Chapter 8 Exercises

From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/~rjl/fdmbook

Exercise 8.1 (stability region of TR-BDF2)

Use makeplotS.m from Chapter 7 to plot the stability region for the TR-BDF2 method (8.6). Observe that the method is L-stable.

Exercise 8.2 (Stiff decay process)

The mfile decay1.m uses ode113 to solve the linear system of ODEs arising from the decay process

$$A \xrightarrow{K_1} B \xrightarrow{K_2} C \tag{Ex8.2a}$$

where $u_1 = [A]$, $u_2 = [B]$, and $u_3 = [C]$, using $K_1 = 1$, $K_2 = 2$, and initial data $u_1(0) = 1$, $u_2(0) = 0$, and $u_3(0) = 0$.

- (a) Use decaytest.m to determine how many function evaluations are used for four different choices of tol.
- (b) Now consider the decay process

$$A \xrightarrow{K_1} D \xrightarrow{K_3} B \xrightarrow{K_2} C \tag{Ex8.2b}$$

Modify the m-file decay1.m to solve this system by adding $u_4 = [D]$ and using the initial data $u_4 = 0$. Test your modified program with a modest value of K_3 , e.g., $K_3 = 3$, to make sure it gives reasonable results and produces a plot of all 4 components of u.

- (c) Suppose K_3 is much larger than K_1 and K_2 in (Ex8.2b). Then as A is converted to D, it decays almost instantly into C. In this case we would expect that $u_4(t)$ will always be very small (though nonzero for t > 0) while $u_j(t)$ for j = 1, 2, 3 will be nearly identical to what would be obtained by solving (Ex8.2a) with the same reaction rates K_1 and K_2 . Test this out by using $K_3 = 1000$ and solving (Ex8.2b). (Using your modified m-file with ode113 and set tol=1e-6).
- (d) Test ode113 with $K_3 = 1000$ and the four tolerances used in decaytest.m. You should observe two things:
 - (i) The number of function evaluations requires is much larger than when solving (Ex8.2a), even though the solution is essentially the same,
 - (ii) The number of function evaluations doesn't change much as the tolerance is reduced.

Explain these two observations.

(e) Plot the computed solution from part (d) with tol = 1e-2 and tol = 1e-4 and comment on what you observe.

- (f) Test your modified system with three different values of $K_3 = 500$, 1000 and 2000. In each case use tol = 1e-6. You should observe that the number of function evaluations needed grows linearly with K_3 . Explain why you would expect this to be true (rather than being roughly constant, or growing at some other rate such as quadratic in K_3). About how many function evaluations would be required if $K_3 = 10^7$?
- (g) Repeat part (f) using ode15s in place of ode113. Explain why the number of function evaluations is much smaller and now roughly constant for large K_3 . Also try $K_3 = 10^7$.

Exercise 8.3 (Stability region of RKC methods)

Use the m-file plotSrkc.m to plot the stability region for the second-order accurate s-stage Runge-Kutta-Chebyshev methods for r = 3, 6 with damping parameter $\epsilon = 0.05$ and compare the size of these regions to those shown for the first-order accurate RKC methods in Figures 8.7 and 8.8.

Exercise 8.4 (Implicit midpoint method)

Consider the implicit Runge-Kutta method

$$U^* = U^n + \frac{k}{2}f(U^*, t_n + k/2),$$

$$U^{n+1} = U^n + kf(U^*, t_n + k/2).$$
(Ex8.4a)

The first step is Backward Euler to determine an approximation to the value at the midpoint in time and the second step is the midpoint method using this value.

- (a) Determine the order of accuracy of this method.
- (b) Determine the stability region.
- (c) Is this method A-stable? Is it L-stable?

Exercise 8.5 (The θ -method)

Consider the so-called θ -method for u'(t) = f(u(t), t),

$$U^{n+1} = U^n + k((1-\theta)f(U^n, t_n) + \theta f(U^{n+1}, t_{n+1})),$$
 (Ex8.5a)

where θ is a fixed parameter. Note that $\theta = 0, 1/2, 1$ all give familiar methods.

- (a) Show that this method is A-stable for $\theta \ge 1/2$.
- (b) Plot the stability region S for $\theta = 0$, 1/4, 1/2, 3/4, 1 and comment on how the stability region will look for other values of θ .