
Chapter 5 Exercises

From: Finite Difference Methods for Ordinary and Partial Differential Equations
by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/∼rjl/fdmbook

Exercise 5.1 (Uniqueness for an ODE)

Prove that the ODE
u′(t) =

1
t2 + u(t)2

, for t ≥ 1

has a unique solution for all time from any initial value u(1) = η.

Exercise 5.2 (Lipschitz constant for an ODE)

Let f(u) = log(u).

(a) Determine the best possible Lipschitz constant for this function over 2 ≤ u < ∞.

(b) Is f(u) Lipschitz continuous over 0 < u < ∞?

(c) Consider the initial value problem

u′(t) = log(u(t)),
u(0) = 2.

Explain why we know that this problem has a unique solution for all t ≥ 0 based on
the existence and uniqueness theory described in Section 5.2.1. (Hint: Argue that f is
Lipschitz continuous in a domain that the solution never leaves, though the domain is
not symmetric about η = 2 as assumed in the theorem quoted in the book.)

Exercise 5.3 (Lipschitz constant for a system of ODEs)

Consider the system of ODEs

u′1 = 3u1 + 4u2,

u′2 = 5u1 − 6u2.

Determine the Lipschitz constant for this system in the max-norm ‖ · ‖∞ and the 1-norm ‖ · ‖1.
(See Appendix A.3.)

Exercise 5.4 (Duhamel’s principle)

Check that the solution u(t) given by (5.8) satisfies the ODE (5.6) and initial condition.
Hint: To differentiate the matrix exponential you can differentiate the Taylor series (D.31) (in
Appendix D) term by term.

Exercise 5.5 (matrix exponential form of solution)
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The initial value problem

v′′(t) = −4v(t), v(0) = v0, v′(0) = v′0

has the solution v(t) = v0 cos(2t)+ 1
2v′0 sin(2t). Determine this solution by rewriting the ODE as

a first order system u′ = Au so that u(t) = eAtu(0) and then computing the matrix exponential
using (D.30) in Appendix D.

Exercise 5.6 (matrix exponential form of solution)

Consider the IVP

u′1 = 2u1,

u′2 = 3u1 − u2,

with initial conditions specified at time t = 0. Solve this problem in two different ways:

(a) Solve the first equation, which only involves u1, and then insert this function into the
second equation to obtain a nonhomogeneous linear equation for u2. Solve this using
(5.8).

(b) Write the system as u′ = Au and compute the matrix exponential using (D.30) to obtain
the solution.

Exercise 5.7 (matrix exponential for a defective matrix)

Consider the IVP

u′1 = 2u1,

u′2 = 3u1 + 2u2,

with initial conditions specified at time t = 0. Solve this problem in two different ways:

(a) Solve the first equation, which only involves u1, and then insert this function into the
second equation to obtain a nonhomogeneous linear equation for u2. Solve this using
(5.8).

(b) Write the system as u′ = Au and compute the matrix exponential using (D.35) to obtain
the solution. (See Appendix C.3 for a discussion of the Jordan Canonical form in the
defective case.)

Exercise 5.8 (Use of ode113 and ode45)

This problem can be solved by a modifying the m-files odesample.m and odesampletest.m
available from the webpage.

Consider the third order initial value problem

v′′′(t) + v′′(t) + 4v′(t) + 4v(t) = 4t2 + 8t− 10,

v(0) = −3, v′(0) = −2, v′′(0) = 2.
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(a) Verify that the function
v(t) = − sin(2t) + t2 − 3

is a solution to this problem. How do you know it is the unique solution?

(b) Rewrite this problem as a first order system of the form u′(t) = f(u(t), t) where u(t) ∈ lR3.
Make sure you also specify the initial condition u(0) = η as a 3-vector.

(c) Use the matlab function ode113 to solve this problem over the time interval 0 ≤ t ≤ 2.
Plot the true and computed solutions to make sure you’ve done this correctly.

(d) Test the matlab solver by specifying different tolerances spanning several orders of
magnitude. Create a table showing the maximum error in the computed solution for
each tolerance and the number of function evaluations required to achieve this accuracy.

(e) Repeat part (d) using the matlab function ode45, which uses an embedded pair of
Runge-Kutta methods instead of Adams-Bashforth-Moulton methods.

Exercise 5.9 (truncation errors)

Compute the leading term in the local truncation error of the following methods:

(a) the trapezoidal method (5.22),

(b) the 2-step BDF method (5.25),

(c) the Runge-Kutta method (5.30).

Exercise 5.10 (Derivation of Adams-Moulton)

Determine the coefficients β0, β1, β2 for the third order, 2-step Adams-Moulton method.
Do this in two different ways:

(a) Using the expression for the local truncation error in Section 5.9.1,

(b) Using the relation

u(tn+2) = u(tn+1) +
∫ tn+2

tn+1

f(u(s)) ds.

Interpolate a quadratic polynomial p(t) through the three values f(Un), f(Un+1) and
f(Un+2) and then integrate this polynomial exactly to obtain the formula. The coeffi-
cients of the polynomial will depend on the three values f(Un+j). It’s easiest to use the
“Newton form” of the interpolating polynomial and consider the three times tn = −k,
tn+1 = 0, and tn+2 = k so that p(t) has the form

p(t) = A + B(t + k) + C(t + k)t

where A, B, and C are the appropriate divided differences based on the data. Then
integrate from 0 to k. (The method has the same coefficients at any time, so this is
valid.)
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Exercise 5.11 (Characteristic polynomials)

Determine the characteristic polynomials ρ(ζ) and σ(ζ) for the following linear multistep
methods. Verify that (5.48) holds in each case.

(a) The 3-step Adams-Bashforth method,

(b) The 3-step Adams-Moulton method,

(c) The 2-step Simpson’s method of Example 5.16.

Exercise 5.12 (predictor-corrector methods)

(a) Verify that the predictor-corrector method (5.51) is second order accurate.

(b) Show that the predictor-corrector method obtained by predicting with the 2-step Adams-
Bashforth method followed by correcting with the 2-step Adams-Moulton method is third
order accurate.

Exercise 5.13 (Order of accuracy of Runge-Kutta methods)

Consider the Runge-Kutta methods defined by the tableaux below. In each case show that
the method is third order accurate in two different ways: First by checking that the order
conditions (5.35), (5.37), and (5.38) are satisfied, and then by applying one step of the method
to u′ = λu and verifying that the Taylor series expansion of ekλ is recovered to the expected
order.

(a) Runge’s 3rd order method:

0
1/2 1/2
1 0 1
1 0 0 1

1/6 2/3 0 1/6

(b) Heun’s 3rd order method:

0
1/3 1/3
2/3 0 2/3

1/4 0

Exercise 5.14 (accuracy of TR-ZBDF2)
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Use the approach suggested in the Remark at the bottom of page 129 to test the accuracy
of the TR-BDF2 method (5.36).

Exercise 5.15 (Embedded Runge-Kutta method)

Consider the embedded Runge-Kutta method defined by the tableau below. Apply one step
of this method to u′ = λu to obtain both Un+1 and Ûn+1. What is the order of accuracy of
each method? What error estimate would be obtained when using this embedded method on
this problem? How does it compare to the actual error in the lower order method? (Assume
Un is the exact value at time tn).

0
1 1

1/2 1/4 1/4

1/2 1/2 0

1/6 1/6 4/6

Exercise 5.16 (accuracy of a Runge-Kutta method)

(a) Determine the leading term of the truncation error (i.e., the O(k2) term) for the Runge-
Kutta method (5.30) of Example 5.11.

(b) Do the same for the method (5.32) for the non-autonomous case.

Exercise 5.17 (R(z) for the trapezoidal method)

(a) Apply the trapezoidal method to the equation u′ = λu and show that

Un+1 =
(

1 + z/2
1− z/2

)
Un,

where z = λk.

(b) Let

R(z) =
1 + z/2
1− z/2

.

Show that R(z) = ez + O(z3) and conclude that the one-step error of the trapezoidal
method on this problem is O(k3) (as expected since the method is second order accurate).

Hint: One way to do this is to use the “Neumann series” expansion

1
1− z/2

= 1 +
z

2
+

(z

2

)2
+

(z

2

)3
+ · · ·

and then multiply this series by (1 + z/2). A more general approach to checking the
accuracy of rational approximations to ez is explored in the next exercises.
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Exercise 5.18 (R(z) for Runge-Kutta methods)

Any r-stage Runge-Kutta method applied to u′ = λu will give an expression of the form

Un+1 = R(z)Un

where z = λk and R(z) is a rational function, a ratio of polynomials in z each having degree
at most r. For an explicit method R(z) will simply be a polynomial of degree r and for an
implicit method it will be a more general rational function.

Since u(tn+1) = ezu(tn) for this problem, we expect that a pth order accurate method will
give a function R(z) satisfying

R(z) = ez +O(zp+1) as z → 0, (Ex5.18a)

as discussed in the Remark on page 129. The rational function R(z) also plays a role in stability
analysis as discussed in Section 7.6.2.

One can determine the value of p in (Ex5.18a). by expanding ez in a Taylor series about
z = 0, writing the O(zp+1) term as

Czp+1 +O(zp+2),

multiplying through by the denominator of R(z), and then collecting terms. For example, for
the trapezoidal method of Exercise 5.17,

1 + z/2
1− z/2

=
(

1 + z +
1
2
z2 +

1
6
z3 + · · ·

)
+ Czp+1 +O(zp+2)

gives

1 +
1
2
z =

(
1− 1

2
z

) (
1 + z +

1
2
z2 +

1
6
z3 + · · ·

)
+ Czp+1 +O(zp+2)

= 1 +
1
2
z − 1

12
z3 + · · ·+ Czp+1 +O(zp+2)

and so
Czp+1 =

1
12

z3 + · · · ,

from which we conclude that p = 2.

(a) Let

R(z) =
1 + 1

3z

1− 2
3z + 1

6z2
.

Determine p for this rational function as an approximation to ez.

(b) Determine R(z) and p for the backward Euler method.

(c) Determine R(z) and p for the TR-BDF2 method (5.36).
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Exercise 5.19 (Padé approximations)

A rational function R(z) = P (z)/Q(z) with degree m in the numerator and degree n in the
denominator is called the (m,n) Padé approximation to a function f(z) if

R(z)− f(z) = O(zq)

with q as large as possible. The Padé approximation can be uniquely determined by expanding
f(z) in a Taylor series about z = 0 and then considering the series

P (z)−Q(z)f(z),

collecting powers of z, and choosing the coefficients of P and Q to make as many terms vanish
as possible. Trying to require that they all vanish will give a system of infintely many linear
equations for the coefficients. Typically these can not all be satisfied simultaneously, while
requiring the maximal number to hold will give a nonsingular linear system. (Note that the
(m, 0) Padé approximation is simply the first m + 1 terms of the Taylor series.)

For this exercise, consider the exponential function f(z) = ez.

(a) Determine the (1, 1) Padé approximation of the form

R(z) =
1 + a1z

1 + b1z
.

Note that this rational function arises from the trapezoidal method applied to u′ = λu
(see Exercise 5.18).

(b) Determine the (1, 2) Padé approximation of the form

R(z) =
1 + a1z

1 + b1z + b2z2
.

(c) Determine the (2, 2) Padé approximation of the form

R(z) =
1 + a1z + a2z

2

1 + b1z + b2z2
.

You can check your answers at http://mathworld.wolfram.com/PadeApproximant.html, for
example.

Exercise 5.20 (R(z) for Runge-Kutta methods)

Consider a general r-stage Runge-Kutta method with tableau defined by an r × r matrix A
and a row vector bT of length r. Let

Y =


Y1

Y2
...

Yr

 , e =


1
1
...
1


and z = λk.
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(a) Show that if the Runge-Kutta method is applied to the equation u′ = λu the formulas
(5.34) can be written concisely as

Y = Une + zAY,

Un+1 = Un + zbT Y,

and hence
Un+1 =

(
I + zbT (I − zA)−1e

)
Un. (Ex5.20a)

(b) Recall that by Cramer’s rule that if B is an r × r matrix then the ith element of the
vector y = B−1e is given by

yi =
det(Bi)
det(B)

,

where Bi is the matrix B with the ith column replaced by e, and det denotes the deter-
minant.

In the expression (Ex5.20a), B = I − zA and each element of B is linear in z. From
the definition of the determinant it follows that det(B) will be a polynomial of degree
at most r, while det(Bi) will be a polynomial of degree at most r − 1 (since the column
vector e does does not involve z).

From these facts, conclude that (Ex5.20a) yields Un+1 = R(z)Un where R(z) is a rational
function of degree at most (r, r).

(c) Explain why an explicit Runge-Kutta method (for which A is strictly lower triangular)
results in R(z) being a polynomial of degree at most r (i.e., a rational function of degree
at most (r, 0)).

(d) Use (Ex5.20a) to determine the function R(z) for the TR-BDF2 method (5.36). Note
that in this case I − zA is lower triangular and you can compute (I − zA)−1e by forward
substitution. You should get the same result as in Exercise 5.18(c).

Exercise 5.21 (starting values)

In Example 5.18 it is claimed that generating a value U1 using the first order accurate
forward Euler method and then computing using the midpoint method gives a method that
is globally second order accurate. Check that this is true by implementing this approach in
matlab for a simple ODE.

8


