
AMath 586 / ATM 581
Final — Extra Credit
Due Thursday, June 15, 2019

Name: Your name here

Due to Canvas by 11:00pm PDT on the due date.

To submit, see https://canvas.uw.edu/courses/1271892/assignments/4836612

This extra credit set of problems is worth an additional 20 points.

These problems concern the propagation of waves in “excitable media”, in particular biological tissue,
such as nerve axons or the heart wall, that conduct electrical signals such as nerve pulses. These tissues
are generally semi-permeable to certain ions (in particular calcium Na+ and potassium K+) with a
permeability that depends on the voltage jump across the membrane. The potential difference across
the membrane also serves as a driving force for the flow of ions through the open channels. You don’t
need to understand the biochemistry to do this project, but if you’re interested you can find more links
(and figures, animations, etc.) at, e.g.

• http://www.scholarpedia.org/article/FitzHugh-Nagumo_model

• https://en.wikipedia.org/wiki/Hodgkin-Huxley_model

The starting point is a simple system of two ODEs, the spatially-homogeneous FitzHugh-Nagumo
equations, which have various forms in the literature. We will use the form

v′(t) =
1

ε
(g(v(t))− w(t) + Ia),

w′(t) = βv(t)− γw(t).
(1)

For the function g(v) we will again use the cubic function

g(v) = v(α− v)(v − 1). (2)

The numbers α, β, γ , ε and Ia are parameters.

This is a simple model that exhibits many features of excitable media, and is a simplification of the
famous Hodgkin-Huxley equations that are a better model for nerve propagation. In the FitzHugh-
Nagumo equations v(t) models the membrane potential while w(t) models the concentration of an
ion.

This system of ODEs does not model wave propagation — for that we need a PDE in space and time
(with one space dimension for propagation along a nerve axon or two space dimension for a wave
propagating on the surface of the heart, say). This will be done below (in 1 space dimension).

The ODE models a situation in which electric charge can flow infinitely quickly through the fluid on
either side of the membrane, so that the potential jump across the membrane is the same at every point
in space and the PDEs reduce to an ODE in time.

With the parameter values

α = 0.3, β = 1, γ = 1, Ia = 0, ε = 0.001 (3)

and initial data
v(0) = v0, w(0) = 0, (4)

the solution to the ODEs (1) exhibit two different sorts of behavior, as shown in the figures below:
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If v0 = 0.29 then the initial membrane potential simply decays as ions flow across the membrane and
the solution approaches the stable steady state v = w = 0.

If v0 = 0.31 then the initial membrane potential rises sharply to nearly v = 1, stays quite high for a bit,
and then drops sharply and ultimately decays back to the steady state. This happens whenever v0 is
above the “threshold value” α = 0.3. This spike in potential is an “action potential” in the language of
neurophysiology, and in nerve cells the propagation of action potential as waves is the manner in which
nerve cells communicate with one another.

The parameter Ia is an applied current, a forcing term that can lead to sustained oscillations (a train of
nerve impulses in a nerve axon, for example, once we add spatial variations). With the above parameter
values and v0 = 0, Ia = 0.2, the solution to the ODE (1) looks like:

After the first action potential it settles down into a periodic solution as the nerve “fires” repeatedly.
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To get some feel for what’s going on, note that when ε is very small we expect v′(t) to be very large
unless w ≈ g(v) + Ia. If we plot this cubic in the v–w plane (the “phase plane”) along with trajectories
of the solution (v(t), w(t)), we get a plot like this, in the case of repetitive firing:

Initially v(t) changes very rapidly (with w(t) ≈ 0) until it hits the cubic. Then the solution moves
slowly along the cubic until it hits an extreme point after which v adjusts very quickly (the nearly
horizontal lines in the trajectories) to reach a different part of the cubic, and then it varies slowly
again for a while. In the case shown it ultimately cycles around the upper loop forever, once for each
action potential. Some other plots with more information are shown at http://www.scholarpedia.

org/article/FitzHugh-Nagumo_model.

Problem 7.

(a) Write a code using e.g. scipy.integrate.odeint to solve (1) and reproduce the figures shown
above as a test that it is working.

(b) Modify your code to also produce a phase plane plot similar to the plot above. Do this for each
set of parameters used above, i.e. for

Ia = 0, v0 = 0.29,

Ia = 0, v0 = 0.31,

Ia = 0.2, v0 = 0.

(c) Experiment with varying ε and comment on what you observe, both in terms of how the solution
behaves (as a function of t and in the phase plane) and in terms of the computational method.

The reaction-diffusion equations. In reality the charge doesn’t equilibrate infinitely quickly, but
instead diffuses, and so we will add a diffusion term to the equation for v(t) to recover the PDEs. In
one space dimension:

vt(x, t) = vxx(x, t) +
1

ε
(g(v(x, t))− w(x, t) + Ia(x)),

wt(x, t) = βv(x, t)− γw(x, t).
(5)

Equation (5) is a reaction-diffusion equation. Note that only v diffuses but since wt depends on v the
solution will also show spatial variations in w.
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Problem 8.

Create a notebook to solve the one-dimensional FitzHugh-Nagumo equations (5). You can base your
code on what you did for Allen-Cahn. You will have to keep track of w as well as v and modify the
reaction terms for the FitzHugh-Nagumo reactions. Again use the backward Euler method for these
terms. This will now require solving a system of 2 equations for V n+1

j and Wn+1
j at every grid point.

Note, however, that the equation for w is linear and so it is possible to express Wn+1
j as a function of

V n+1
j . You can use this to reduce the problem to a scalar cubic equation to be solved for V n+1

j , which
can speed up the solution, or you can simply use fsolve on the system of two equations.

Test your code with the following two tests (feel free to experiment with more):

(a) Use m = 499 interior points on −5 ≤ x ≤ 5 with parameter values

α = 0.3, β = 1, γ = 1, κ = 0.2, ε = 0.001 (6)

with no applied current (Ia(x) = 0) and initial data

v(x, 0) =

{
1 if |x| < 1
0 if |x| > 1

, w(x, 0) = 0.

If you solve this out to time t = 1, say, you should see a traveling wave develop and propagate.
Experiment with what size time step is needed and discuss.

(b) Same situation as in part (a) but with initial data v(x, 0) = w(x, 0) = 0 and a spatially-varying
applied current Ia(x) = 0.8 exp(−5x2). This models a situation in which a stimulated nerve cell
sends out a train of pulses. Run the computation out to time t = 2 and you should see several
pulses generated, similar to the animation shown here (on the class webpage for the final). This
was generated using m = 499 interior points and 1000 time steps.

With coarser grids or larger timesteps you may get very poor solutions. Experiment a bit and
comment on your observations.
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