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Exercise 6.1 (Lipschitz constant for a one-step method)

For the one-step method (6.17) show that the Lipschitz constant is L′ = L + 1

2
kL2.

Exercise 6.2 (Improved convergence proof for one-step methods)

The proof of convergence of 1-step methods in Section 6.3 shows that the global error goes
to zero as k → 0. However, this bound may be totally useless in estimating the actual error
for a practical calculation.

For example, suppose we solve u′ = −10u with u(0) = 1 up to time T = 10, so the true
solution is u(T ) = e−100 ≈ 3.7 × 10−44. Using forward Euler with a time step k = 0.01, the
computed solution is UN = (.9)100 ≈ 2.65 × 10−5, and so EN ≈ UN . Since L = 10 for this
problem, the error bound (6.16) gives

‖EN‖ ≤ e100 · 10 · ‖τ‖∞ ≈ 2.7 × 1044‖τ‖∞. (E6.2a)

Here ‖τ‖∞ = |τ0| ≈ 50k, so this upper bound on the error does go to zero as k → 0, but
obviously it is not a realistic estimate of the error. It is too large by a factor of about 1050.

The problem is that the estimate (6.16) is based on the Lipschitz constant L = |λ|, which
gives a bound that grows exponentially in time even when the true and computed solutions
are decaying exponentially.

(a) Determine the computed solution and error bound (6.16) for the problem u′ = 10u with
u(0) = 1 up to time T = 10. Note that the error bound is the same as in the case above,
but now it is a reasonable estimate of the actual error.

(b) A more realistic error bound for the case where λ < 0 can be obtained by rewriting (6.17)
as

Un+1 = Φ(Un)

and then determining the Lipschitz constant for the function Φ. Call this constant M .
Prove that if M ≤ 1 and E0 = 0 then

|En| ≤ T‖τ‖∞

for nk ≤ T , a bound that is similar to (6.16) but without the exponential term.

(c) Show that for forward Euler applied to u′ = λu we can take M = |1+kλ|. Determine M
for the case λ = −10 and k = 0.01 and use this in the bound from part (b). Note that
this is much better than the bound (E6.2a).

Exercise 6.3 (consistency and zero-stability of LMMs)

Which of the following Linear Multistep Methods are convergent? For the ones that are not,
are they inconsistent, or not zero-stable, or both?
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(a) Un+2 = 1

2
Un+1 + 1

2
Un + 2kf(Un+1)

(b) Un+1 = Un

(c) Un+4 = Un + 4

3
k(f(Un+3) + f(Un+2) + f(Un+1))

(d) Un+3 = −Un+2 + Un+1 + Un + 2k(f(Un+2) + f(Un+1)).

Exercise 6.4 (Solving a difference equation)

Consider the difference equation Un+2 = Un with starting values U 0 and U1. The solution
is clearly

Un =

{

U0 if n is even,
U1 if n is odd.

Using the roots of the characteristic polynomial and the approach of Section 6.4.1, another
representation of this solution can be found:

Un = (U0 + U1) + (U0 − U1)(−1)n.

Now consider the difference equation Un+4 = Un with four starting values U 0, U1, U2, U3.
Use the roots of the characteristic polynomial to find an analogous represenation of the solution
to this equation.

Exercise 6.5 (Solving a difference equation)

(a) Determine the general solution to the linear difference equation 2Un+3−5Un+2+4Un+1−
Un = 0.

Hint: One root of the characteristic polynomial is at ζ = 1.

(b) Determine the solution to this difference equation with the starting values U 0 = 11,
U1 = 5, and U2 = 1. What is U10?

(c) Consider the LMM

2Un+3 − 5Un+2 + 4Un+1 − Un = k(β0f(Un) + β1f(Un+1)).

For what values of β0 and β1 is local truncation error O(k2)?

(d) Suppose you use the values of β0 and β1 just determined in this LMM. Is this a convergent
method?

Exercise 6.6 (Solving a difference equation)

(a) Find the general solution of the linear difference equation

Un+2 − Un+1 + 0.25Un = 0.

(b) Determine the particular solution with initial data U 0 = 2, U1 = 3. What is U10?
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(c) Consider the iteration

[

Un+1

Un+2

]

=

[

0 1
−0.25 1

] [

Un

Un+1

]

.

The matrix appearing here is the “companion matrix” (15.19) for the above difference
equation. If this matrix is called A, then we can determine Un from the starting values
using the nth power of this matrix. Compute An as discussed in Section 15.2 and show
that this gives the same solution found in part (b).

Exercise 6.7 (Convergence of backward Euler method)

Suppose the function f(u) is Lipschitz continuous over some domain |u−η| ≤ a with Lipschitz
constant L. Let g(u) = u − kf(u) and let Φ(v) = g−1(v), the inverse function.

Show that for k < 1/L, the function Φ(v) is Lipschitz continuous over some domain |v −
f(η)| ≤ b and determine a Lipschitz constant.

Hint: Suppose v = u− kf(u) and v∗ = u∗ − kf(u∗) and obtain an upper bound on |u− u∗|
in terms of |v − v∗|.

Note: The backward Euler method (5.21) takes the form

Un+1 = Φ(Un)

and so this shows that the implicit backward Euler method is convergent.

Exercise 6.8 (Fibonacci sequence)

A Fibonacci sequence is generated by starting with F0 = 0 and F1 = 1 and summing the
last two terms to get the next term in the sequence, so Fn+1 = Fn + Fn−1.

(a) Show that for large n the ratio Fn/Fn−1 approaches the “golden ratio” φ ≈ 1.618034.

(b) Show that the result of part (a) holds if any two integers are used as the starting values
F0 and F1, assuming they are not both zero.

(c) Is this true for all real starting values F0 and F1 (not both zero)?
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