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Transport Reversal for Model Reduction of Hyperbolic Partial Differential
Equations∗
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Abstract. Snapshot matrices built from solutions to hyperbolic partial differential equations exhibit slow decay
in singular values, whereas fast decay is crucial for the success of projection-based model reduction
methods. To overcome this problem, we build on previous work in symmetry reduction [Rowley and
Marsden, Phys. D, 142 (2000), pp. 1–19] and propose an iterative algorithm that decomposes the
snapshot matrix into multiple shifting profiles, each with a corresponding speed. Its applicability
to typical hyperbolic problems is demonstrated through numerical examples, and other natural
extensions that modify the shift operator are considered. Finally, we give a geometric interpretation
of the algorithm.
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1. Introduction. Reduced order models (ROMs) can emulate the behavior of high-dimen-
sional models (HDMs) with small computational cost. Therefore, once ROMs can be con-
structed, prohibitively expensive problems in control design or uncertainty quantification (UQ)
can be tackled by using them as surrogate models in place of HDMs. Proper orthogonal de-
composition (POD) and its variants [6, 9, 16, 17, 12, 29, 28, 35, 39] have been successfully
applied to various partial differential equations (PDEs), including those arising in fluid dy-
namics [7, 11, 19, 25, 30, 41]. However, these projection-based methods can be ineffective
when applied to compressible flow problems governed by hyperbolic PDEs. This difficulty
is well-known and was noted in [1], where a dictionary-based model reduction method was
developed, and in [8] where a fail-safe h-adaptive algorithm was introduced.

We will illustrate the main obstacle with a simple example. Consider the initial boundary
value problem for the advection equation, whose solution u in the domain Ω ≡ (0, 1) satisfies
the PDE

(1.1) ut + cux = 0 in Ω,

along with the periodic boundary condition and the initial condition

(1.2) u(0, t) = u(1, t) for t ∈ [0, T ], u(x, 0) = u0(x) ≡ δ(x).
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We assume c = 1 here. Let us seek a solution using the finite volume method with upwind
flux [23]. We set the grid points xj = jh for j = 0, 1, . . . , N and let h ≡ 1/N , and define the
cells Cj ≡ [xj−1/2, xj+1/2], where xj+1/2 ≡ xj + h/2. Denote by unj the approximation to the
cell average of the solution at time tn

(1.3) unj ≈
1

h

∫ xj+1/2

xj−1/2

u(x, tn) dx,

and also denote by un the vector (unj )Nj=1 ∈ RN . Taking a fixed time-step of size ∆t = h, it is
easy to see that the finite volume solution at time tn is just the scaled standard basis vector
un = en/h. That is,

(1.4) un = Knu0, where K ≡


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 and u0 =
1

h
e1.

This solution has no error apart from the discretization of the initial data and thereafter
reproduces the cell averages (1.3) exactly.

The snapshot matrix A, taken at times {tn}N−1
n=0 , is given by

(1.5) A ≡
[
u0 u1 · · · uN−1

]
=

1

h
I, where I is the identity in RN×N .

In POD, we take the singular value decomposition (SVD) of the matrix A. It is easy to see
that A has singular values σ1 = · · · = σN = 1/h. We then truncate the rank-1 expansion
of A after some R terms. Usually, we choose the smallest R such that, for a given tolerance
ε� 1, the remainder satisfies

(1.6)
N∑

j=R+1

σ2
j

/
N∑
j=1

σ2
j < ε, in this case 1−R/N < ε.

The left-hand side decreases linearly in R, so R must be large even for a moderately small ε to
satisfy (1.6). If ε < h, it would require R = N , so that all singular values and corresponding
singular vectors must be kept as reduced basis vectors. (Often A is preprocessed by subtracting
from each column its mean, so that each column has zero mean. Doing so here would make
σN equal to zero, but other singular values will not be changed, leaving the obstacle intact.)

This slow decay is commonly observed in snapshot matrices taken from hyperbolic prob-
lems. Therefore, existing projection-based methods quickly face a difficulty. The approach
we adopt to overcome this is to focus on the low-dimensional hyperbolic behavior of the so-
lution and treat it separately, to the extent possible. Simply put, we wish to construct the
Lagrangian frame of reference. To do so directly is a challenging problem of its own right,
so instead we devise a numerical method for utilizing this frame indirectly for our special
purposes.



120 D. RIM, S. MOE, AND R. J. LEVEQUE

This main idea coincides with the so-called symmetry reduction that was studied in [32, 33]
and similar ideas that appeared in the references therein. The target for reduction in that
context is a continuous symmetry group G acting on a manifold M . In our setting, M is the
L2 inner product space of periodic functions, and G is the group of spatial translations. To
reduce G, template fitting [18] is used to map the full dynamics of u to the quotient space
M/G. Given a snapshot u(x, t) at time t and a template u0(x), both periodic in [0, 1], template
fitting posits the minimization problem

(1.7) min
a

∫ 1

0
|u(x− a, t)− u0(x)|2 dx.

This minimization resembles the orthogonal Procrustes problem [13], which deals with data
given in the form of sample points, rather than in discretized function values over a grid. If u
is smooth, one obtains the equation for the minimum a∗, 〈u(x, t), u′0(x+ a∗)〉 = 0, that defines
the dynamics of a∗(t). The orthogonality condition then allows one to identify the quotient
space M/G with an affine space intersecting u0 called a slice denoted by Su0 . To summarize,
for each given dynamics u(t) in M , corresponding slice dynamics r(τ) in Su0 can be found.
After a reduction for r(τ) is found in Su0 , there are reconstruction equations that can be used
to recover the original dynamics u(t) [33]. The main advantage is that r(τ) in the space Su0
may yield low-dimensional structure more readily, even when u(t) itself does not. This key
property is the inspiration for this work.

Following the template fitting approach, we propose generalizations which expand its
applicability. In [33] the dynamics of the infinitesimal action for the reconstruction were
formulated, and then the system was integrated numerically. Here we consider the direct
discretization of (1.7), and then devise a greedy algorithm we call the transport reversal. The
algorithm terminates when the snapshot matrix can be well-approximated by the superposition
of multiple transport dynamics. The main ideas are (1) the projection onto the template or
the pivot for scaling, (2) the use of cut-off vectors to modify the pivot, and (3) enforcing of
regularity in the minimization problem to obtain smooth transport dynamics. The details
appear in section 2.

In the subsequent sections, we consider two extensions of the shift operator. The upwind
flux is used to extend the shift numbers to real numbers in section 3.1. Then an extension to
the case where the speed c in (1.1) varies with respect to the spatial variable is introduced
in section 3.4. Nothing prevents these extensions from being used in conjunction with the
iterative transport reversal algorithm introduced in the preceding section. In section 4, we
present some geometric interpretations.

Transport reversal shares features with the shifted proper orthogonal decomposition
introduced in [31]. It can be related to the dynamic mode decomposition (DMD) [34, 38] in the
sense that the periodic shift operator in (1.4) is a linear operator generating the dynamics on
the state space RN , but the objectives differ. Here we assume that a specific dynamic, namely,
transport, is present in the data, whereas DMD aims to discover the spectral properties of the
Koopman operator derived from the data itself.

The discovery of the hyperbolic structure through this algorithm is only a first step toward
building a ROM for hyperbolic PDEs. Using this output to build a ROM requires tackling
further issues that will be pursued in future work. Once ROMs can be constructed for any
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parameter value, they can be used to explore the solution behavior in parameter space. In
many practical applications the parameter space is high-dimensional, so one needs a strat-
egy for constructing a global model that is not sensitive to the number of dimensions. To
this end, various interpolation methods incorporating adaptive and greedy strategies have
been introduced [2, 3, 4, 24, 26]. The algorithms in this paper allows one to apply these
methods in conjunction with displacement interpolation (see, e.g., [40]) thereby incorporating
the Lagrangian frame into the approximation procedure. The approach given here may well
supplement not only existing model reduction methods, but also UQ methods such as the
generalized polynomial chaos [27].

The transport reversal extends naturally to the multidimensional setting. The key com-
ponent in the extension is the use of the intertwining property of the Radon transform [15].
In exploiting this remarkable property, one obtains a multidimensional extension of the large
time-step [LTS] method [20, 21, 22], and therefore the multidimensional analogue of the trans-
port reversal algorithm. The scope of this paper does not permit a detailed account of this im-
portant extension. A thorough treatment will appear elsewhere, based on the one-dimensional
theory presented in this paper.

2. Transport reversal. In this section, we discretize and generalize the template fitting
problem (1.7). The main objective of this section is to extend the idea of template fitting
to more complex situations that arise from important examples of hyperbolic problems. We
will introduce new enhancements that will result in a greedy iteration we call the transport
reversal algorithm.

To motivate the discussion, let us revisit the problem (1.1). Recall the finite volume
solution un, the matrix of shifts with periodic boundary conditions K (1.4), and the snapshot
matrix A (1.5). With this notation, the columns of A can be rewritten in terms of the Krylov
subspace generated by K in using the fact that un = Knu0,

A =
[
u0 Ku0 · · · KN−1u0

]
.

Suppose we preprocess A to obtain Å,

(2.1) Å ≡
[
I K−1 K−2 · · · K−(N−1)

]
�
[
u0 u1 u2 · · · uN−1

]
,

where the notation � denotes componentwise multiplication between a list of matrices and a
list of column vectors. It follows that

(2.2) Å =
[
u0 · · · u0

]
=


1
h

1
h · · · 1

h
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 =


N N · · · N
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,
and also that Å has the trivial SVD

(2.3) Å = UΣV∗ =


1
0
...
0

 [N√N] [ 1√
N

1√
N
· · · 1√

N

]
.
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Hence the singular values of Å are σ1 = N
√
N and σ2 = · · · = σN = 0. In short, when SVD

is applied to Å rather than A there is only one nonzero singular value, yielding a reduced
basis with a single element {u0}. By shifting each snapshot by an appropriate number of grid
cells (reversing the transport due to the hyperbolic equation) they all line up. This procedure
can be seen as a straightforward discretization of (1.7), and we formulate its generalization
as follows.

Definition 2.1 (shift numbers). Let A ∈ RN×M be a real matrix and b ∈ RN a real vector
we will call the pivot. Denote by aj the jth column of A, and then define the integers νj ∈ ZN
to be the minimizers

(2.4) νj = argminω∈ZN
‖aj −Kωb‖22 for j = 1, 2, . . . ,M.

Whenever the minimization is not unique, we choose one closest to 0.
We call {νj} the shift numbers and organize them in a vector ν ≡ (νj)

M
j=1. We denote the

computation of ν in (2.4) as

(2.5) ν = C(A; b).

In (2.4) we are merely shifting the entries of the pivot b to match aj as much as possible.
We remark that the choice of the `2-norm in the minimization problem (2.4) is not unique
and other norms could have been used instead. However, we will use the `2-nrom throughout
this paper for simplicity. Next, we introduce some more notation regarding the computation
C.

Notation 2.2. Pivot operations.
• Let C(A; j) ≡ C(A; aj), when the pivot is a column of A.
• For B ∈ RN×N , let (C(A; B))j ≡ C(aj ,bj). That is, in case b in (2.4) depends on

the column index j so that the pivot is allowed to change for each column, we supply
the matrix B ∈ RN×M to indicate that its jth column bj will be used as the pivot for
computing νj.

• Given ` : {1, . . . ,M} → {1, . . . ,M}, let (C(A; `))j ≡ C(aj ; a`(j)). We define a pivot
map ` that designates the pivot for each column, and supply it to C.

The shift numbers ν contain the information on how many entries each column of the
matrix should be shifted. So ν describes a transport operation to be acted on each column,
which will be summarized in the operator defined below.

Definition 2.3 (transport with periodic boundary conditions). Given a matrix A ∈ RN×M
and a vector of shift numbers ν ∈ RM , the transport with periodic boundary conditions T is
defined as

(2.6) T (A;ν) ≡
[
Kν1 Kν2 · · · KνM

]
�
[
a1 a2 · · · aM

]
.

If a vector b ∈ RN is given instead of a matrix, we let

(2.7) T (b;ν) ≡
[
Kν1b Kν2b · · · KνM b

]
.
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u0

u1

(P2)
u0

u1
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u1
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u0

u1

Figure 1. Illustration of solution behavior for the four hyperbolic problems (P1), (P2), (P3), and (P4). u0

denotes the initial profile, drawn in dashed lines, and u1 denotes the solution at some future time, in solid lines.

It is easy to see that T (·;ν) and T (· : −ν) are exact inverses of each other. That is, for
fixed ν,

(2.8) T (T (A;−ν);ν) = A for A ∈ RN×M .

The key observation in the example above (2.3) is that the SVD of T (A;−ν) with ν =
C(A; a1) results in faster decay in singular values than that of A. (The dynamics in T (A;−ν)
represents the reduced dynamics r(τ) in symmetry reduction.) Therefore one approximates
T (A;−ν) by a low-rank representation Ã via the usual truncation of rank-1 expansion. If we
apply the forward transport to Ã, that is, compute T (Ã;ν), it will be a better approximation
of A compared to the direct low-rank approximation of A. This idea has been illustrated also
in [31]. The effectiveness of this approach, along with extensions, will be discussed further in
section 3.

Template fitting in the simple manner described above works very well for snapshots
produced by solving the constant coefficient advection equation with periodic boundary con-
ditions, but is not sufficient to well represent snapshots generated by solving other hyperbolic
equations. For more general wave propagation problems the solution at later times will not
simply be a shifted version of the initial data. The shape of the waves may vary, and waves
may leave the domain or reflect at a boundary rather than behaving periodically. Moreover
for a hyperbolic system of equations there are different families of waves that propagate at
different speeds and perhaps in different directions. Nonetheless, many important wave prop-
agation problems exhibit coherent waves that modulate slowly relative to their propagation
speed, which suggests that a more complex version of template fitting and reversal may still
be very effective in reducing the dimension of the data.

We give four specific examples of the difficulties mentioned above that are typical of more
general hyperbolic PDEs. Illustrations of the solution behavior for each problem are shown
in Figure 1.

(P1) Advection equation with source term,

(2.9) ut + ux = −γu in (0, 1) with γ > 0,

where u(x, 0) is a nonnegative density pulse. The pulse diminishes in height over time,
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and this decrease cannot be well represented by translation alone. This is an inherent
limitation of (2.4).

(P2) Advection equation

(2.10) ut + ux = 0 in (0, 1)

with absorbing boundary conditions, ux = −ut at the right boundary x = 1, and
u(x, 0) a density pulse. In (2.4) periodic shift K assumes periodic boundary conditions,
so there is little hope of capturing this absorption.

(P3) Acoustic equations in a homogeneous medium,

(2.11)

[
p
u

]
t

+

[
0 K0

1/ρ0 0

] [
p
u

]
x

= 0 in (0, 1)

with periodic boundary conditions and the initial conditions in which p(x, 0) is an
acoustic pulse and u(x, 0) = 0. For the state variable p, the initial profile splits into
two, both scaled by half, and propagates in opposite directions. A single minimization
problem (2.4) cannot be used to represent the two different speeds.

(P4) Burgers’ equations

(2.12) ut + uux = 0 in (0, 1),

again with a density pulse as the initial condition. When the initial profile changes
shape dramatically, translation alone cannot yield a good approximation.

In the next four subsections we present a series of enhancements that are designed to deal
with these four common features of hyperbolic problems.

• Projection of pivot. In section 2.1 we allow the pivot vector to be both translated, as
in section 2, and rescaled in order to better match a snapshot. This can be done via
a projection.
• Cut-off vectors. In section 2.2 we introduce the idea of cutting off a section of the

(translated and projected) pivot vector, necessary to handle outflow boundary condi-
tions and also to better model shock formation.
• Greedy iteration and pivoting. In section 2.3 we address the fact that a single pivot

vector (even after translation, projection, and cut-off) is not likely to capture all of the
features of later snapshots. We thus introduce an iterative algorithm that allows fitting
with a combination of several different versions of the pivot vector (with different
choices of the translation, projection, and cut-off). We extend further to allow the
choice of a new pivot vector once the point of diminishing returns has been reached.
• Regularization of shift numbers. In section 2.4 we suggest an improved way of choos-

ing the shift numbers to better reflect the expectation that waves should propagate
smoothly in time, which can help to better reveal the wave propagation structure of
the solution and may be important for applications of the reduced model.

Algorithm 1 summarizes the final iterative algorithm. Section 2 concludes with some
numerical experiments illustrating the effectiveness of this algorithm on the acoustics and
Burgers’ equations. Some further extensions and improvements are then pursued in section 3.
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2.1. Projection of pivot. Consider the situation in the problem (P1) above, where the
initial profile diminishes in height with time, while being transported at constant speed. This
is illustrated in Figure 1 (P1). The minimization problem in (2.4) does not take the scaling
into account. We introduce a scaling by projecting the jth column onto the pivot. The
projection P is defined as

(2.13) P(aj ; b) ≡


bbT

‖b‖2 aj if ‖b‖ > 0,

0 otherwise, if ‖b‖ = 0.

Now, we replace the functional in the minimization problem (2.4) by measuring the difference
between the jth column aj and the transported-and-projected vector P(aj ; K

ωb). That is,
we solve the minimization problem

(2.14) νj = argminω∈ZN
‖aj − P(aj ; K

ωb)‖22 .

We denote this computation of the shift numbers in a concise form,

(2.15) ν = C(A; b,P),

by supplying the projection map P. The scaling (2.13) must also be stored, and we organize
it in the vector h,

(2.16) hj = P(aj ; K
νjb) and h =

[
h1 · · · hM

]
.

We denote this concisely by writing h = P(A; b,ν).
The operator T must also be generalized to take into account the scaling h,

(2.17) T (A;ν,h) ≡
[
h1K

ν1 · · · hMKνM
]
�
[
a1 · · · aM

]
.

The vector version of T is modified similarly,

(2.18) T (b;ν,h) ≡
[
h1K

ν1b h2K
ν2b · · · hMKνM b

]
.

2.2. Cut-off vectors. In (P2) we encounter a wave profile that is absorbed at the right
boundary. If we were to apply the minimization problem with projection (2.14), the vanishing
pulse would be partly represented by a translating profile that is decreasing in height. Still,
some part of the profile will hit the boundary to the right, and since K assumes a periodic
boundary condition, the profile will appear at the left boundary as well. While one can
modify K to account for this behavior, this will cause significant changes in the minimization
problem (2.4), and the existence of the exact inverse in (2.8) may be lost. Moreover, another
problem arises in the Burgers’ equation (P4). The initial pulse is deformed to the extent that
its transported profile may not represent the shape of the shock wave adequately, even with
scaling.

As a step toward remedying both issues, we introduce the cut-off (or support) vector
ρ. Roughly speaking, ρ will designate the location of the domain where the projection
P(aj ; K

ωb), for given ω ∈ ZN , is a good approximation of aj . We will denote by S the
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operator that yields the cut-off, for given two column vectors aj and b. To be more specific,
the ith component ρi of ρ is defined as

(2.19) ρi = (S(aj ; b))i ≡


1 if sign(aij − bi) · sign(aij) ≥ 0

and |aij − bi| ≤ |aij | ,
0 otherwise.

The intention is to use ρibi to approximate ai. The first condition sign(aij − bi) · sign(aij) ≥
0 ensures that the cut-off pivot does not overshoot the profile, and the second condition
|aij − bi| ≤ |aij | makes sure that the approximation has the same sign as the original vector.

We will project aj onto b for scaling before we apply S. That is, P(aj ; b) will be input
above in (2.19) in place of b. To simplify the notation, we will use the shorthand

(2.20) S(aj ; b,P) ≡ S(aj ;P(aj ; b)).

Now the minimization (2.14) is further updated: we shift b and scale it using the projection
P, we cut-off using S, and then we compare with aj . The new minimization problem becomes

(2.21) νj = argminω∈ZN
‖aj − S(aj ; K

ωb,P)� P(aj ; K
ωb)‖22 .

Here � denotes the componentwise multiplication between two vectors in RN . As before, we
define a shorter notation for this computation of shift numbers,

(2.22) ν = C(A; b,P,S).

Furthermore, this generalization makes it necessary to store the vectors ρj corresponding to
each νj , that is,

(2.23) ρj = S(aj ; K
νjb,P).

We store these as columns of the matrix

(2.24) P =
[
ρ1 · · · ρM

]
,

and we also write P = S(A; b,ν,P). In implementing the algorithm P is computed simul-
taneously with ν, but we will keep this implicit notation. P can be stored as an array of
Boolean data-type, so the storage requirement is not significant. It can be even more reduced
should the pivot b be sparse, but the details will not be pursued here.

Finally, the transport operator T must also be extended to incorporate the cut-off function,
which we can do by letting

(2.25)
T (A;ν,h,P) ≡

[
h1ρ1 �Kν1 · · · hMρM �KνM

]
�
[
a1 · · · aM

]
=
[
h1ρ1 �Kν1a1 · · · hMρM �KνM aM

]
,

and the vector version T (b;ν,h,P) is defined similarly. Now we are ready to combine these
computations in a greedy iteration.
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2.3. Greedy iteration and pivoting. Recall that the rank-1 expansion arising from the
SVD can be seen as an iterative procedure in which a greedy rank-1 update is made in each
iteration. Here we define a similar update for the minimizations above, by attempting to cap-
ture transport structure iteratively. The necessity of multiple iterations can be illustrated by
the acoustic equation (P3). The initial pulse splits into two and travels at two different speeds.
In this case the speeds have equal magnitude with opposite sign, as sketched in Figure 1 (P3).
However, they could be of the same sign and may also vary with time. One minimization
problem using C and T defined above cannot approximate this behavior adequately. Further-
more, in the Burgers’ equation (P4) the profile is deformed heavily, so that transporting one
pivot once, even with projections and cut-offs, cannot capture the substantial change in shape.

Therefore, we iterate on the previously defined computations as follows. First, let R1 ≡ A
and choose a pivot b1, say, the first column a1 of A. Rk will denote the residual, and index k
will be used for the iteration number. We compute the shift numbers ν1, the scaling h1, and
the cut-offs P1,

(2.26) ν1 ≡ C(R1; b1,P,S), h1 ≡ P(R1; b1,ν1), and P1 ≡ S(R1; b1,ν,P).

Now, we subtract off the first rough approximation from the snapshots,

(2.27) R2 ≡ R1 − T (b1;ν1,h1,P1).

This forms one iteration. We remark that the conditions in (2.19) prevent R2 from developing
oscillations.

Next, we compute ν2,h2, and P2 by replacing R1 above by R2. We repeat, so that all
transport patterns using the pivot b1 are removed from the data. This reaches a point of
diminishing returns after some iterations, and we monitor the progress at the kth iteration by
computing the ratio ‖Rk‖/‖Rk−1‖. One may set a threshold τ1 so that

(2.28) if
‖Rk‖F
‖Rk−1‖F

> τ1, then update the pivot b` to b`+1.

There are many different options in choosing the next pivot b`+1. For example, one may
proceed to a pivot that is orthogonal to the previous pivot. Here we simply choose b` = r`,k,
where r`,k is the `th column of Rk.

The algorithm halts when ‖Rk‖F < τ0 for a given tolerance τ0.
Let us organize the shift numbers νk at each iteration in V,

(2.29) V ≡
[
ν1 · · · νK

]
,

where K denotes the index of the last iteration. We do the same for the cut-offs Pk and
collect them in Q,

(2.30) Q ≡
[
P1 · · · PK

]
,

and then similarly collect hk in H,

(2.31) H ≡
[
h1 · · · hK

]
.
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2.4. Regularization of shift numbers. The shift numbers νk encode the transport motion
of a profile over time, and we expect the speed of the transport to be relatively smooth. While
the greedy iteration may yield a good approximation to A, the components of νk may vary
wildly. Hence it is reasonable to enforce some regularity when computing νk. That is, the
shift number should change smoothly over time. We achieve this by adding a penalty term in
the minimization problem (2.21) when j > 1 to try to keep |ν(j−1)k − νjk| small:

(2.32) νjk = argminω∈ZN
‖aj − S(aj ; K

ωb,P)� P(aj ; K
ωb)‖22 + λ

∣∣ω − ν(j−1)k

∣∣2
with a regularization parameter λ. It may be desirable to add additional higher-order regu-
larity terms, that is, second order finite difference term for νk. Other penalty terms regarding
the regularity of Pk as well as hk can be summed into (2.32) also.

The regularization is crucial, since the smooth evolution of the shift numbers across snap-
shots is needed for displacement interpolation in the sense used in optimal transport (see,
e.g., [40]), which effectively tracks the transport structure. Note also that we may encode the
smooth evolution efficiently by polynomial interpolation or regression. This could be taken
into consideration much earlier on, when the snapshots are generated: one may store snap-
shots at Chebyshev grid points in the time variable, to facilitate accurate interpolation, and
then enforce high regularity in the shift numbers.

The output of the regularized version of the algorithm can also be viewed as a greedy
solution to an optimal transport problem, where one seeks to minimize the cost of transporting
an initial state to the final state over admissible transport maps. The cost function here is
particularly simple and is given by the regularization terms, for example, the term penalizing
the total displacement in the case of (2.32).

A simplified pseudocode of the transport reversal is given in Algorithm 1.

2.5. Numerical example for transport reversal. Here we apply the transport reversal
algorithm to two of the problematic scenarios given above: the acoustic equation (P3) and
the Burgers’ equation (P4). The tolerances and regularization parameters are chosen rather
heuristically. λ is set adaptively according to the variation of the functional in the minimiza-
tion problem without the penalty terms (2.21): we set λ in (2.32) as 2.5/(CN), where

(2.33)

C ≡ max
ω∈ZN

‖aj − S(aj ; K
ωb,P)� P(aj ; K

ωb)‖22
− min
γ∈ZN

‖aj − S(aj ; K
γb,P)� P(aj ; K

γb)‖22 .

The L2-norm used for measuring the error here refers to the two-dimensional L2-norm over
spatial and temporal variables, ‖·‖F /

√
NM for a matrix in RN×M .

2.5.1. Acoustic equation. The snapshot of the p variable for the acoustic equation is given
in Figure 2. No pivoting was required up to the given maximum number of iterations K = 15.
The L2-norm of the residual at the final iteration was 2.1841× 10−3. The corresponding shift
numbers for each iteration are shown in Figure 3. The diagonal pattern is clearly visible,
which indicates that the method is capturing the two profiles being transported at constant
speed through the domain. However, there is some ambiguity between the two profiles when
they pass each other near snapshot number 60. Notice how in the computed shift numbers for
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Algorithm 1 Transport reversal algorithm.

1: procedure TR(A,K, τ0, τ1)
. input matrix A, max. no. of iterations K, and tolerances τ0, τ1

2: `← 1 . pivot number
3: k ← 0 . iteration count
4: rold ← ‖A‖F
5: R← A . initialize residual R
6: b` ← R(:, `) . choose first column of R as pivot
7: while (rold > τ0 and k ≤ K) do
8: k ← k + 1
9: (νk,hk,Pk)← (C(R; b`,P,S),P(R; b`,νk),S(R; b`,νk,P))

. computation is done concurrently
10: R← R− T (b`;νk,hk,Pk)
11: rnew ← ‖R‖F
12: if rnew/rold > τ1 then
13: `← `+ 1 . pivoting
14: b` ← R(:, `) . update pivot to be the `th column of the new R
15: end if
16: rold ← rnew

17: end while
18: B← [b1, · · · ,b`]
19: V← [ν1, · · · ,νk]
20: H← [h1, · · · ,hk]
21: Q← [P1, · · · ,Pk]
22: return B,V,H,Q

. output pivots, shift numbers, scalings, and cut-offs
23: end procedure

k = 1 shown in Figure 3 the profile is transported first to the right, and then the direction is
reversed around the snapshot 60, rather than keeping straight. This behavior can be changed
by adding higher-order finite difference terms of νk as penalty term in (2.32) so that the
second derivative of the shift numbers are kept small.

2.5.2. Burgers’ equation. Now we apply transport reversal to the snapshot matrix from
the Burgers’ equation (P4). The initial condition and its final snapshot is shown in Figure 4.
The entire snapshot matrix and its approximate reconstruction are shown in Figure 5. The
total number of iterations was K = 30 and pivoting occured once at iteration 19.

The L2-norm of the residual at the final iteration was 9.6333× 10−5. The corresponding
shift numbers extracted for iterations 1–15 are shown in Figure 6. The shift numbers computed
here also face an ambiguity between the two separate humps at times, in a similar manner to
the acoustic equations example. Adding more regularity will remove this ambiguity.

The first two shift numbers in Figure 6 correspond to the movement of the pivot that
attempts to match the deforming hump to the left and to the right. Since the left and the
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Figure 2. Snapshot matrix of the p variable in the acoustic equation (P3) (left) and its approximation via
the transport reversal algorithm (right). The L2-norm of the difference is 2.1841 × 10−3.

Figure 3. Shift numbers νk (2.29) for each iteration k, for the acoustic equations example. Single pivot
(the initial condition) was used.
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Figure 4. Initial condition of the Burgers’ equation (P4) (left) and its final snapshot (right).

Figure 5. Snapshot matrix of the Burgers’ equation (P4) (left) and its approximation via the transport
reversal algorithm (right). L2-norm of the difference is 9.6333 × 10−5.

right humps move at slightly different speeds, transporting the initial condition at constant
speed is only able to match one of them. It is helpful to isolate the contributions from the
first two iterations from the algorithm. That is, we observe

(2.34) hjkρjk �Kνjka1 for k = 1, 2 and j = 15, 50.

These contributions are shown in Figure 7. Note how in the first iteration the initial profile
is cut off to match the hump to the right. In the second iteration, the hump to the right in
the initial condition is cut off to match the left shock in the snapshot. This illustrates the
flexibility provided by the cut-off vectors ρ for capturing the deformation occurring in the
profile.

3. Extensions of the shift operator. In this section, we consider extensions of the shift
matrix K defined in (1.4). This matrix is the discrete analogue of the translation operator
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Figure 6. Shift numbers νk (2.29) for iterations k = 1 to 15, for the Burgers’ equations example. The first
pivot (the initial condition) was used for all iterations shown here.

in (1.7) and is the defining component of the minimization problem (2.4) that enables the
detection of moving waves. Throughout this section, we consider the natural extensions of
the powers Kω (ω ∈ ZN ) that were used repeatedly in the the minimization problems (2.4),
(2.14), (2.21), and (2.32) in the previous section.

First, we extend Kω, for which ω was restricted to a set of integers ZN , to real numbers
ω̃ ∈ R. This is done using a linear interpolation between Kω and Kω+1, for the integer
ω = bω̃c. This yields a continuous operator K(ω̃) defined over the real numbers. This
operator can be used in place of Kω in the minimization problems of the previous section, and
therefore transport reversal can be extended to R. Since K(ω̃) now causes some numerical
diffusion due to its interpolation, a reconstruction procedure is introduced to sharpen the
profile. This extension is developed in sections 3.1–3.3.

Another extension allows the advection velocity c in the advection equation (1.1) to depend
on the spatial variable. This extension results in the operator Kc(ω̃) with a prescribed velocity
field c. To avoid excessive diffusion whenever Kc(ω̃) is used, we apply the large-time step (LTS)
method. We also briefly discuss the pivoting procedure that becomes necessary for systems
of PDEs. This appears in section 3.4

We emphasize that the extensions that appear in this section can be used in the greedy
iteration introduced in the previous section. This would require only that one change the
operator K above to K or Kc.
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Snapshot 15 Snapshot 50

Figure 7. Contributions from the first two iterations of the transport reversal (rows 1 and 2) for snapshots
15 and 50 (columns 1 and 2) given by the expression (2.34). Final approximation at iteration 30 is given in
the last row. The contribution from first iteration alone attempts to capture the taller shock to the right (row
1), and that of the second iteration captures the shorter one to the left (row 2).

3.1. Extension of Kω by upwind flux. First let us recall the finite volume upwind flux,
which will motivate our definitions below. The finite volume update of the advection equation
(1.1) is given by

(3.1) un+1
j = unj −

∆t

∆x

(
fnj+1/2 − fnj−1/2

)
.
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The upwind flux is defined by fnj−1/2 ≡ cunj−1, and letting ν ≡ c∆t/∆x be the shift number,

the time-step (3.1) can be is expressed as a linear interpolation between unj−1 and unj ,

(3.2) un+1
j =

(
c∆t

∆x

)
unj−1 +

(
1− c∆t

∆x

)
unj = νunj−1 + (1− ν)unj .

We write the update in (3.1) as a matrix multiplication.

Definition 3.1. Let K be the permutation matrix in (1.4). Define the matrix K(ν) ≡ (1−
ν)I+νK. Let us also define the discretized Laplacian Lh ≡ (K+KT −2I)/h2, where h = 1/N.

We list some basic properties of the matrix K(ν).

Lemma 3.2. K(ν) satisfies
(a) K(ν)K(ω) = K(ω)K(ν).
(b) K(ν)K(ω)T = K(ω)TK(ν).
(c) For 0 ≤ ν, ω ≤ 1 and ν+ω ≤ 1, K(ν)K(ω) = K(ν+ω)+O(1/N2), where the constant

for O(1/N2) is a shifted discrete Laplacian (see the paragraph below).
(d) For u ∈ RN ,

∑N
j=1 (u)j =

∑N
j=1(K(ν)u)j.

Proof. The proof follows directly from definitions and is given in Appendix A.

The notation O(1/N2) here and throughout the paper is to be interpreted as follows.
When a matrix term is to be acted on vectors v that are discretizations of twice differentiable
functions on a grid of size O(N) (so that its discrete Laplacian Lhv converges), the resulting
term is of size O(1/N2).

Note that K(ν)T is obtained if we use the one-sided flux in (3.1) on advection with velocity
−1 rather than 1 (so that this is actually still the upwind flux). Naturally, when the matrix
K(ν)TK(ν) is multiplied to the left of a vector, it propagates the entries of the vector first
in one direction and then back in the opposite direction. The resulting vector should be
close to the initial one, in other words K(ν)TK(ν) must be close to the identity. This fact is
summarized in the following lemma.

Lemma 3.3. K(ν)TK(ν) = K(ν)K(ν)T is an identity up to O(1/N2), in which the residual
is a multiple of discrete Laplacian with periodic boundary condition. It satisfies the bound

(3.3)
∥∥K(ν)TK(ν)− I

∥∥
2
≤ 4ν(1− ν).

Proof. By definition and recalling h = 1/N ,

(3.4) K(ν)TK(ν)− I = ν(1− ν)
(
K + KT − 2I

)
=
ν(1− ν)

N2
Lh.

Now, ‖K + KT − 2I‖2 ≤ 4 by von Neumann analysis

|λξ| =
∣∣∣ei2πξ(x+h) − 2ei2πξx + ei2πξ(x−h)

∣∣∣
=
∣∣∣ei2πξx (ei2πξh − 2 + e−i2πξh

)∣∣∣ = 2 |(cos(2πξh)− 1)| ≤ 4.
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The inequality (3.3) holds for any N , and it is merely an estimate for the total numerical
diffusion due to the upwind flux, resulting from both K(ν) and K(ν)T . This marks a point of
departure from the continuous setting studied in [32, 33], as it indicates that the translational
actions discretized in such a way no longer form a group; the inverse (3.4) and multiplication
(Lemmas 3.2(c) and 3.5(c)) are both only approximate and their residuals indicate the presence
of numerical diffusion.

Note that K(ν) was defined in Definition 3.1 for any ν ∈ R. However, when ν is viewed as
the Courant number, the Courant–Friedrichs–Lewy condition imposes a necessary condition
for stability of the upwind method [23], which requires ν ∈ [0, 1] in this case. This prohibits
the use of K(ν) when ν is outside of the unit interval, at least superficially. There is a
straightforward generalization of this ν to be any real number ν̃ ∈ R by first shifting exactly
an integer number of times (determined by the integer part s of ν̃), which is accomplished by
multiplying by Ks, and then applying K(ν), where ν is the remaining fractional part.

This leads us to the next definition.

Definition 3.4. Given a shift number ν̃ ∈ R, let s and ν be its integral part and the fractional
part, s ≡ bν̃c and ν ≡ ν̃ − s, respectively. We define the matrix K(ν̃) as follows:

(3.5) K(ν̃) ≡
{

KsK(ν) if s ≥ 0,(
KT
)s

K(ν) if s < 0.

We will also use the notation, for s ∈ Z and ω ∈ R,

(3.6) K(s, ω) ≡
{

KsK(ω) if s ≥ 0,(
KT
)s

K(ω) if s < 0.

Then it follows that K(ν̃)T = K(−ν̃) since if one writes out the integral and fractional
parts ν̃ = s+ ν and −ν̃ = −(s+ 1) + (1− ν),

(3.7) K(ν̃)T =
(
KT
)s+1

((1− ν)I + νK) =
(
Ks+1

)T
K(1− ν) = K(−ν̃).

All of Lemma 3.2 follows through easily.

Lemma 3.5. Let K(ν̃) be as above. Let s ≡ bν̃c, ν ≡ ν̃ − s and r ≡ bω̃c, ω ≡ ω̃ − r. Then
it satisfies the following.

(a) K(ν̃)K(ω̃) = K(ω̃)K(ν̃).
(b) K(ν̃)K(ω̃)T = K(ω̃)TK(ν̃).
(c) For ν̃, ω̃ such that 0 ≤ ν, ω ≤ 1 and ν+ω ≤ 1, we have K(ν̃)K(ω̃) = K(ν̃+ω̃)+O(1/N2),

where the constant for O(1/N2) is a shifted discrete Laplacian.
(d) For u ∈ RN ,

∑N
j=1 (u)j =

∑N
j=1 (K(ν̃)u)j.

Proof. We omit the proof, as it is similar to that of Lemma 3.2.

This is a generalization of the upwind method beyond the constraint of the CFL condition,
and can be viewed as a special case of the LTS method [20], which can also be extended to
nonlinear systems [21, 22].
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3.2. Transport reversal in R. Using the definitions above, we generalize the minimization
problem (2.4) to be applied to a snapshot matrix A. We will use the notation D ≡ K− I and
L ≡ K + KT − 2I.

Lemma 3.6. Suppose a,b ∈ RN are nonconstant.
If we let ν = argminω∈R ‖b−K(ω)Ta‖22, then

(3.8) ν =
1

2

(
1− 2

aTDb

aTLa

)
.

Proof. Let

J (ω) ≡
∥∥b−K(ω)Ta

∥∥2

2
=
(
b−K(ω)Ta

)T (
b−K(ω)Ta

)
= bTb− 2aTK(ω)b + aTK(ω)K(ω)Ta.

Taking a derivative,

J ′(ω) = −2aTK′(ω)b + aTK′(ω)K(ω)Ta + aTK(ω)K′(ω)Ta.

Letting J ′(ν) = 0 and expanding, we have

ν =
1

2

(
1− 2

aT (K− I)b

aT (K + KT − 2I)a

)
=

1

2

(
1− 2

aTDb

aTLa

)
.

The nullspace of L is the span of constant vectors, so the denominator on the right-hand side
does not vanish.

Recall that the CFL condition required that ν ∈ [0, 1], and note that ν given by (3.8) is
not guaranteed to lie in this stability region. The minimization (2.4) is now extended to the
case when K is replaced by the matrix K(ν̃),

(3.9) min
ω̃∈R

∥∥a−K(ω̃)Tb
∥∥2

2
.

It is immediate that this problem is symmetric with respect to the vectors a and b up to
O(1/N2). That is, the problem can be rewritten using (3.4),

(3.10) min
ω̃∈R

(∥∥b−K(ω̃)Ta
∥∥2

2
+O

(
1/N2

))
.

The problem (3.9) is only of one variable ω̃ lying in an interval [0, N ], although this can
be viewed as a nonconvex minimization problem in RN as we will see in section 4. With the
partitioning {[m,m + 1] : m = 0, . . . , N − 1} of [0, N ], a recursive relation can be found for
the formula (3.8) in terms of j, restricting the variable ω̃ to a set of 2N − 1 positive reals.

Lemma 3.7. Suppose a,b ∈ RN and let ν±s be defined as

(3.11) ν+
s ≡ argminω∈R

∥∥b−K(s, ω)Ta
∥∥2

2
, ν−s ≡ argminω∈R

∥∥b−K(−s, ω)Ta
∥∥2

2
.

Then we have the relations

(3.12) ν+
s+1 = ν+

s +
(Ksb)TLa

aTLa
, ν−s+1 = ν−s +

(
(KT

)s
b)TLa

aTLa
.
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Proof. The proof is easy and is given in Appendix A.

Filtering out ν±s that do not satisfy the CFL condition, we let

ν̂±s ≡
{
±s+ ν±s if νs ∈ [0, 1]

±s otherwise.

Then the minimization problem (3.9) only requires comparison of at most 2N − 1 discrete
values,

(3.13) ν̃ = argminω̃∈W
∥∥b−K(ω̃)Ta

∥∥2

2
where W ≡

{
0, ν̂+

0 , 1, ν̂
+
1 , . . . , N − 1, ν̂+

N−1

}
,

or equivalently, W = {0, ν̂−N−1, 1, ν̂
−
N−2, . . . , N − 1, ν̂−0 }.

In many examples the data a and b have localized features. This fact can be incorporated
into our computation of (3.9) by assuming that a and b are sparse representations that reflect
these features well, thereby W . Reduction of W beyond this may be possible by using discrete
Fourier transforms and exploiting isotropy that might exist in a or b (see Proposition 4.1.)

Definition 3.8 (transport reversal in R). Given a matrix A ∈ RN×M , let aj denote the jth
column of A, and let b ∈ RN be a given pivot. Let

(3.14) ν̃j ≡ argminω̃≥0

∥∥aj −K(ω̃)Tb
∥∥2

2
for j = 1, . . . ,M.

This computation is denoted by ν̃ = C̃(A; b).
We define the transport T of A,

(3.15) T (A; ν̃) ≡
[
K(ν̃1) K(ν̃2) · · · K(ν̃M )

]
�
[
a1 a2 · · · aM

]
.

Let ν̃ ≡ C̃(A; b) and Å ≡ T (A;−ν̃). Now, the orthogonality of the eigenvectors of ÅT Å is
not strictly preserved under the action of K(ν̃), but holds up to O(1/N2). This is an analogue
of [5, Proposition 3] and is stated as follows.

Proposition 3.9. If ϕ is an eigenvector of ÅT Å with eigenvalue λ, then ϕ is also an eigen-
vector of (K(ν̃)Å)T (K(ν̃)Å) to the same λ for every ν̃ ∈ R, up to O(1/N2).

Proof. The proof follows immediately from (3.4) in Lemma 3.3.

3.3. Sharpening procedure. Once Å ≡ T (A;−ν̃) is computed, we can apply the SVD
to construct a reduced basis representation of Å. Let us denote this low-rank representation
by Ã, and columns of Ã by ãj . For a reconstruction of A itself, we compute the forward
transport, T (Ã; ν̃). While this yields an acceptable reconstruction, the numerical diffusion
arising from the upwind flux causes O(1/N2) amount of smearing. This numerical diffusion
has a particular structure (3.4) in the form of a discrete Laplacian Lh. This can be utilized
to improve the accuracy by applying a postprocessing procedure motivated as follows.

Suppose we are given a column a, to which we apply the reversal then reconstruction as
above. Then the reconstruction, which we denote by b, satisfies the equation K(ν̃)K(ν̃)Ta = b.
Recall that

K(ν̃)K(ν̃)T = I + αLh, where α =
ν(1− ν)

N2
and Lh ≡

1

h2

(
K + KT − 2I

)
.
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Thus we can recover a from b by solving a discretized Helmholtz equation augmented with a
set of boundary conditions. For example, we can use the first and last values of a,

(3.16) (I + αLh) u = b, satisfying u1 = a1 and uN = aN .

This inversion acts to remove the diffusive error caused by grid interpolation (3.2). This can
also be seen as a sharpening procedure, once rewritten as

u− b

k
= βLhu, β ≡ −α

k
.

Due to the negative sign of β, here u is shown as the single time-step solution to the backward
heat equation with step size k (a parameter that has been introduced for illustrative purpose).

We will denote this solution operator to (3.16) by (I + αLh)−1 . Letting αj ≡ νj(1−νj)/N2,
we apply this sharpening procedure for each column of the reconstructed Ã, that is,

(3.17)
[
(I + α1Lh)−1K(ν̃1) · · · (I + αM−1Lh)−1K(ν̃M−1)

]
�
[
ã1 · · · ãM

]
.

As mentioned in remarks following Lemma 3.3, this procedure aims to address the fact that the
discretized advection or translation no longer forms a symmetry group exactly. The reversal
and reconstruction procedure will be demonstrated numerically in section 3.4.3.

3.4. Variable speed transport reversal and linear systems. In the previous section we
have introduced a transport procedure amounting to a long-time solution of a constant speed
advection equation. Now we consider a generalization of the reversal problem (1.7) when the
advection speed c > 0 in (1.1) is allowed to depend on the spatial variable x. For simplicity,
c will be represented as a piecewise constant function over a uniform grid.

In the previous section, the transport reversal (3.14) has largely been a discretization of the
continuous minimization problem (1.7) with some numerical error (3.3). But in considering
the variable speed setting, additional differences between the discrete and the continuous case
come to the fore. Consider c which has the following property: there exists ω > 0 and a grid
{xj}Nj=0 and grid-sizes ∆xj = xj+1 − xj ,

(3.18) |ω − ωj | < δ � 1, where ωj =
c(xj+1/2)

∆xj
for j = 0, . . . , N.

That is, even if c(xj+1/2) varies, care can be taken to adjust size of the cells ∆xj so that
the shift number νj = ωj∆t behaves like a constant multiple of ∆t for all cells. Then, the
discretized problem is identical to the constant speed case and the techniques introduced in
the previous section apply directly, so the extension to variable speed c satisfying (3.18) is
trivial. Let us give a simple example of c and {xj}Nj=0 that satisfies this property. Consider the
advection equation (1.1) and suppose c took on two values and the grid {xj} was constructed
as follows:

c(x) =

{
1 if 0 ≤ x < 1

2 ,
1
2 if 1

2 ≤ x ≤ 1,
and xj =

{
3

2N j if j < N/3,
3

4N j + 1
4 if j ≥ N/3.

If we choose N to be a multiple of 3, then (3.18) holds with ω̄ = 2N/3 and δ = 0.
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However, the property (3.18) is not easily guaranteed, especially when dealing with sys-
tems, when the characteristic variables have different speeds, or when c is allowed to depend on
time, as in the nonlinear case. Here we address the general variable speed case in section 3.4.1,
even if c does not satisfy the property (3.18).

3.4.1. Variable speed reversal. We proceed to generalize the transport reversal procedure
by employing the LTS method [20, 21, 22]. This is also reminiscent of Lagrangian methods
such as the particle-in-cell method [10, 14] or its variant the material point method [37, 36].
The LTS method allows long-time reversal of the given wave profile without incurring excessive
numerical diffusion, mimicking the behavior of the matrix K(ω̃) .

The given vector (unj )Nj=1 will be considered to represent a discretization of a function

u(x) lying on a uniform grid {xj}Nj=0 of the domain Ω = [0, 1]. Let us define the jumps
∆n
j ≡ unj − unj−1, where the index j is defined modulo N .

Now, the grid points will serve as particles or material points, and their positions will
evolve with time. We index the time-dependence by `, letting {x`j}Nj=0 denote the grid points
at time t`. Then we evolve the grid points as a function of time, xj = xj(t), according to the
ordinary differential equation

(3.19)

{
ẋj = c(xj),

xj(0) = x0
j

for j = 0, 1, . . . , N

with periodic boundary conditions. We will evolve backward in time, as is natural for the
reversal procedure. The problem will be solved up to time tL < 0. The solution at tL is given
by

(3.20) xj(t
L) = xj(0) +

∫ tL

0
c (xj(t)) dt.

Recall c(x) was assumed to be piecewise constant, so we let cj ≡ c(xj+1/2) and we compute
(3.20) explicitly.

Let us be given time-steps 0 = t0 > t1 > · · · > tL with ∆t` = t` − t`−1 < 0. Define
∆t`ij as the amount of time xj(t) lies in the ith cell Ci during the time interval [t`, t`−1],

∆t`ij ≡ − |{t ∈ [t`−1, t`] : xj(t) ∈ Ci}| . Naturally, this is a partition of the time interval [t`, t`−1]

so ∆t` =
∑N

i=0 ∆t`ij . Then the solution x`j at time t` = t0 +
∑`

k=1 ∆tk is given by

(3.21) x`+1
j = x`j +

N∑
i=1

ci∆t
`
ij mod 1.

Once time-stepping has reached the final time tL, we can update the cell average by computing
the total flux for each cell,

(3.22) un+1
j = unj +

N∑
i=1

∆n
i ci∆t

`
ij .

The procedure is sketched in Figure 8.
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Given unj , place a material point at

each grid point x0
j (red dots) and com-

pute the jumps ∆n
j at these points

(red lines). Assign the jumps to the
material points.

Advect the material points, comput-
ing the total flux caused by each
jump, for each cell (e.g, jump for xn4
below will change the volume of cells
C2, C3, C4).
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Figure 8. An illustration of the variable speed advection with periodic boundary conditions. The dotted blue
line at x = 0.5 denotes the interface where c changes. After the fluxes for each cell are computed, we update
un
j by computing the total change of volume as in (3.22), resulting in un+1

j .

Although the time-steps ∆t` are not technically necessary since this ODE can be solved
to any time in one step, we define it in order to maintain an analogy to the constant speed
case. Let T denote the period of the solution xj to (3.19), so that xj(t + T ) = xj(t). Recall
that shift number ν̃ ∈ R satisfied the periodicity condition K(ν̃ + N) = K(ν̃), which should
correspond to periodicity xj(t+ T ) = xj(t). Notice that T satisfies the relationship

(3.23) c̄ ≡ |Ω|
T

=
1

|Ω|

∫
Ω
c(x) dx,

where |Ω| denotes the measure of Ω. Given ν̃ and c we let the time-step ∆t satisfy

ν̃ =
N∆t

T
= c̄

∆t

|Ω| /N =

 N∑
j=0

cj∆x
0
j

 ∆t∑N
j=0 ∆xj/N

.

Using this definition, we denote the reversal procedure above by the operator Kc(ν̃).
Note in particular that Kc(ν̃ + N) = Kc(ν̃) holds with high numerical accuracy. Now the
minimization problem to be used in the variable speed reversal can be written down. Replacing
the transpose in (3.9) by a negation of the argument using (3.7), we have

(3.24) min
ω̃∈R
‖aj −Kc(−ω̃)b‖22 .

Now we define the reversal for the variable speed case.
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Definition 3.10 (variable speed transport reversal). Given A ∈ RN×M and a variable speed
c : [0, N ]→ R, let aj denote the jth column of A. Let b ∈ RN be a given pivot. Then compute

(3.25) ν̃j = argminω̃∈R ‖aj −Kc(−ω̃)b‖22 for j = 1, . . . ,M.

This computation is denoted by ν̃ = C̃c(A; b), where (ν̃)j = ν̃j.
We define the transport of A with speed c, denoted by

(3.26) Tc(A;ν) ≡
[
Kc(ν̃1) · · · Kc(ν̃M )

]
�
[
a1 · · · aM

]
.

Also define the transport reversal of A, distinguished by the sign of the shift numbers ν̃,

(3.27) Tc(A;−ν̃) ≡
[
Kc(−ν̃1) · · · Kc(−ν̃M )

]
�
[
a1 · · · aM

]
.

The orthogonality condition in Proposition 3.9 still holds with small error. Also, no simple
relation such as (3.12) are found, and the sharpening procedure (3.17) cannot be easily applied.
This is due to the loss of convexity to be discussed in section 4.

3.4.2. Reversal for linear systems with pivoting. Let us now consider the reversal for
snapshot matrices arising from linear systems of equations. We will focus on the acoustic
equation (P4),

(3.28)

[
p
u

]
t

+

[
0 K

1/ρ 0

] [
p
u

]
x

= 0.

Parameters ρ and K are the density and the bulk modulus of compressibility of the material,
respectively. Eigendecomposition of the matrix yields eigenpairs,

(3.29) λ1 = u− c, r1 =

[
−ρc

1

]
and λ2 = u+ c, r2 =

[
ρc
1

]
,

where c ≡
√
K/ρ. We can rewrite (3.28) in terms of new variables r1 and r2 by projecting

the state vector [p, u]T onto the eigenspace spanned by the two vectors in (3.29). When c
is constant, the system can be completely decoupled, and two advection equations can be
solved separately. However, when c depends on the spatial variable x, the eigendecomposition
also depends on x. This implies that even after the eigendecomposition, there is a coupling
between the variables r1 and r2 across space if ρc varies, so that the wave profiles will evolve.
For example, r1 may initially be identically zero at initial time but suddenly develop nonempty
support as soon as a wave profile in r2 passes through an interface and is partially reflected.
An example of this kind is shown in Figure 12 below.

Therefore we need to dynamically change the pivot vector b in (3.24) appropriately to other
columns as the wave profile evolves. Let us recall the pivot map ` : {1, . . . ,M} → {1, . . . ,M},
which takes each column aj to its corresponding pivot a`(j). Then we may define reversal with
pivoting as follows.

Definition 3.11 (variable speed transport reversal with pivoting). Let the matrix A ∈ RN×M
be given, a pivot map ` : {1, . . . ,M} → {1, . . . ,M}, and a variable speed c : [0, N ]→ R. Then
let

(3.30) ν̃j ≡ argminω̃∈R
∥∥aj −Kc(−ω̃)a`(j)

∥∥2

2
for j = 1, . . . ,M.

This computation is denoted by ν̃ = C̃c(A; `), where (ν̃)j = ν̃j.
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Figure 9. Left: Fast decay of singular values of snapshots in the variables r1 and r2 for the acoustic
equation with homogeneous media. The largest 35 singular values are shown. Three singular values represent
99% of the threshold for both variables. Right: L2 error for each column of the reconstruction for eigenvector
variables r1and r2.

The proper pivoting criterion will depend on the problem at hand, and for acoustic equa-
tions with heterogeneous media, pivoting when there is large relative change in the `2-norm
difference between the previous and current column was sufficient. See Example 3.6 for nu-
merical results using this particular pivoting criterion.

3.4.3. Numerical experiments. We apply the transport reversal and reconstruction pro-
cedure outlined in this section to the acoustic equation, in both homogeneous and hetero-
geneous media. We do not introduce the iterative procedure from section 2, and consider
relatively simple examples to focus on the effect of the extensions of the shift operator.

3.5. Acoustic equation in homogeneous media. We apply the reversal (3.15) to the
constant speed acoustic equation (3.28) with K ≡ K0 and ρ ≡ ρ0 with periodic boundary
conditions. For the initial conditions, p0 is given to be a Gaussian hump and u0 to be
identically zero.

The 100 snapshots were taken from a 100-cell solution. After an eigendecomposition
of the state vectors (3.29) we transform the state variables p and u, to the characteristic
variables r1 and r2. Then we apply the reversal procedure (3.15) to the two snapshot matrices
corresponding to these variables.

The decay of the singular values for Å is clearly much more rapid, as seen from Figure 9.
The threshold of 99% is achieved with only 3 basis vectors. The reconstruction is plotted
against the snapshot itself in Figure 10, and they are nearly identical. The POD reconstruction
is also plotted. The L2-errors from the two reconstructions are compared in Figure 9, where
the reversal consistently outperforms the näıve POD.

3.6. Acoustic equation with heterogeneous media. Now we consider the acoustic equa-
tion (3.28) in heterogeneous media, with two different materials. An interface will be located
at x = 0.5. Letting ` designate the left part of the domain (0, 0.5) and r the right part of the
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Figure 10. Reconstruction of the solution to acoustic equation with homogeneous media, for state variable
p. The snapshot is given in dashed green, the reversal reconstruction in blue, and POD reconstruction in red.
Three reduced basis vectors were used for both reversal and POD.

domain (0.5, 1), suppose we have the parameters K and ρ vary depending on the part of the
domain. Here we let ρ` = 1, K` = 1 and ρr = 4, Kr = 1, so that c` = 1 and cr = 0.5. We
again impose periodic boundary conditions, and this creates two more interfaces, at x = 0
and 1. The initial conditions p0 and u0 are both Gaussian humps of identical shape traveling
toward the interface at x = 0.5.

The 100 snapshots were taken from a 100-cell solution. An eigendecomposition of the
state-vectors transform the variables u and p, to r1 and r2 as in the previous example. Then
we apply variable speed reversal with pivoting (3.30) on each of the matrices for these variables.

Here finding a suitable pivot map becomes necessary. We track the change of the profile
by computing the relative `2-norm difference between the previous and the current column,
and pivots to the current column when it exceeds some threshold γ. That is, the pivot map
is given by

`(j) = max
k

{
k ∈ Z : 0 ≤ k ≤ j, ‖aj+1 − aj‖2

‖aj‖2
≥ γ

}
.

For this example, setting γ = 0.15 was appropriate.
The achieved decay in singular values, along with the L2-errors for each snapshot, are

shown in Figure 11. Note how the error for the reversal is concentrated near the interface.
Away from the interface, the traveling wave solution is much more accurately captured with
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Figure 11. Faster decay of singular values of r1 and r2 for the acoustic equation (1.1) with heterogeneous
media (left). The largest 30 singular values are shown. Five and seven singular values represent 90% threshold
for these variables, respectively. L2-error for each column of reconstruction for characteristic variables r1 and
r2. The error is concentrated near the snapshots in which the wave profile is undergoing quick change near the
interface.

the reversal. The decay of the singular values can also be interpreted in this context. While
the decay is clearly more rapid than the POD modes, the difference is not as striking when
compared to the case of homogeneous media. The singular modes whose corresponding singu-
lar values belong to this trailing part represent the rapidly changing shape of the wave profile
near the interface. The slower decay is attributable to the presence of these modes.

A few sample reversal reconstruction are plotted along with the snapshot itself and the
POD reconstruction in Figure 12. Seven and five reduced basis vectors, for r1 and r2, respec-
tively, were used for the reconstruction. The accuracy of the reconstruction visibly deteriorates
near the interface.

4. Geometric interpretation. In this section, we present some geometric interpretations
of the reversal procedure introduced in the sections 2 and 3.4 that arise naturally. Recall the
matrices K(ν) (Definition 3.1), K(ν̃) = K(s, ν) (3.5) and variable speed operator Kc(ν̃) (3.24).
Let us define

(4.1) Is(a) ≡ {K(s, ν)a : ν ∈ [0, 1]} and M(a) ≡
⋃
s∈Z
Is = {K(ν̃)a : ν̃ ∈ R} .

Observe that Is(a) is the convex hull of {Ksa,Ks+1a}. Therefore, given any column vector
a ∈ RN , M(a) is a union of one-dimensional intervals lying in RN (4.1), although M(a) is
not convex in RN in general.

In the minimization problem (3.9) we are choosing a point on this polygon that is closest
to b. Since K is an isometric map, the vertices of the polygon lie on the N -sphere of radius
‖aj‖2. Note that when choosing a point in the interior of Is(a), we are not preserving ‖a‖2 but∑N

j=1(a)j due to mass conservation in Lemma 3.2(d). This is also reflected in the O(1/N2)

numerical diffusion term in K(ν̃)TK(ν̃)− I (3.3).
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Figure 12. Reconstruction of the solution to acoustic equation for state variable p (left column) and u
(right column). The snapshot is given in dashed green, reversal reconstruction in blue, and POD reconstruction
in red. Four reduced vectors were used for each reconstruction.

When computing the reversal of a matrix A, each column aj is transformed along its
corresponding polygon M(aj). The orientation of this polygon is determined by the column
aj itself. On the other hand, it is easy to see that theM(a) is always regular, since the angle
between the tangent vectors along its edges are −aT (K + KT − 2I)a/‖Da‖22.

As a special case, if A = I, all the regular polygons corresponding to each column vector
of A coincide, and therefore the reversal is able to eliminate the functional (3.9). Then using
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a single reduced basis vector of Å suffices. This indicates that the decay of singular values of
Å depends on how well the polygons M(aj) are aligned with respect to each other.

It follows easily that the M(a) shrinks to a point as a approaches 1. So the problem of
finding the optimal point in the M(a) becomes more constrained and then finally becomes
trivially ill-posed when a or b is parallel to 1. It is also easy to see that the shift number
(3.14) can always be found. That is, suppose a,b ∈ RN , and then there always exists a shift
number ν̃ minimizing ‖b−K(ν̃)Ta‖2. ‖b−c‖22 for c ∈M(a) is a paraboloid on RN restricted
to a compact subset, so it yields a minimum inM(a). This minimum may not be unique, but
the addition of a proper regularization term as in (2.32) will yield uniqueness for the problem.

Now, let us turn our attention to the dimension of the space spanned by vertices of
M(a). The dimension depends on the periodicity of a, in particular when the period of a
is strictly smaller than N . In the presence of such smaller periods, also called isotropy [33],
the minimization (3.9) can be further reduced; and the smaller the period of a, the smaller
the dimension should be. This is eventually related to the period of the functional (3.9),
summarized in the next proposition and remarks that follow.

Note that a period of a function g defined on R is the smallest number L > 0 such that
g(x+ L) = g(x) for all x ∈ R.

Proposition 4.1. Suppose we are given vectors a,b ∈ RN both not parallel to 1. Defining
g(ν̃) ≡ b−K(ν̃)Ta, let us denote by L the period of g, F the discrete Fourier transform, and
gcd the greatest common divisor. Then

(4.2) L =
N

gcd [suppF(a) \ {0}] .

Proof. The proof is given in Appendix A.

Given this dimension L in (4.2), we can reduce the discrete set W in (3.12) by considering
only the first 2L − 1 values. The proposition characterizes the isotropy in a discrete case,
whose continuous version was mentioned but not detailed in [33].

In the variable speed case, the polygon M no longer retains its regularity. Let us define
a variable speed counter part to (4.1),

(4.3) Ic,s(a) ≡ {Kc(ν̃)a : ν ∈ [s, s+ 1]} and Mc(a) ≡
⋃
s∈Z
Is = {Kc(ν̃)a : ν ∈ R} .

Mass is not preserved and Ic,s is not guaranteed to be convex. The variable speed introduces
more vertices to the polygonMc(a) and Ic,s(a) is itself now a union of more convex hulls. This
makes the minimization problem (3.24) more challenging and causes the sharpening procedure
(3.17) to run into difficulties, outside simple special cases for which one may impose more
boundary conditions (3.16) near the interface.

5. Conclusion and future work. This paper introduced a greedy algorithm that extracts
the transport structure from the snapshot matrix by building on the template fitting strat-
egy. Extensions of the algorithm though the generalizations of the shift operators were also
considered. Numerical experiments show that the algorithm can capture complex hyperbolic
behaviors in examples where shocks and interfaces are present.
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The objective of this approach is to construct a reduced order model of fully nonlinear
hyperbolic problems, for use in high-dimensional applications arising in UQ and control design.
In future work, the problem of postprocessing the output from the transport algorithm for
use with existing projection-based model reduction methods will be investigated. Extension
of the algorithm to the multidimensional setting is currently under development.

Appendices.

A. Proofs to Lemmas. Proofs of Lemmas 3.2 and 3.7 and Proposition 4.1 are given
below.

Proof of Lemma 3.2.
(a) It follows from the definition since I,K commute,

K(ν)K(ω) = (1− ν)(1− ω)I + ν(1− ω)K + ω(1− ν)K + νωK2

= ((1− ω)I + ωK) ((1− ν)I + νK) = K(ω)K(ν).

(b) Again from the definition,

K(ν)TK(ω) =
(
(1− ν)I + νKT

)
((1− ω)I + ωK)

= ((1− ω)I + ωK)
(
(1− ν)I + νKT

)
= K(ω)K(ν)T .

(c) We have

K(ν)K(ω) = (1− ν − ω)I + (ν + ω)K +
νω

N2

I− 2K + K2

1/N2
.

The matrix in the last term, I− 2K + K2 = K(KT + K− 2I) = 1
N2 KLh, is a shifted

Lh.
(d) This follows from the fact that the sum of the rows of K(ν) is equal to

[
1 · · · 1

]
.

Proof of Lemma 3.7. Consider the (+) case, and the (−) case follows similarly.

ν+
s = argminω∈R

∥∥∥b− (K(ω)Ks)T a
∥∥∥2

2
= argminω∈R

∥∥∥b−K(ω)T
(
KT
)s

a
∥∥∥2

2
.

Using this in formula (3.8),

ν+
s =

1

2

(
1− 2

bT (K− I)
(
KT
)s

a

aT (K + KT − 2I) a

)
.

Then we have

ν+
s+1 =

1

2

(
1− 2

bTD
(
KT
)s+1

a

aTLa

)
= ν+

s +
bTL

(
KT
)s

a

aTLa
= ν+

s +
(Ksb)T La

aTLa
.
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Proof of Proposition 4.1. We will call L a period of the vector a if L is the smallest number
such that aj+L = aj , where the indices are computed modulo N .

It is easy to see that if a has period L, then g(ν̃ + L) = g(ν̃).
Suppose g has period L, and then L must be an integer. If L has nonzero fractional part

denoted by α, then

g(L) = b−
(
KT
)L−α

K(α)Ta = b− a = g(0).

So we must have that (KT )L−αK(α)Ta = a. Taking the 2-norm on both sides,∥∥∥(KT
)L−α

K(α)Ta
∥∥∥2

2
= aTK(α)TK(α)a = aTa− α(1− α)

N2
aTLa > ‖a‖22

for nonconstant a since −L is positive semidefinite with nullspace equal to that of constant
vectors. Hence α cannot be in (0, 1), so it must be zero.

Now since L is an integer modulo N let us assume L > 0 without loss of generality, and
then

b−
(
KT
)`

a = b−
(
KT
)`+L

a for some ` < N,

which implies KLa = a, so a has period L. Also, since L is smallest number satisfying this
equality, L divides N .

Therefore we only need to find the dividend, for which we simply take the discrete Fourier
transform and compute the greatest common divisor of the nonzero frequencies. This yields
(4.2).
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