575–580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

[19] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

[20] R. J. LeVeque. Wave propagation software, computational science, and reproducible research. In
Proc. Int. Cong. Math., pages 1227–1254, 2006.
http://www.amath.washington.edu/~rjl/pubs/icm06.

[21] R. J. LeVeque. mathcode2html software.
http://www.amath.washington.edu/~rjl/mathcode2html/, 2007.

[22] R. J. LeVeque. Python tools for reproducible research on hyperbolic problems, webpage to accom-
pany this paper. http://www.amath.washington.edu/~rjl/pubs/cise08/, 2008.

[23] R. J. LeVeque et al. clawpack software. www.clawpack.org.

[24] Madagascar software. http://rsf.sourceforge.net/Main_Page, 2008.

[25] National Institutes of Health. Revised policy on enhancing public access to archived publications
resulting from nih-funded research.
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-08-033.html, 2008.

10

[26] J. J. Quirk. AMRITA. http://www.amrita-cfd.org/, 2007.

[27] N. Ramsey. Noweb — a simple, extensible tool for literate programming.
http://www.eecs.harvard.edu/nr/noweb/.

[28] N. Ramsey. Literate programming simplified. IEEE Software, 11:97–105, 1994.

[29] C. J. Roy. Review of code and solution verification procedures for computational simulation. J.
Comput. Phys., 205:131–156, 2005.

[30] M. Schwab, N. Karrenbach, and J. Claerbout. Making scientific computations reproducible. Com-
put. in Sci. & Eng., 2:61–67, 2000.

[31] SciPy and NumPy software. http://www.scipy.org/.

[32] Subversion version control system. http://subversion.tigris.org/, 2008.

[33] L. N. Trefethen. Spectral Methods in Matlab. SIAM, Philadelphia, 2000.

[34] L. N. Trefethen. Ten digit algorithms.
http://www.comlab.ox.ac.uk/nick.trefethen/ten_digit_algs.htm, 2005.

[35] VisIt software. Lawrence Livermore National Laboratory, http://www.llnl.gov/visit/.

11

Figure 3: The Python script clawtestsubset.py for running 16 test problems. The full module
clawtest.py for all 24 test cases, which also includes other functions used below, can be found on the
web page [22].

import clawtools

from clawtest import *

special data structure for Clawpack parameters:

data = clawtools.ClawData()

data.tfinal = 0.75 # final time

data.nout = 1 # output solution only at final time

List parameters for tests to be performed:

grids = [1,3] # set of grids to test

limiters = [0,3] # set of limiters (mthlim values) to test

mxvals = array([30,60,120]) # mx values

myvals = array([30,60,120]) # my values

area = pi # area of circle, for L1 norm

table = {} # dictionary of data and results for each test

for mthlim in limiters:

data.mthlim = mthlim

for igrid in grids:

Write the value igrid into data file setprob.data:

data.igrid = igrid;

data.write(’setprob.data’)

create a dictionary to hold the data and results for this test:

table[(mthlim,igrid)] = {}

this_table = table[(mthlim,igrid)] # short name

this_table[’mxvals’] = mxvals # grid resolutions to test

this_table[’myvals’] = myvals

this_table[’ave_cell_area’] = area / (mxvals*myvals)

this_table[’errors’] = empty(len(mxvals)) # filled with results below

for itest in range(len(mxvals)):

data.mx = mxvals[itest]; mx = data.mx # short form

data.my = myvals[itest]; my = data.my # short form

data.write(’claw2ez.data’) # write mx,my,tfinal,nout

run Fortran code:

clawtools.runclaw()

compute errors:

errors = compute_errors(frame=data.nout)

approx 1-norm of error:

errorsum = abs(errors).sum()

error1 = errorsum * this_table[’ave_cell_area’][itest]

this_table[’errors’][itest] = error1

Create Tables 1--3 and Figure 2 of this paper:

make_latex_table(table, limiters, grids, fname=’errortables.tex’)

make_error_plots(table, limiters, grids, fname=’errors.png’)

12

