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Abstract In this study, we present an optimization method for determining a cost‐effective sparse
configuration for tsunami gauges to realize the reconstruction of high‐resolution wave height distribution
throughout the target region based on the concept of super‐resolution. This optimization method consists of
three procedures. First, we generate time series data of tsunami wave heights at synthetic gauges by conducting
numerical simulations of various earthquake and tsunami scenarios at the target site. Next, we apply proper
orthogonal decomposition to the synthetic tsunami data to extract the spatial features of the wave height
distribution. Finally, according to these spatial features, an optimization process is performed to determine a
sparse configuration of synthetic gauges. In the optimization, the optimal gauges are sequentially selected from
the set of synthetic gauges to reconstruct the wave height distribution with the highest accuracy. Targeting
hypothetical Nankai Trough earthquakes and tsunamis, we determine the optimal configuration near Shikoku
and demonstrate the wave height reconstruction capability of the approach by comparing the performance of
networks with optimally and randomly placed gauges. The results indicate that coastal gauges contribute more
to improving the reconstruction accuracy and that a configuration with 21 optimal gauges has satisfactory
performance. In addition, we assess the performance of the existing NOWPHAS network installed in the
Shikoku region and find that the reconstruction performance of the existing network is equivalent to that of the
optimal gauge network.

Plain Language Summary This study introduces a method of optimizing the sparse locations where
actual tsunami gauges should be installed to obtain information on tsunami wave heights at any given point. By
optimizing the locations of the observation points, it is possible to extend observations recorded at only a small
number of points to obtain a good approximation to data at other points where the tsunami was not directly
observed. First, numerical simulations are performed based on assumed earthquake and tsunami scenarios to
generate synthetic time series data of tsunami waves. Then, by applying proper orthogonal decomposition to the
obtained synthetic data, the characteristics of the tsunami wave height distribution are extracted. Finally, these
characteristics are used to perform optimization by sequentially selecting the best gauges from among a set of
candidate points to reconstruct wave height information for the entire target area, thereby determining the
placements of a limited number of gauges. In a numerical demonstration example simulating a Nankai Trough
earthquake and tsunami, the placement of gauges off the coast of Shikoku is optimized, and it is shown that the
wave heights at arbitrary points over the entire area can be reproduced using data from at least 21 optimally
placed gauges.

1. Introduction
On the Pacific coast of Japan, which has experienced many large earthquakes and tsunamis, various observational
networks have been installed for real‐time monitoring of seismic and tsunami information. The DONET (Dense
Oceanfloor Network System for Earthquakes and Tsunamis) (Kaneda, 2010) and S‐net (Seafloor Observation
Network for Earthquake and Tsunami along the Japan Trench) (Kanazawa, 2013) systems consist of seismom-
eters and water pressure gauges connected by submarine cables installed around the Nankai Trough and Japan
Trench, respectively. In addition, N‐net (Nankai Trough Seafloor Observation Network for Earthquakes and
Tsunamis) (NIED, 2023) is currently being constructed on the southwest side of the Nankai Trough, where no
other seafloor observation system presently exists, although the specific locations of its gauges have not yet been
revealed to the public. Furthermore, NOWPHAS (Nationwide Ocean Wave information network for Ports and
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HArbourS) (Ports and Harbours Bureau, 2022) has 78 wave gauges throughout Japan's coastal regions. Global
Positioning System buoys, which are employed in the NOWPHAS network, have been reported to provide useful
information for tsunami detection (Kato et al., 2005, 2010).

However, since the observational instruments require high installation and operation costs, monitoring nation-
wide information with high resolution is difficult. Indeed, tsunami observation networks in Japan have been
developed considering the installation and operational costs (Araki et al., 2008), as well as previous tsunami
records, topographical conditions, and legal aspects (Abe & Imamura, 2013). Thus, standards of gauge locations
to be installed are required to realize cost‐effective observation networks consisting of as few gauges as possible.

To obtain sparse but effective observational networks, various studies have investigated the optimal configuration
of gauges in tsunami observation networks. Schindelé et al. (2008) and Omira et al. (2009) determined possible
gauge locations by considering different epicenter locations and the resulting tsunami travel times. In addition,
there are some optimization objectives, such as maximizing the tsunami prediction accuracy (An et al., 2018;
Hossen et al., 2018; Meza et al., 2020; Mulia et al., 2017, 2019) and minimizing the detection time (Ferrolino
et al., 2020). Such optimization schemes are expected to be useful for recently developed early forecasting
systems based on data assimilation and machine learning techniques (e.g., Heidarzadeh et al., 2019; Liu
et al., 2021; Maeda et al., 2015; Makinoshima et al., 2021; Wang et al., 2020).

In tsunami risk assessment, it is essential not only to forecast tsunami arrival times as early as possible but also to
capture information on wide‐area tsunami dynamics. Indeed, as reported by Koshimura et al. (2020), many studies
have been conducted to assess the impact of tsunamis over awide area using recent advancements in remote sensing
and image analysis techniques. In addition, various studies (e.g., Horspool et al., 2014; Kotani et al., 2020; Park
et al., 2018) on probabilistic tsunami hazard assessment have also been conducted to quantitatively evaluate
tsunami risks in wide coastal regions. Similarly, in the design of observation networks of wave gauges, it is
desirable to ensure that the necessary information can be obtained at any given point in both coastal and offshore
areas where tsunamis could threaten human beings andmarine structures.Moreover, the tsunami height changes at
locations without available observational instruments must be obtained to establish better evacuation and rescue
operation standards. Thus, a sparse observation network consisting of a small number of informative observation
gauges that can reproduce the necessary information at other locations throughout the region should be designed.

The demands on the gauge configuration can be addressed through sparse modeling, which is a known technique
for representing the original high‐dimensional data using their latent low‐dimensional structure. In this context,
Manohar et al. (2018) proposed a sparse sensor selection framework for signal reconstruction by combining
machine learning and sparse sensing. The sparse sensors were optimally selected among the candidate points
according to the low‐dimensional spatial features extracted from high‐dimensional data by applying proper
orthogonal decomposition (POD). However, the application example of the optimization and reconstruction
schemes for dynamic systems is limited. They validated the signal reconstruction performance based on the
optimal sensor placement in dynamic systems, including fluid dynamics, and sea surface temperature changes.
The sea surface temperature changes periodically and gradually in the spatial and temporal domains. In contrast,
tsunamis occur suddenly and are size‐ and location‐dependent phenomena, unlike sea surface temperature
changes. Although Manohar et al. (2018) applied their scheme to the complex fluid dynamics of flow through a
cylinder, the effectiveness of such an optimization scheme should be validated for the abovementioned tsunami‐
specific phenomena.

Inspired by the above background, this study presents a method of determining an optimal sparse arrangement of
tsunami gauges to construct a virtually dense observation network. The proposed optimization method selects
only p optimal gauges among n synthetic gauges (p < n) such that the information of the remaining n − p gauges
can be recovered, thus preventing the loss of significant information. In other words, the resulting virtually dense
observation network consisting of p real and n − p virtual gauges can provide observational data with higher
spatial resolution than the data obtained at the p actually installed gauges. Since the spatial resolution
enhancement using the observed wave heights is based on the concept of super‐resolution, we refer to it as
pseudo‐super‐resolution (PSR) in this paper. First, numerical simulations are carried out to generate synthetic
tsunami wave data at synthetic gauges for various hypothetical fault rupture scenarios. Second, in line with
Manohar et al. (2018), the POD method is applied to the obtained synthetic data to extract the spatial modes that
characterize the high‐dimensional and complex dynamics of the tsunami waves under consideration. Third, ac-
cording to the extracted spatial modes, the optimal sparse arrangement of synthetic gauges is determined to realize
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a virtually dense observation network that minimizes the PSR‐based tsunami wave height estimation error for all
n synthetic gauges. Thus, the present study is the first to apply a sparse sensor selection scheme (Manohar
et al., 2018) to determine the optimal sparse arrangement of wave gauges for understanding the tsunami height
distribution over a wide area.

Similar to this study, Mulia et al. (2017) proposed an optimization method for tsunami gauge configuration,
targeting Nankai Trough earthquakes and tsunamis. The critical difference between their study and ours is the
objective of optimization. While they focused on tsunami source inversion and determined an arrangement that
can inversely estimate fault information with the highest accuracy, ours is based on the reconstruction of spatially
dense wave heights from sparse observations. Additionally, Mulia et al. (2017) carried out empirical orthogonal
function (EOF) analysis, a mathematically equivalent procedure to POD, for time series data of tsunami wave
heights. At this point, EOF was used to determine candidate locations for subsequent optimization, while we
directly search for the optimal configuration using the POD results based on pre‐set candidates. Meanwhile,
another novel contribution of this study is that uncertainty due to observation noise, which has been ignored in
previous studies, is considered in the formulation. This uncertainty consideration is based on the use of Bayesian
estimation to derive an objective function instead of the least squares estimation employed in the previous study
(Manohar et al., 2018).

To test the performance of the presented optimization scheme, we demonstrate its ability in the offshore region of
Shikoku Island (Japan), which has been threatened by large tsunami risks in the Nankai Trough. A tsunami
database consisting of n = 134 candidate gauges and 1,564 hypothetical fault rupture scenarios is considered to
construct virtually dense observation networks with p = 7, 21, and 42 optimal gauges. For validation, the per-
formance of the optimal configuration realizing the virtually dense observation networks is compared to that of a
relatively dense configuration with randomly arranged gauges. Additionally, we discuss the sufficiency and/or
deficiency of the existing gauge network installed at the target site. It should be noted that early warning is not
considered in the optimization of this study, and therefore, the optimized configuration may differ from the
arrangement for early warning, where offshore observations are potentially important.

2. Methodology
This section explains the optimization method used to determine the sparse gauge configuration for realizing a
virtually dense observation network.

2.1. Proper Orthogonal Decomposition (POD)

A series of tsunami simulations are carried out with l hypothetical fault rupture scenarios and n synthetic gauges
measuring the synthetic wave data. Then, the time series wave data of all the synthetic gauges for all the scenarios
are stored in one single data matrix X, which is formulated as

X = [X1 X2 ⋯ X l] ∈ Rn×(m×l), (1)

where Xj∈{1, …, l} includes the synthetic time series data of wave heights of the jth scenario and is defined as

X j =

⎡

⎢
⎢
⎢
⎢
⎣

| | |

x j
t1 x j

t2 ⋯ x j
tm

| | |

⎤

⎥
⎥
⎥
⎥
⎦

∈ Rn×m. (2)

Here, m denotes the total number of snapshots, and each column vector x j
t∈{t1, …, tm} is the snapshot vector at time

t, which stores the wave heights at all synthetic gauges and is defined as

⎧⎪⎪⎨

⎪⎪⎩

|

x j
t

|

⎫⎪⎪⎬

⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x j
1,t
⋮

x j
n,t

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∈ Rn. (3)
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The POD method is applied to the data matrix X with the singular value decomposition approach (Kerschen
et al., 2005), and the dimension is reduced as

X = ΦSVT ≈ ΦrSrVT
r = ΦrAr, (4)

whereΦ ∈ Rn×n and V ∈ R(m×l)×n are matrices composed of left‐ and right‐singular vectors arranged in the row
direction, respectively, and S ∈ Rn×n is a matrix with singular values of X aligned in its diagonal components in
descending order. Here, Sr ∈ Rr×r is a diagonal matrix with the first r singular values, and Φr ∈ Rn×r and
Vr ∈ R(m×l)×r are the corresponding matrices with reduced dimensions. The last relationship is regarded as a
reduced‐order model (ROM). Additionally, Ar = SrVT

r ∈ Rr×(m×l) is a POD coefficient matrix that stores the r‐
dimensional state vectors; see, for example, Weiss (2019) and Tozato et al. (2022) for a detailed explanation of the
POD method. Based on this expression, the wave snapshot for the jth scenario can be approximated as

x j
t ≈ Φra j

t , (5)

where a j
t ∈ Rr is the corresponding column vector extracted from Ar. In line with Nomura et al. (2022), we note

that at contains scenario‐specific and time‐dependent information, which is a key factor for tsunami risk
assessment in their framework. On the other hand, the mode matrixΦr represents the common spatial features for
all scenarios.

2.2. Pseudo‐Super‐Resolution (PSR) Method for Realizing a Virtually Dense Observation Network

We consider a situation in which the wave heights have been observed at only p gauges among all n synthetic
gauges. Then, with yt ∈Rp denoting the wave snapshot vector storing the wave heights at these p gauges at time t,
we expect that the expanded snapshot vector xt ∈Rn containing the data of all n synthetic gauges can be defined as

xt ≈ f ( yt), (6)

where f (yt) is a nonlinear function and a PSR operator that is used to obtain the high‐resolution wave height
distribution. If this relationship is satisfied, the sparse observations yt are considered to include sufficient in-
formation to cover all n gauges and realize an equivalent virtually dense observation network with n gauges.

To realize the virtually dense observation network, we consider the inverse relation in Equation 6. The obser-
vational data yt can be represented by the following observation equation:

yt = Cxt + Cw, (7)

where w is the observation noise, which should follow a Gaussian distribution. Here, C ∈ Rp×n is a down-
sampling matrix defining the sparse p (<n) gauge locations, which is formulated as

C = [eγ1 eγ2 ⋯ eγp]
T, (8)

where γ = {γ1, …, γp} ⊂ {1, …, n} is the index sequence of the selected synthetic gauges, and eγi ∈R
n is the

standard basis vector in the n‐dimensional Euclidean space, which has a value of one for the γi‐th component and
values of zero for the other components.

In accordance with the observation equation in Equation 7 and the POD representation in Equation 5, we construct
a state‐space model based on the local level model (Commandeur & Koopman, 2007) as follows:

at = at− 1 + v, (9)

yt = CΦrat + Cw′ = Φp
r at + Cw′, (10)
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where v is the system noise and w′ is the sum of the observation noise w and the ROM error (=Φr +at) caused by
the truncation of the higher‐order modesΦr+ in Equation 4. These noise vectors are assumed to follow Gaussian
distributions, v ∼N(0,Σv) and w′ ∼N(0,Σw) . Thus, the observation noise Cw′ at the sparse gauge locations
follows a Gaussian distribution with mean 0 and covariance matrix Σp

w = CΣwCT.

To reconstruct high‐resolution wave height distribution at all synthetic gauges, we estimate the POD coefficient
vector at based on the observed wave heights yt by solving the inverse problem of the state‐space model rep-
resented by Equation 9 and Equation 10. For that purpose, we employ the Kalman filter (Welch & Bishop, 1995)
while accounting for the effects of uncertainty due to observation and system noise. With the Kalman filter, the
posterior estimates of the state vector ât and the error covariance matrix Pt are evaluated as follows (Yoshida
et al., 2018, 2021):

â−t = ât− 1, (11)

P−t = Pt− 1 + Σv, (12)

ât = â−t + P−t (Φ
p
r )

T
(Σp

w)
− 1
( yt − Φp

r â−t ), (13)

Pt = [(P−t )
− 1
+ (Φp

r )
T
(Σp

w)
− 1Φp

r ]
− 1
. (14)

Here, â−t and P−t are the prior estimates of the state vector and error covariance matrix, respectively, at time t.
Assuming that the estimated POD coefficients ât are reasonable, with sufficiently small errors relative to the true
POD coefficients at, we obtain the following approximation for the high‐resolution wave height distribution:

xt ≈ Φr ât (15)

= Φr [ â−t + P−t (Φ
p
r )

T
(Σp

w)
− 1
( yt − Φp

r â−t )]. (16)

This formula is regarded as a substitute for the wave height PSR relation in Equation 6 and is expected to
reproduce high‐resolution wave height distribution from the available low‐resolution distribution observed at p
gauges.

2.3. Optimization of the Sparse Gauge Configuration

2.3.1. Optimization Problem

Highly accurate wave height PSR is realized by minimizing the estimation error ϵ = |at − ât|. This idea is based
on previous studies (Manohar et al., 2018; Y. Saito et al., 2021) that proposed methods for optimizing sparse
sensor arrangements for signal reconstruction. Specifically, Manohar et al. (2018) employed the determinant of
the error covariance matrix det[Cov(ϵ)] as the objective function to be minimized, which is equivalent to the
well‐known D‐optimal design (Papalambros & Wilde, 2000).

Following their idea, we pose the following combinatorial optimization problem:

max
γ

det[(Φp
r )

T
(Σp

w)
− 1Φp

r ], (17)

where Φp
r = CΦr and Σp

w = CΣwCT. (18)

This objective function is based on minimizing the information entropy (Shannon, 1948); see Appendix A for
more information. Here, we consider the noise covariance matrix Σw according to the uncertainty of each
observation gauge. On the other hand, it should be noted that in a previous study (Manohar et al., 2018), the
covariance matrix was assumed to be the unit matrix I, that is, each observation gauge had the same uncertainty.
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2.3.2. Greedy Algorithm With Column‐Pivoting QR Decomposition

In this study, a greedy algorithm is employed to solve the above combinatorial optimization problem for the
optimal set of indices γ. Greedy algorithms provide an approximation of the globally optimal solution with
reasonable computational costs while sequentially considering local optima; see Appendix C for a comparison of
greedy and genetic algorithms, where the latter are among the most popular evolutionary optimization schemes.

To enable greedy seeking for approximation of optimal solutions by QR decomposition with column pivoting, we
expand the objective function in Equation 17 as

det[(Φp
r )

T
(Σp

w)
− 1Φp

r ] = det{[(Σp
w)
− 1/2Φp

r ]
T
(Σp

w)
− 1/2Φp

r} (19)

= ∏
r

i=1
σi[(Σp

w)
− 1/2Φp

r (Φ
p
r )

T
(Σp

w)
− 1/2

]. (20)

Here, σi (•) denotes the ith singular value of the matrix •. Following Manohar et al. (2018), QR decomposition
with column pivoting is applied for optimal gauge selection as

Σ− 1/2w ΦrΦT
r Σ

− 1/2
w CT = QR, (21)

where Q ∈Rn×n is an orthogonal matrix, and R ∈Rn×n is an upper triangular matrix with rjj in its diagonal
components. Additionally, CT ∈Rn×n can be regarded as a permutation matrix for R to obtain the diagonal
components in descending order as r11 ≥ r22≥ ⋯ ≥rnn. Thus, the product of the singular values in the last
expression of Equation 20 is replaced by the product of the diagonal entries rjj. Thus, the determinant‐based
maximization process is performed by successively identifying the largest diagonal component. As a result,
we can obtain the optimized index sequence γ composing the downsampling matrix C; see Appendix B for more
details on the process of QR decomposition with column pivoting.

In accordance with the greedy algorithm based on QR decomposition with column pivoting presented in Ap-
pendix B, we optimize gauge configuration by selecting the best gauge from the set of synthetic gauges corre-
sponding to candidate points. Specifically, we calculate the diagonal component rjj in R when each synthetic
gauge is assumed to be adopted and select the gauge with the highest rjj as the optimal one. Thus, the precomputed
rjj of each synthetic gauge is used as a quantitative measure of its degree of optimality, that is, its degree of
effectiveness in increasing the objective function value. We determine the final gauge combination by sequen-
tially selecting the locally optimal solution, which is determined as the most effective gauge in each optimization
process. Therefore, the greedy algorithm employed in this study has an advantage over other optimization
methods, such as direct search methods and heuristic algorithms, which evaluate the suitability of an entire
combination of observation gauges at once.

It is worth considering the relationship between the number of modes r and the number of optimal gauges p. The
sparse sensor optimization is equivalent to identifying the combination of p rows from the contracted POD mode
matrix Φr. Here, the rank of the mode matrix after r mode reduction and p row selections Φp

r is calculated as
follows:

rank(Φp
r ) = {

p ( p≤ r)

r ( p> r)
(22)

In other words, it depends on the number of optimal gauges for undersampling (p < r) and on the number of
modes for oversampling (p > r). This is the reason why the oversampled optimal gauges (p > r) are less
informative than those of the undersampling case, suggesting that the number of modes for dimensionality
reduction is important to achieve a sparse arrangement. In this study, the number of modes is determined using the
contribution rate of the spatial modes, as described in the next section. However, establishing a more reasonable
number of modes is an important issue and is a subject for future research.
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3. Tsunami Data Set
Targeting the off/nearshore area of Shikoku Island, Japan, which has been
threatened by the large tsunami triggered by the Nankai Trough subduction
zone (Furumura et al., 2011; Ishibashi, 2004; S. Miyazaki & Heki, 2001; T.
Saito et al., 2010), we carry out simulations for various tsunami scenarios and
store the wave height data obtained by the synthetic gauges. Since this sub-
duction zone is located along the long section of Japan's southeastern coast,
there are various possible tsunami paths in the Shikoku region. Therefore,
there is a specific need for a virtually dense observation network that can
cover the entire offshore area.

3.1. Hypothetical Earthquake/Tsunami Scenarios

Hypothetical fault rupture patterns are first devised as the primary sources of tsunamis. In this study, we focus on
intraslab and interslab earthquakes in the Nankai Trough due to the high tsunami risk and the feasibility of fault
rupture modeling (Utsu, 2001). Taking into account the surface distribution of the Philippine Sea Plate (Baba
et al., 2002) and the slip processes of the 1944 Tonankai earthquake and 1946 Nankai earthquake (Baba &
Cummins, 2005; Kanamori, 1972), we employ the rectangular fault model (Okada, 1985, 1992). The fault rupture
parameters, such as the fault's depth, dip, and strike, which depend on the location, are considered and set to range
from 1 to 189 km, 5–67°, and 207–254°, respectively. These location‐dependent parameters were determined by
the Philippine Sea Plate geometry (e.g., Bird, 2003; Hirose et al., 2008). Note that the Dip angles of the high‐value
range reflect the steep subduction of the Plate at eastern Kyushu Island (e.g., K. Miyazaki et al., 2023; Yoshioka
et al., 2008). The considered magnitudes range from 7.6 to 8.8, and the length, width, and dislocation are
calculated according to the scaling law (Utsu, 2001). The specific values of the parameters depending on Mw are
summarized in Table 1. The rake is assumed to be a constant value of 90°. Thus, two uncertainties, magnitude and
location, are considered to generate the earthquake scenarios, and the other parameters can be determined from
these parameters, by targeting intraslab and interslab earthquakes, which occur on a tectonic plate. Figure 1 shows
the locations of faults corresponding to the 1,564 earthquake scenarios considered in this study. Here, each circle
indicates the northeast apex position of the rectangular fault, whose size is determined by the width and length
depending on the magnitude.

To obtain six‐hour propagations immediately after the fault rupture, the TUNAMI‐N2 model (Goto et al., 1997;
Imamura et al., 2006) was adopted to simulate the propagation of each tsunami wave by solving the nonlinear
shallow water equation. Then, the initial surface deformation of the seafloor was calculated for each scenario

Table 1
Fault Rupture Parameters Depending on Mw

Mw Length [km] Width [km] Dislocation [m]

7.6 115.1 57.6 1.17

7.9 162.6 81.3 1.65

8.2 229.7 114.9 2.33

8.5 324.5 162.3 3.29

8.8 458.4 229.2 4.64

Figure 1. Locations of 1564 hypothetical faults. Panels (a–e) correspond to magnitudes 7.6, 7.9, 8.2, 8.5, and 8.8, respectively. The gray circles indicate the northeast
apex of rectangular faults, and the red rectangle with a red circle in each panel is an example of fault geometry.
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using the Okada model (Okada, 1992). We carried out 1,564 tsunami
simulations with the five‐level nesting shown in Figure 2, and the wave
heights were stored every five seconds. Additionally, the 1,564 scenario
simulations are an extension of a data set of 666 Nankai Trough earthquake/
tsunami scenarios (Koshimura & Nomura, 2022) under almost identical
conditions.

All 1,564 scenarios were divided into test and training data sets for validation
purposes. Specifically, 90% of the 1,564 scenarios, that is, 1,414 scenarios,
were randomly selected as training data and used for the optimization pro-
cedure presented in the previous section to determine the optimal sparse
arrangement of p gauges among the n synthetic gauges to realize the virtually
dense observation network. Then, we examined the feasibility of the deter-
mined p gauges by considering whether the remaining n − p gauge infor-
mation can be reasonably reconstructed based on the PSR formula in
Equation 16 for the 150 (=1,564 − 1,414) test scenarios.

3.2. Synthetic Gauge Locations

A total of n = 134 synthetic gauges, which are candidate points for the optimal gauge set, were placed in the
simulation domain, as shown in Figure 3. The locations of some of these gauges were identical to those of the
actual observation gauges, such as the gauges in the NOWPHAS (Ports & Harbours Bureau, 2022) and DONET2
(Kaneda, 2010) networks. Note that two of the NOWPHAS gauges off Kyushu are not included in the candidate
points, while all the DONET2 gauges are considered. Thus, there are 1,564 (scenarios) × 134 (gauges) × 6 (hr) ×
3,600 (sec/hr) × 1/5 (/sec) data points in total.

3.3. POD Representation for Time Series Data of Tsunami Wave Heights

The POD method is applied to the time series wave heights for all n = 134 gauges in the 1,414 training scenarios
according to the formulation presented in Section 2.1. The spatial distributions of the first and second modes are
shown in Figure 4. The results in panels (a) and (b) confirm that the data collected by the coastal gauges include
prominent features for these lower‐order modes. In general, the lower‐order modes extracted by the POD method
represent the global features of the spatial distributions, while higher‐order modes reflect local distributions and
noise effects. However, the lower‐order spatial modes in tsunami wave heights data tend to reflect local effects in
near‐shore areas, which may be due to the inherent nature of tsunamis; that is, the tsunami wave heights near the
coast are much higher than those offshore.

It should be noted that the optimization and wave height PSR capabilities of the present method are both affected
by the number of modes used to create the ROM in Equation 4. In fact, as reported by Manohar et al. (2018), p ≥ r
optimal sensors generally achieve high reconstruction performance with appropriately reduced‐order data using

the lower‐order spatial modes extracted by the POD method. On the other
hand, the use of higher‐order modes leads to overfitting of the noise com-
ponents, reducing the reconstruction accuracy. To determine the number of
modes that should be employed, the relative importance of each mode is often
measured based on the contribution rate.

Figure 5 shows the contribution rates of the ith POD modes, which were
calculated as

c(i) =
σi

∑n
j=1σj

. (23)

The cumulative contribution rates are also shown in the figure. The figure
shows that the lower‐order modes have relatively high contribution ratios, but
their values are not very large. Therefore, a large number of modes are needed
to represent the original data; for example, the red lines in Figure 5 show that
81 modes are required to represent 90% of the original data. However, the

Figure 2. Tsunami simulation domain targeting the Shikoku regions, with
five‐level nesting.

Figure 3. Locations of the n = 134 synthetic gauges. The gauges placed in
identical locations to the gauges in the existing networks are represented
with red squares (NOWPHAS) and yellow triangles (DONET2). In contrast,
the other synthetic gauges are shown as virtual gauges with blue circles.
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22nd and subsequent modes have contributions of less than 1%. Therefore, we decided to employ r= 21 modes to
create the ROM for the optimization and wave height PSR processes.

4. Capability Assessment: Results and Discussion
Under the conditions established in the previous section, we demonstrate the ability of the optimization method to
determine the optimal sparse arrangement of actual tsunami wave gauges to realize a virtually dense observation
network based on the PSR technique.

4.1. Optimization With the Greedy Algorithm

For comparison purposes, we consider sparse networks with three different numbers of optimal gauges: p= 7 (=r/
3), 21 (=r), and 42 (=2r). The first case (p = 7) has the same number of gauges as the NOWPHAS network off

Figure 4. Distributions of the proper orthogonal decomposition (POD) spatial modes extracted from the training data of the time series tsunami wave heights. Panels (a,
b) show the normalized values of the first and second POD modes, respectively.

Figure 5. Contribution rates of each proper orthogonal decomposition mode calculated according to Equation 23. The
triangles and left axis show the individual contribution rate, while the circles and right axis show the cumulative contribution
rate.
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Shikoku, as shown in Figure 3. We note that r = 21 was determined in the previous section considering the
contribution rate of each spatial mode. To determine the optimal sparse arrangement of p actual wave gauges, the
optimization problem formulated in Equation 17 is solved for each case by applying QR decomposition with
column pivoting using the contracted mode matrix Φr = 21. Here, the covariance matrix of the noise w′ is set to be
Σw= I because the noise in the system is unknown, while the uncertainty is considered in the verification analysis
of the proposed optimization scheme in Appendix D.

The optimization was performed to determine the optimal configuration of candidate points consisting of all the
synthetic gauges according to the degree of effectiveness, which is a measure of optimality calculated in the QR
decomposition process, as explained in Appendix B. Figures 6a–6c show the optimal gauge placements in the
cases with p = 7, 21, and 42 gauges, respectively. For more detailed information, the optimization process from
zero to 20 gauges is shown in Figure B1 of Section Appendix B. Here, the black colored circles in each panel
indicate the optimal gauges that show the highest effectiveness among the considered synthetic gauges in each
process. The color and size in each plot indicate the normalized effectiveness of the other n − p synthetic gauges.
Figure 6a shows that the top seven gauges are preferentially selected near the shore of Shikoku, and some other
gauges in the coastal areas exhibit high effectiveness. Additionally, Figure 6b indicates that the sparse network
with 21 optimal gauges is designed in both the coastal and offshore areas, and then, effective synthetic gauges
exist in the offshore regions. Furthermore, many offshore gauges are selected in the case with 42 optimal gauges,
and a dense observation network is designed for both the coastal and offshore areas, as shown in Figure 6c. The
tendency that the gauge locations that effectively increase the value of the objective function to be maximized are
concentrated in the coastal area is consistent with the distributions of the lower‐order POD modes, as shown in
Figure 4.

Figure 6. Optimization results determined by the greedy algorithm based on QR decomposition with column pivoting for three cases with different gauge numbers:
p = 7, 21, and 42. The open circles in panels (a–c) show the locations of the optimal p = 7, 21, and 42 gauges selected from the n = 134 synthetic gauges, which are
represented by the colored circles. The color and size represent the normalized value of the effectiveness, which is used to evaluate the optimality of each synthetic
gauge, as presented in Appendix B.
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Notably, the sparse observation networks with p = 7, 21, and 42 gauges
include three, five, and five gauges from the existing NOWPHAS network,
respectively. Our results qualitatively suggest that the existing NOWPHAS
observation network, which has a coastal neighbor configuration, is effective
for grasping wide‐area information on tsunamis based on the PSR technique.
However, in this study, we focused on understanding the wide information
based on the PSR technique in our formulation of the objective function in
Equation 17. Therefore, if early tsunami detection or forecasting is consid-
ered, observations in offshore areas should be more important than those in
non‐offshore areas.

Additionally, since the most effective gauge is selected sequentially in the
optimization process based on the greedy algorithm, each gauge's effective-
ness in improving the PSR accuracy is quantified independently. Due to this
feature, if some environmental conditions or installation costs make the
installation of a selected gauge difficult, the next most effective gauge can be

included in the set of optimal gauges. Therefore, the greedy algorithm is more advantageous than other ap-
proaches, such as direct search and heuristic methods, which determine the gauge combination in terms of
network suitability.

4.2. PSR Approach for Creating a Virtually Dense Observation Network

To verify the capability of the PSR technique formulated in Equation 16 to create virtually dense observation
networks, we test the adequacy of the optimal sparse arrangement of the synthetic gauges. Specifically, the
optimal configurations determined above are used to construct virtually dense networks by estimating the high‐
resolution wave height distribution based on the Kalman filter as expressed in Equation 16. Here, we employ the
initial state vector â0 = 0, the covariance matrix P0= I, and the covariance matrix of the system noise Σv= 0.01I.
The targeted test scenario for capability validation has the specific fault parameters summarized in Table 2.
Figure 7 shows the wave height snapshot at t = 30 min simulated by TUNAMI‐N2 for the test scenario. This
snapshot is compared with the reconstruction results obtained by the PSR technique using observations at p
optimized gauges. In the PSR relationships formulated in Equation 6 and Equation 16, the number of modes is set
to r = 21, as in the optimization process.

Figure 8 shows the wave height snapshots obtained using the sparse observation networks with p = 7, 21, and 42
synthetic gauges, with the gauge locations determined by the above optimization process. In this figure, the results
of a network with randomly selected gauges are also shown for reference. The top row shows the optimal p = 7,
21, and 42 gauge locations, the middle row shows the wave height distributions reconstructed by the PSR
technique, and the bottom row shows the absolute error (AE) distributions between the reconstructed snapshot
and the TUNAMI‐N2 simulation result for the test scenario shown in Figure 7. The results in panels (b) and (c)
show that the absolute errors are prominent near the coast when p = 7 gauges are used in the optimal

Table 2
Fault Rupture Parameters in a Test Scenario to Validate the Optimization
Results

Longitude [Degrees] 135.12 E
Latitude [Degrees] 33.12 N

Magnitude [Mw] 8.8

Strike [Degrees] 214.41

Dip [Degrees] 8.42

Rake [Degrees] 90

Length [km] 458.39

Width [km] 229.19

Depth [km] 12.30

Dislocation [m] 4.65

Figure 7. Tsunami wave height snapshot acquired by each synthetic gauge at 30 min. The snapshot is simulated by the
TUNAMI‐N2 model for a test scenario, with the fault parameters summarized in Table 2.
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configuration. Thus, the PSR‐based estimates do not provide sufficient high‐resolution wave height distribution
when only p = 7 gauges are used in the optimal configuration.

Since increasing the number of optimal gauges improves the wave height PSR accuracy, the reconstructed
snapshot with p = 21 gauges in the optimal configuration shown in panel (d) has a smaller error than the previous
case with p = 7 gauges, as shown in Figures 8f and 8c. Note that the optimal p= 7, 21, and 42 gauges are selected
sequentially with the same optimization process; therefore, the positions of the p = 7 gauges remain fixed in the
case with p = 21 gauges. Thus, the additional optimal gauges shown in panel (d) are selected after the p = 7
gauges are optimized, and the additional gauges are placed in the areas where relatively large errors occur with the
virtually dense observation network consisting of p= 7 optimal gauges. As seen from panel (e), the reconstructed
wave height snapshot is similar to that obtained by TUNAMI‐N2, and the configuration with p = 21 optimal
gauges provides accurate high‐resolution wave height distribution for the entire space, allowing a reliable
virtually dense observation network to be constructed with errors of less than 0.36 m. Additionally, we confirm
that this configuration has an equivalent PSR ability to that of the configuration with p = 42 optimal gauges, as
shown in panel (g), based on a comparison of the AE distributions shown in panels (f) and (i). Thus, the wave
height information at the n gauge locations in the virtually dense observation network can be obtained from
sparsely placed gauges. Although the network with 21 gauges includes more gauges than the existing NOWPHAS
network off Shikoku, the number of gauges is somewhat reasonable compared to the 29 gauges included in the
DONET2 network.

The good performance of the optimization scheme is demonstrated by the relative advantage of the network with
optimally selected gauges compared to that with randomly configured gauges. Figure 8j shows a configuration
with 42 randomly selected gauges. By applying the PSR technique to this configuration, we obtain the wave
heights at all synthetic gauges, as shown in panel (k), and the AE distribution with respect to the TUNAMI‐N2
result, as shown in panel (l). These figures indicate that the wave height PSR accuracy of the configuration with
p = 42 random gauges degrades along the coast, with errors of more than 0.5 m. Furthermore, the maximum AE

Figure 8. Comparison of wave height PSR results among the p = 7, 21, 42 optimal and p = 42 random gauge configurations. (a) Shows the seven optimal gauge
locations. (b, c) show the wave height snapshot at 30 min obtained by the PSR technique, and the absolute error distribution between the wave height snapshots of the
PSR result and the TUNAMI‐N2 simulation, respectively, based on the seven optimal gauges. (d–f) are the results based on the optimal configuration with 21 gauges;
(g–i) correspond to the optimal 42 gauges; and (j–l) correspond to the random configuration of 42 gauges. Points A, B, and C in panel (a) are points of interest for
comparing the wave histories of TUNAMI‐N2 and the PSR results based on the sparse configurations.
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reaches 0.8 m and is more significant than the error of the optimal configurations obtained above. Therefore, the
results demonstrate the superiority of the present optimization scheme over a random selection scheme.

To confirm the performance of the PSR method, the time series of the wave heights obtained at Points A and B
indicated in the panels in the top row of Figure 8 are shown in Figure 9 in comparison with those obtained from
the TUNAMI‐N2 simulation. These evaluation points are located at synthetic gauges that were not selected in
either the optimal gauge configurations with p = 7, 21, and 42 or the random gauge configurations with p = 42.

Figure 9. Comparison of time series wave heights obtained by TUNAMI‐N2 and those reconstructed via the PSR technique. (a–d) show the wave height changes at Point
A in Figure 8a based on the optimal gauge configuration with p = 7, 21, and 42 and the random gauge configuration with p = 42. (e–h) show those at Point B under the
same conditions.
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As seen from Figures 9a and 9e, the sparse configuration with seven optimal
gauges has no PSR capability to reconstruct the wave heights because the
wave heights at these points are almost zero the entire time. On the other
hand, as shown in panels (b), (c), (f), and (g), the PSR method using 21
optimal gauges captures the reference waveform, and the predictions are
comparable to those obtained using 42 optimal gauges. Thus, it is confirmed
that the PSR method based on the optimized gauge configuration is capable
of reconstructing the time series data of the wave heights, although its
performance depends on the number of gauges selected. Meanwhile, as can
be seen from panels (d) and (h), the configuration with 42 randomly selected
gauges also has high performance, but not all gauges have good prediction
accuracy. In fact, Figure 10, which illustrates the time series wave heights at
Point C indicated in Figure 8a, shows that the PSR method with 42

randomly selected gauges fails to predict. This failure can be inferred from the fact that Point C corresponds to
the coastal gauge that showed the large error shown in Figure 8l. We also include the result using seven optimal
gauges with a red dashed line in Figure 10. Since the optimal gauge arrangement contains Point C, the resultant
estimate naturally traces the true waveform.

To quantitatively compare the PSR results shown in Figure 8, we calculate the PSR errors of the wave heights
obtained throughout the entire elapsed time window for all test scenarios and all synthetic gauges. The root mean
square error (RMSE) is employed as the evaluation index:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
l ⋅m ⋅ n

∑
l

j=1
∑
m

t=1
∑
n

i=1

⃒
⃒
⃒x j

i,t − x̂ j
i,t
⃒
⃒
⃒
2

√
√
√
√ . (24)

where l,m, and n are the total numbers of test scenarios, simulation time steps, and synthetic gauges, respectively.
Additionally, x and x̂ are the wave heights obtained in the TUNAMI‐N2 simulation and those reconstructed using
each of the four sparse configurations, respectively. Table 3 summarizes the RMSE of the PSR results obtained
for the three optimal configurations and one random configuration discussed above. Here, the RMSE value of the
random gauge configuration is the average value for 100 trials. This table shows that the PSR performance for
constructing the virtually dense observation networks is improved by increasing the number of optimal gauges. In
addition, an optimally designed sparse observation network with 21 gauges is more economical and more
informative than an observation network with randomly selected gauges.

4.3. Potential Gauge Locations for Extending the NOWPHAS Network

In the previous subsection, we sequentially identified effective gauges in turn from the beginning, that is,
without arranging the initial gauges, to optimize the gauge configurations. However, as shown in Figure 3, an
existing gauge network known as NOWPHAS can be used as the initial configuration in the optimal design.
Therefore, we fixed the seven NOWPHAS gauges installed in the target area as initial conditions to optimize
additional gauge locations, starting with the eighth gauge. The optimized additional locations indicate potential

locations of the existing NOWPHAS in terms of improving wave height
PSR ability. Then, the resulting virtually dense observation network with
optimal gauges, including the existing NOWPHAS stations, is compared
with that constructed in the previous subsection.

Indexing the seven existing NOWPHAS gauges as γp (p = 1, …, 7), we
calculate the initial distribution of the effectiveness that evaluates the
optimality of the remaining n − p synthetic gauges as explained in Section
2.3.2. The results are shown in Figure 11. This figure shows that the red‐
colored coastal gauges are informative for the wave height PSR approach
and can therefore be considered additional optimal gauges. This implies that
although the existing NOWPHAS network is installed in coastal areas, the
priority locations for adding the new observation instruments are also near

Figure 10. Comparison of wave heights obtained by TUNAMI‐N2 and those
reconstructed via the PSR technique based on the p = 7 optimal and p = 42
random gauge configurations. These waveforms are obtained at Point C
shown in Figure 8a.

Table 3
Comparison of the Wave Height PSR Errors Between Each Gauge
Configuration and the TUNAMI‐N2 Simulation

Gauge configuration RMSE

Optimal 7 gauges 8.61 × 10− 2 [m]

Optimal 21 gauges 4.02 × 10− 2 [m]

Optimal 42 gauges 3.51 × 10− 2 [m]

Randomly selected 42 gauges 8.06 × 10− 2 [m]

Note. The root mean square error (RMSE) is defined in Equation 24 and
calculated for all test scenarios, time steps, and synthetic gauges.
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the coast, similar to the optimal locations of the seven gauges shown in Figure 8a. It is worthwhile to note that
this kind of prediction prior to optimization can be made thanks to the use of the greedy algorithm based on QR
decomposition with column pivoting.

Figure 12 shows the relationship between the number of optimal gauges, p, and the RMSE calculated using
Equation 24 for all the test scenarios and observation times. This figure shows that the RMSE of the optimal
configuration considering the existing NOWPHAS network decreases as the number of installed gauges in-
creases. Interestingly, although the objective function in Equation 17 is intended to reduce the error with respect to
the POD coefficients, the RMSE of the wave height estimations actually decreases as p increases. Additionally,
the RMSE is comparable with that of the network without the initial seven gauges, and the RMSE does not
significantly decrease after the 21st gauge is added. As described in Section 2.3.2, the figure shows that the
decreasing trend in error changes before and after the 21 gauges, which is consistent with the number of modes
used. Thus, the wave height PSR accuracy can be improved by adding the optimal gauges to the existing network,
although it may be ideal to design the actual observation network using the optimization framework starting from
the initial step. Moreover, the result of the random network shown in the same figure, which is the average of 100
random trials, has a larger RMSE than these two optimal configurations.

According to the trends of the errors in Figure 12, the optimal gauge network considering the NOWPHAS lo-
cations with p = 21 gauges (seven existing and 14 optimally added gauges) might construct a sufficient virtually
dense observation network. Figure 13 shows the locations of the 21 gauges in this network. The figure shows that

Figure 11. Normalized value of the effectiveness, which evaluates the synthetic gauge optimality, considering the existing
NOWPHAS network as an initial condition. The open circles indicate the locations of the seven NOWPHAS gauges actually
installed in the Shikoku region, and the color and size indicate the magnitude of the normalized effectiveness.

Figure 12. The relationship between the estimation error and the number of optimal gauges. The red line shows the root mean
square error of the virtually dense network consisting of p optimal gauges, while the blue line shows that consisting of p − 7
optimal and seven existing NOWPHAS gauges. The black line shows the result of the configuration with randomly selected
gauges.
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these 21 gauges are configured similarly to those in the network obtained in
the previous subsection, with 19 shared gauges, as shown in Figure 8d.
Interestingly, the synthetic gauge off Kyushu selected by the optimization
method is close to two existing NOWPHAS gauges (indicated with star‐
shaped markers). As mentioned in Section 3.2, these two NOWPHAS
gauges off Kyushu were not considered candidate points in the optimization
because this study focused on the Shikoku coast. Since the two existing
gauges are proxies for the selected synthetic gauge off Kyushu, they should
have been selected to obtain more accurate PSR results. In addition, if the
optimal gauges are added to the existing NOWPHAS network, including the
gauges indicated by star‐shaped markers, they should be placed near the
Shikoku coast rather than near the Kyushu coast and, in turn, several offshore
locations.

Considering the several types of instruments available for tsunami observa-
tion, we discuss the feasibility of the sparse observation network with 21
optimal gauges, including the seven NOWPHAS gauges and 14 synthetic
gauges obtained above. Among the 14 sites where the additional gauges

should be installed, those near the Shikoku coast can be covered by extending the NOWPHAS network. In
contrast, the wave heights at the offshore locations should be observed by networks other than NOWPHAS since
the installation area of NOWPHAS gauges is limited, that is, they must be placed less than 20 km from the coast
(Kato et al., 2018). The wave heights in such offshore locations can be obtained from the hydraulic pressure
observations recorded by seafloor cable network systems, for example, DONET and N‐net. In fact, the obser-
vational gauges in the DONET system are installed on the east side of the Shikoku offshore area, and the gauges of
the N‐net system are being deployed on the west side. Thus, a sparse network with highly accurate PSR capa-
bilities for tsunami wave heights can be realized by combining observations from several networks: an extended
NOWPHAS with additional gauges, DONET, and the under‐development N‐net system.

5. Conclusion
We explored an optimal sparse sensor selection method introduced in the literature (Manohar et al., 2018) to
establish a framework to determine the optimal sparse configuration for tsunami gauges to reconstruct the high‐
resolution spatial distribution of tsunami wave heights throughout the target region. High‐resolution wave height
distribution is obtained by constructing virtually dense observation networks based on the PSR technique. The
computational results confirm that the optimized sparse configuration can reconstruct the spatial information of
tsunamis.

The established framework consists of three procedures. We first acquire tsunami wave heights at synthetic
gauges by conducting numerical simulations for various earthquake and tsunami scenarios at a target site. Next,
the features of the spatial distribution of tsunami heights are extracted by the POD method. Finally, we solve an
optimization problem with a greedy algorithm to determine the optimal sparse configuration of the candidate
points consisting of all synthetic gauges. To demonstrate the capability of the present approach, we constructed
optimal gauge configurations off Shikoku, with the aim of addressing hypothetical Nankai Trough earthquakes.
The results showed that the determined p = 7, 21, and 42 optimal gauge configurations were reasonable and
superior to a randomly selected network in terms of the wave height PSR accuracy. In addition, 21 optimal
observation gauges were sufficient for adequate PSR performance.

Furthermore, the performance of the existing NOWPHAS observation network was assessed by conducting
another optimization by setting the actual locations of the seven gauges as initial conditions. The results show that
the existing NOWPHAS network has equivalent PSR performance to the optimal gauge network determined by
the present optimization framework. However, since the gauges in the optimal configuration tend to be
concentrated in coastal areas in the present validation result, the configuration is unsuitable for early tsunami
detection or forecasting. This is because the optimization objective function considers only the accuracy of the
wave height PSR and does not consider the immediacy of the prediction, which should be considered in future
work.

Figure 13. Configuration of the seven existing NOWPHAS and 14 optimally
added gauges. The red circles show the 14 optimal gauge locations, and the
blue circles represent the existing seven NOWPHAS gauges. The two blue
stars indicate the existing NOWPHAS gauges that are not reflected in the
synthetic gauge arrangement. The gray circles show the remaining synthetic
gauges, which correspond to candidate points for the subsequent
optimization processes.
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Appendix A: Optimization Objective Function in Terms of Information Entropy
Minimization
According to the following equation expansion, the optimization objective function in Equation 17 can be derived
in terms of minimizing the information entropy (Shannon, 1948), which is used to evaluate system uncertainty.
The information entropy of a random variable X sampled according to the probability density function p(x) is
defined as

h(X) =∫ p(x)log p(x)dx. (A1)

Here, assuming that the probability density function p(x) is a multivariate normal distribution with a covariance
matrix Px, we can expand this equation as follows:

h(x) =
1
2
log[.(2πe)n det Px]. (A2)

Thus, the information entropy of a random variable that follows a Gaussian distribution depends on its covariance
matrix Px.

As written in Section 2.2, the high‐resolution wave height distribution can be obtained by estimating the POD
coefficients using the wave data yt observed at p gauges in a sparse observation network. Considering the result of
the POD coefficient estimation based on the Kalman filter in Equation 13 and Equation 14, we can recognize that
the posterior distribution of the POD coefficients follows a multivariate normal distribution with mean ât and
covariance matrix Pt.

Finally, because the estimated POD coefficient follows a Gaussian distribution, as mentioned above, its infor-
mation entropy depends on the posterior covariance matrix Pt, whose reduction rate from the prior estimation of
the covariance matrix P−t is defined as follows from the Kalman filter relation in Equation 14:

ΔP = P− 1t − (P−t )
− 1
= (Φp

r )
T
(Σp

w)
− 1Φp

r . (A3)

The right‐hand side of this equation coincides with the matrix to be maximized in the optimization objective
function shown in Equation 17. Therefore, optimization with determinant‐based maximization is equivalent to
maximizing the reduction rate of the covariance matrix; that is, the posterior covariance matrix is minimized. In
other words, the information entropy, which depends on the posterior covariance matrix, is minimized. As a
result, we can obtain the optimal configuration while avoiding locations that are sensitive to observation noise.

Appendix B: Greedy Algorithm Based on QR Decomposition With Column Pivoting
The optimal gauges are selected sequentially in four steps using QR decomposition with column pivoting ac-
cording to the following algorithm.

Step 1

For simplicity, we denote a part of the left‐hand side of the QR decomposition equation Equation 21 for the
optimization as follows:

Σ− 1
2ΦrΦr

TΣ− 1
2 = B(1) =

⎡

⎢
⎢
⎢
⎢
⎣

| | |

b(1)1 b(1)2 ⋯ b(1)n

| | |

⎤

⎥
⎥
⎥
⎥
⎦
, (B1)

where B(1) is the target matrix of the QR decomposition in the first iteration. Among the column vectors of B(1),
we extract the vector with the largest ℓ2 norm as b(1)γ1 and calculate a householder matrix H(1) that satisfies the
following relations:
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H(1)b(1)γ1 = b(2)γ1 , (B2)

H(1)b(2)γ1 = b(1)γ1 . (B3)

Here, the vectors b(1)γ1 and b(2)γ1 are defined as

b(1)γ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(1)1,γ1

b(1)2,γ1
⋮

b(1)r,γ1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, b(2)γ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⃦
⃦
⃦b(1)γ1

⃦
⃦
⃦

2

0

⋮

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (B4)

Step 2

The column vector b(1)γ1 that has the largest ℓ2 norm among the column vectors in B(1) in the first iteration is
inserted into the first column of B(1) by column pivoting. For the second iteration, the target matrix is derived from
the column‐pivoted matrix B(1) and the householder matrix H(1) as follows:

B(2)′ = H(1)B(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⃦
⃦
⃦b(1)γ1

⃦
⃦
⃦

2
b(2)′1,1 ⋯ b(2)′1,n

0

⋮ B(2)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B5)

Step 3

Then, b(2)γ2 is defined according to the magnitude of the ℓ2 norm of the submatrix B(2), and the householder matrix

H(2) is calculated as in Equation B1 and Equation B3. The householder matrix H(2)′ for the second iteration is
calculated by replacing a submatrix of the unit matrix with H(2) as follows:

H(2)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0

0

⋮ H(2)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B6)

Step 4

The target matrix B(3) in the third iteration is computed from H(2) and B(2) as

B(3)′ = H(2)′B(2)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⃦
⃦
⃦b(1)γ1

⃦
⃦
⃦

1
b(2)1,γ2 b(2)1,1 ⋯ b(2)1,n

0
⃦
⃦
⃦b(2)γ2

⃦
⃦
⃦

2
b(3)′2,1 ⋯ b(3)′2,n

⋮ 0

⋮ ⋮ B(3)

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B7)
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Figure B1. Optimization results determined by the greedy algorithm based on QR decomposition with column pivoting. Each figure shows the optimal gauge locations
with the open circles from zero to 20 gauges. The color and size represent the normalized value of the effectiveness, which evaluates the optimality of each synthetic
gauge.

Earth and Space Science 10.1029/2023EA003144

FUJITA ET AL. 19 of 24

 23335084, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
003144, W

iley O
nline L

ibrary on [21/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



By repeating Step 3 and Step 4 for the number of gauges to be optimized, the final target matrix B( p)′ becomes an
upper triangular matrix that is equivalent to R. Hence, the QR decomposition algorithm with column pivoting
approximates the determinant‐based optimization approach by sequentially maximizing the diagonal components
of R.

The objective function is defined as a product of the diagonal components rjj, which are calculated as the
maximum among the ℓ2 norms of the column vectors. Thus, the candidate points are ranked in terms of their
suitability for inclusion in the optimal configuration in each sequential optimal selection process in accordance
with the ℓ2 norms of the column vectors of the objective matrix B(i). Therefore, the ℓ2 norm is considered an
indicator of the degree of effectiveness in increasing the objective function value and is used to quantitatively
measure the optimality of adding a gauge.

The greedy algorithm based on QR decomposition with column pivoting sequentially selects the optimal gauge
while ranking each gauge optimality, as described above. Figure B1 shows the optimal gauge selection process
from the initial to 20 gauges. The color and size represent the normalized effectiveness of the remaining synthetic
gauges. From all the results, representative results (7, 21, and 42 optimal gauge selection) are shown and dis-
cussed in Section 4.1. From the figure, we can confirm that some coastal gauges that are finally selected as the
optimal set have high effectiveness from the beginning as discussed in Section 4.1.

Appendix C: Comparison Between the Greedy and Genetic Algorithms
To validate the optimization performance of the greedy algorithm based on QR decomposition with column
pivoting employed in this study, we compare the optimization result of the greedy method with that of a genetic
algorithm (Holland, 1992), which is a well‐known type of heuristic algorithm for solving combinatorial opti-
mization problems. As explained in Section 4.2, the greedy algorithm determines the optimal arrangement by
sequentially adding a new optimal gauge to the configuration consisting of the previously optimized gauges. In
contrast, a genetic algorithm would solve the optimization problem by determining the optimal combination of
gauges among every evaluated set of p gauges. In other words, the optimal configuration of p − 1 gauges obtained
by solving the optimization problem with a genetic algorithm will not necessarily be contained within the cor-
responding optimal configuration of p gauges.

Genetic algorithms search for the global solution to an optimization problem with multiple individuals, which
serve as solution candidates. Through generational updates, individuals with good fits are preferentially selected,
and the algorithm is updated to search for solutions through repeating operations such as crossover and mutation.
This study employs a basic genetic algorithm with tournament selection and uniform crossover, although various
types of genetic algorithms have been reported (Katoch et al., 2021). After some trials to determine the settings of
the genetic algorithm, we set the number of individuals to 100 and the probability of crossover and mutation to
90% and 10%, respectively. In addition, to maintain solution diversity, the elite conservation strategy, which
preserves the 20 individuals with the top fits of each generation for the next generation, is employed in com-
bination with tournament selection. The solution is determined to converge when the same individual is selected
for 2,000 consecutive generations.

We compare the optimal configurations determined by the two algorithms in terms of the accuracy of the wave
height PSR, which is defined by the relationship in Equation 16 based on the Kalman filter, using the contracted
POD mode matrix Φr = 21, as presented in Section 4.2. Here, the genetic algorithm directly evaluates the deter-
minant of the objective function shown in Equation 17, while the greedy algorithm uses the expanded equation
shown inEquation 21. FigureC1 shows the relationship between the number of gauges to be optimized by these two
algorithms and the wave height PSR errors for all the test scenarios and observation times. Here, the RMSE, which
is calculated as shown in Equation 24, is employed as the evaluation index for the error. The figure shows that the
optimal configurations determined by these two algorithms have equivalent PSR capabilities since the RMSEs are
comparable for each number of gauges. Coincidentally, the results seem to show nearly identical error trends.
However, as explained earlier, different data sets will not necessarily yield the same results because the optimi-
zation methods are inherently different. We believe that this can be demonstrated on other occasions in the future.

Next, we compare the speeds of the greedy algorithm based on QR decomposition with column pivoting and the
genetic algorithm. To solve optimization problems for all the considered numbers of optimal gauges (p= 1–133),
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the greedy algorithm requires approximately 30 s using a computer (DeepLearning BOX/Alpha, CPU: AMD
EPYC 7502P 32 cores/64 thread 2.50 GHz). On the other hand, the genetic algorithm‐based optimization scheme
requires approximately 7.5 hr to obtain the optimal solution under the same conditions. Therefore, the greedy
algorithm can determine an optimal gauge configuration with equivalent PSR accuracy to the genetic algorithm in
a shorter time.

Appendix D: Verification of Optimization Considering Virtual Observation Noise
To verify the performance of the optimization scheme accounting for the uncertainty caused by observation noise,
the optimization and wave height PSR are carried out for synthetic tsunami data with virtual observation noise.
We first generate the time series data of tsunami wave heights with noise by combining the original tsunami data
simulated by TUNAMI‐N2 and the virtual observation noise. Here, we assume that virtual observation noise
follows a Gaussian distribution with mean 0 and a covariance matrix Σ, which has diagonal components con-
sisting of 0.01 m2 or 1.0 m2. Finally, the wave height PSR results obtained using these optimal configurations are
compared.

Figure D1 shows the optimal 21 gauge locations determined by the greedy algorithm (panel (a)) and the genetic
algorithm (panel (b)) considering the virtual observation noise effect in their objective functions. Each plot is
color‐coded according to the variance in the noise, equivalent to each diagonal component of the covariance
matrix Σ. This figure shows that the two optimization results are similar: the configurations have 17 gauges in
common, and locations with low noise variance are preferentially selected.

Figure D1. Optimization results considering the covariance matrix of the virtual observation noise in the objective function in Equation 17. (a, b) show the results of the
greedy and genetic algorithms, respectively. The black‐bordered circles indicate the optimal gauge locations, and each circle is color‐coded according to the variance of
the virtual observation noise at each gauge.

Figure C1. Comparison between the greedy and genetic algorithms. The two lines show the relationship between the number
of optimal gauges and the root mean square error of the optimal gauges selected by the greedy algorithm (red) and the genetic
algorithm (blue).
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The wave height PSR is conducted by handling the wave data with virtual noise obtained at the optimized gauges
as the observation vector yt in Equation 16. Additionally, the PSR accuracy is evaluated based on the RMSE, as
formulated in Equation 24, between the PSR result using the wave data with virtual noise and the original wave
heights in the TUNAMI‐N2 simulation. Figure D2 shows the relationship between the number of gauges opti-
mized considering the virtual noise covariance matrix and the resulting RMSE. This figure also shows the PSR
result using the virtual noise‐added wave height data observed at the 21 gauges determined considering a constant
uncertainty (Σ = I), as in Section 4.1. This figure confirms that the RMSEs of the two configurations optimized
considering the virtual observation noise effect are equivalent. In addition, these two configurations realize more
accurate wave height PSR than that of the optimized configuration neglecting the uncertainty caused by the virtual
observation noise. Therefore, the optimal configuration determined by the optimization scheme derived in terms
of minimizing the information entropy achieves more accurate PSR results for noisy observation data.

Data Availability Statement
The python codes used for all numerical experiments in this work are available at https://doi.org/10.5281/zenodo.
10373316 (Fujita, 2023). All synthetic wave sequences, the locations of the synthetic gauges, and the detail of
fault parameters for 1564 tsunami simulations (TUNAMI‐N2) are archived in https://doi.org/10.5281/zenodo.
8287917 (Koshimura & Fujita, 2023).
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