AMath 586 / ATM 581

Homework #2

Due Thursday, April 23, 2019
Homework is due to Canvas by 11:00pm PDT on the due date.

To submit, see https://canvas.uw.edu/courses/1271892/assignments/4790261

Problem 1

Which of the following Linear Multistep Methods are convergent? For the ones that are not, are they
inconsistent, or not zero-stable, or both?

(a) U+3 = Ut 4 2k f(U™),
(

b) U2 = LUt 4 LU 2k f(UMHY),

d) Urtt = n o ék(f(Un+3) +f(Un+2) +f(Un+1)),

)

)
(C) Un+1 n
(d)
(e) Un+3 Un+2_|_Un+1+Un+2k(f(Un+2)+f(Un+1))

Problem 3

(a) Determine the general solution to the linear difference equation U"+2 = U"*! + U™,

(b) Determine the solution to this difference equation with the starting values U° = 1, U! = 1. Use
this to determine U3°? (Note, these are the Fibonacci numbers, which of course should all be
integers.)

(c) Show that for large n the ratio of successive Fibonacci numbers U™ /U"~! approaches the “golden
ratio” ¢ ~ 1.618034.

Problem 2 Any r-stage Runge-Kutta method applied to u’ = Au will give an expression of the form
U7z+1 — R(Z)Un

where z = Ak and R(z) is a rational function, a ratio of polynomials in z each having degree at most 7.
For an explicit method R(z) will simply be a polynomial of degree r and for an implicit method it will
be a more general rational function.

Since u(tp+1) = e*u(t,) for this problem, we expect that a pth order accurate method will give a
function R(z) satisfying
R(z) =e* + O(zPT!) asz—0.

This indicates that the one-step error is O(zP*!) on this problem, as expected for a pth order accurate
method.

The explicit Runge-Kutta method of Example 5.13 is fourth order accurate in general, so in particular
it should exhibit this accuracy when applied to u/(¢t) = Au(t). Show that in fact when applied to this
problem the method becomes U™t = R(z)U™ where R(z) is a polynomial of degree 4, and that this
polynomial agrees with the Taylor expansion of e* through O(z*) terms.

https://canvas.uw.edu/courses/1271892/assignments/4790261

We will see that this function R(z) is also important in the study of absolute stability of a one-step
method.

Problem 2

Determine the function R(z) described in the previous exercise for the TR-BDF2 method given in
(5.37). Note that this can be simplified to the form (8.6), which is given only for the autonomous case
but that suffices for «’(t) = Au(t). (You might want to convince yourself these are the same method).

Confirm that R(z) agrees with e* to the expected order.
Note that for this implicit method R(z) will be a rational function, so you will have to expand the

denominator in a Taylor series, or use the Neumann series

/l—e)=1+et++S 4+,

Problem 4

The Jupyter notebook Pendulum ForwardEuler.ipynb gives an implementation of Forward Euler on
the nonlinear pendulum problem

0'(t) = (1) (1)
V() = —sin(6(t)) (2)

Modify this code to implement the Backward Euler method. Since this is an implicit method, you need
to solve a nonlinear equation in each step. Although it is a system of two equations, you can reduce it
to a scalar nonlinear equation. In each step we have to solve

ot = on 4 pyntt, (3)
Vil = v —sin(0") (4)

and substituting the second equation in the first gives a single equation to solve for @"*1, of the form
d(theta) = 0 with ¢(0) = 0 + k?sin(f) — (O™ — kV™). This can be done in each time step by defining
the function ¢ and then calling the root-finder scipy.optimize.fsolve. The value ©" from the previous
time step is generally a good starting guess for the root. So this gives a loop like:

for n in range(O,nsteps):
phi = lambda theta: theta + dt**2*sin(theta) - (U[O,n] + dt*U[1,n])
new_theta = fsolve(phi, U[0,n])
U[0,n+1] = new_theta
Ul1,n+1] = U[1,n] - dt * sin(new_theta)

Comment on how solutions computed with this method compare to those obtained with Forward Euler.
Test with different size time steps to confirm that you see the expected first order accuracy. For this
you may want to take a much shorter time interval than in the notebook in order to get the expected
asymptotics with a reasonable number of time steps. Also note that you cannot necessarily assume the
reference solution computed with solve_ivp is as accurate as the tolerance specified, especially over
long time intervals!

Problem 5

Repeat the previous problem for the Trapezoidal method. Again comment on the behavior of the
solution in this case, and check the order of accuracy.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html

