Chapter 6 Exercises

From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/~rjl/fdmbook

Exercise 6.1 (Lipschitz constant for a one-step method)

For the one-step method (6.17) show that the Lipschitz constant is $L' = L + \frac{1}{2}kL^2$.

Exercise 6.2 (Improved convergence proof for one-step methods)

The proof of convergence of 1-step methods in Section 6.3 shows that the global error goes to zero as $k \to 0$. However, this bound may be totally useless in estimating the actual error for a practical calculation.

For example, suppose we solve u' = -10u with u(0) = 1 up to time T = 10, so the true solution is $u(T) = e^{-100} \approx 3.7 \times 10^{-44}$. Using forward Euler with a time step k = 0.01, the computed solution is $U^N = (.9)^{100} \approx 2.65 \times 10^{-5}$, and so $E^N \approx U^N$. Since L = 10 for this problem, the error bound (6.16) gives

$$||E^{N}|| \le e^{100} \cdot 10 \cdot ||\tau||_{\infty} \approx 2.7 \times 10^{44} ||\tau||_{\infty}.$$
 (E6.2a)

Here $\|\tau\|_{\infty} = |\tau^0| \approx 50k$, so this upper bound on the error does go to zero as $k \to 0$, but obviously it is not a realistic estimate of the error. It is too large by a factor of about 10^{50} .

The problem is that the estimate (6.16) is based on the Lipschitz constant $L = |\lambda|$, which gives a bound that grows exponentially in time even when the true and computed solutions are decaying exponentially.

- (a) Determine the computed solution and error bound (6.16) for the problem u' = 10u with u(0) = 1 up to time T = 10. Note that the error bound is the same as in the case above, but now it is a reasonable estimate of the actual error.
- (b) A more realistic error bound for the case where $\lambda < 0$ can be obtained by rewriting (6.17) as

$$U^{n+1} = \Phi(U^n)$$

and then determining the Lipschitz constant for the function Φ . Call this constant M. Prove that if $M \leq 1$ and $E^0 = 0$ then

$$|E^n| \le T \|\tau\|_{\infty}$$

for $nk \leq T$, a bound that is similar to (6.16) but without the exponential term.

(c) Show that for forward Euler applied to $u' = \lambda u$ we can take $M = |1 + k\lambda|$. Determine M for the case $\lambda = -10$ and k = 0.01 and use this in the bound from part (b). Note that this is much better than the bound (E6.2a).

Exercise 6.3 (consistency and zero-stability of LMMs)

Which of the following Linear Multistep Methods are convergent? For the ones that are not, are they inconsistent, or not zero-stable, or both?

- (a) $U^{n+2} = \frac{1}{2}U^{n+1} + \frac{1}{2}U^n + 2kf(U^{n+1})$
- (b) $U^{n+1} = U^n$
- (c) $U^{n+4} = U^n + \frac{4}{2}k(f(U^{n+3}) + f(U^{n+2}) + f(U^{n+1}))$
- (d) $U^{n+3} = -U^{n+2} + U^{n+1} + U^n + 2k(f(U^{n+2}) + f(U^{n+1})).$

Exercise 6.4 (Solving a difference equation)

Consider the difference equation $U^{n+2} = U^n$ with starting values U^0 and U^1 . The solution is clearly

$$U^{n} = \begin{cases} U^{0} & \text{if } n \text{ is even,} \\ U^{1} & \text{if } n \text{ is odd.} \end{cases}$$

Using the roots of the characteristic polynomial and the approach of Section 6.4.1, another representation of this solution can be found:

$$U^{n} = (U^{0} + U^{1}) + (U^{0} - U^{1})(-1)^{n}.$$

Now consider the difference equation $U^{n+4} = U^n$ with four starting values U^0 , U^1 , U^2 , U^3 . Use the roots of the characteristic polynomial to find an analogous representation of the solution to this equation.

Exercise 6.5 (Solving a difference equation)

(a) Determine the general solution to the linear difference equation $2U^{n+3} - 5U^{n+2} + 4U^{n+1} - U^n = 0.$

Hint: One root of the characteristic polynomial is at $\zeta = 1$.

- (b) Determine the solution to this difference equation with the starting values $U^0 = 11$, $U^1 = 5$, and $U^2 = 1$. What is U^{10} ?
- (c) Consider the LMM

$$2U^{n+3} - 5U^{n+2} + 4U^{n+1} - U^n = k(\beta_0 f(U^n) + \beta_1 f(U^{n+1})).$$

For what values of β_0 and β_1 is local truncation error $\mathcal{O}(k^2)$?

(d) Suppose you use the values of β_0 and β_1 just determined in this LMM. Is this a convergent method?

Exercise 6.6 (Solving a difference equation)

(a) Find the general solution of the linear difference equation

$$U^{n+2} - U^{n+1} + 0.25U^n = 0.$$

(b) Determine the particular solution with initial data $U^0 = 2$, $U^1 = 3$. What is U^{10} ?

(c) Consider the iteration

$$\begin{bmatrix} U^{n+1} \\ U^{n+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.25 & 1 \end{bmatrix} \begin{bmatrix} U^n \\ U^{n+1} \end{bmatrix}$$

The matrix appearing here is the "companion matrix" (15.19) for the above difference equation. If this matrix is called A, then we can determine U^n from the starting values using the *n*th power of this matrix. Compute A^n as discussed in Section 15.2 and show that this gives the same solution found in part (b).

Exercise 6.7 (Convergence of backward Euler method)

Suppose the function f(u) is Lipschitz continuous over some domain $|u-\eta| \le a$ with Lipschitz constant L. Let g(u) = u - kf(u) and let $\Phi(v) = g^{-1}(v)$, the inverse function.

Show that for k < 1/L, the function $\Phi(v)$ is Lipschitz continuous over some domain $|v - f(\eta)| \le b$ and determine a Lipschitz constant.

Hint: Suppose v = u - kf(u) and $v^* = u^* - kf(u^*)$ and obtain an upper bound on $|u - u^*|$ in terms of $|v - v^*|$.

Note: The backward Euler method (5.21) takes the form

$$U^{n+1} = \Phi(U^n)$$

and so this shows that the implicit backward Euler method is convergent.

Exercise 6.8 (Fibonacci sequence)

A Fibonacci sequence is generated by starting with $F_0 = 0$ and $F_1 = 1$ and summing the last two terms to get the next term in the sequence, so $F_{n+1} = F_n + F_{n-1}$.

- (a) Show that for large n the ratio F_n/F_{n-1} approaches the "golden ratio" $\phi \approx 1.618034$.
- (b) Show that the result of part (a) holds if any two integers are used as the starting values F_0 and F_1 , assuming they are not both zero.
- (c) Is this true for all real starting values F_0 and F_1 (not both zero)?