
AMath 586 / ATM 581
Take-home Final
Due Thursday, June 9, 2016

Name: Your name here

Due to Canvas by 11:00pm PDT on the due date.

To submit, see https://canvas.uw.edu/courses/1038268/assignments/3292505

This final is worth 65 points. An extra credit problem worth up to 10 points more is at the end.

Please work on this exam on your own! You may consult the literature and use the discussion
board and office hours if questions arise.

Before June 3: Please fill out the course evaluation form if you have not already done so, found at:
https://uw.iasystem.org/survey/161314

Feedback is encouraged to improve this course in the future.

The notebook notebooks/animate_demo.ipynb shows how to make animations using the interact

command in a notebook, as discussed in lecture on May 27.

Problems 1 and 2 follow up on the discussion from lecture on dispersive waves and the fact that Leapfrog
allows waves to propagate in the wrong direction for the advection equation. If you want to read more
about this, I suggest the paper Group Velocity in Finite Difference Schemes by L. N. Trefethen, SIAM
Review 24(1982), http://dx.doi.org/10.1137/1024038.

Problem 1. Using the notebook notebooks/Lax-Wendroff_wave-packet as a guide, create a notebook
that implements the Leapfrog method with wave packet initial data and periodic boundary conditions.

Note that you need to specify two sets of initial data, U0
j = η(xj) and U1

j at time k, which is not

provided as part of the initial data for the PDE. To begin with, set U1
j = η(xj − ak), the true solution

at time t1 = k.

(a) Check that your method is second order accurate using the same convergence test code as in
the Lax-Wendroff notebook (i.e. produce a table of errors and also a log-log plot). Use a = 2,
ξ0 = 100, and go to the final time T = 1 using N time steps, for values of m = 50r − 1 and
N = 120r for r = 1, 2, 4, 8, . . . , 128.

Hint: If you are only seeing first order accuracy, make sure that you are taking the right number
of time steps since the first time step is now computing U2, not U1 as in Lax-Wendroff. If you
take one too many time steps of size k, the solution will be off by O(k) and hence appear first
order accurate. Check for other possible errors too of course.

(b) Try using the initial data U1
j = U0

j = η(xj). This introduces an O(k) error at time t1. Use the

convergence test in the notebook to show that in spite of this the method still produces O(k2)
errors at the final time (with ak/h fixed) provided you use an even number of time steps, e.g. for
the set of values suggested above. But if you use an odd number of time steps, e.g. N = 120r+ 1
in the convergence test, you should see only first order accuracy asymptotically. Try to explain
these results. Hint: Un

j ≈ u(xj , tn) +O(k2) when n is even, but what about n odd?

1

https://canvas.uw.edu/courses/1038268/assignments/3292505
https://uw.iasystem.org/survey/161314
http://dx.doi.org/10.1137/1024038


(c) Try setting Uj = −η(xj + ak). This does not model the PDE data well at all, but is chosen to
maximally excite the parasitic mode that propagates in the wrong direction and oscillates in time,
as demonstrated in lecture on May 27.

For Gaussian initial data (ξ0 = 0) plot the solution U0, U1, U2, U3 to verify that this oscillates
in time, and also plot the solution after some larger number of steps to verify that it propagates
in the wrong direction.

Problem 2.

Create a new notebook Leapfrog_outflow.ipynb that implements Leapfrog for the advection equation
ut + aux = 0 on the interval 0 ≤ x ≤ 1 with boundary condition u(0, t) = 0. Use the same wave packet
initial conditions as in the previous problem,

u(x, 0) = η(x) = exp(−β(x− 0.5)2) cos(ξ0x)

with β = 100 and ξ0 being an input variable for your function. Note that this isn’t exactly 0 at x = 0 but
exp(−25) ≈ 10−11 so the solution shouldn’t be affected by this — the true solution simply propagates
to the right and the boundary x = 1.5 should be an outflow boundary where no boundary condition
can be prescribed for the PDE.

Use U1 = η(x − ak) as the starting value, set m = 99 and use 300 time steps so that the Courant
number is 2/3.

Since Leapfrog is a 3-point method, we need to use something other than Leapfrog to compute Un+1
m+1 at

the right boundary. This problem explores what happens with different numerical boundary conditions.

Set ξ0 = 0 so that the initial data is a pure Gaussian.

You might want to introduce a parameter bcmethod into the calling sequence of your function so that
you can easily switch between trying different methods. Produce a few sample plots (or animations in
a notebook) for each case.

(a) Try setting Un+1
m+1 = 0 in each step. Because Leapfrog is a multistep method in time it allows left-

going waves as well as right-going waves. Confirm that with this boundary condition the outgoing
wave creates a reflection at the boundary that propagates back in. Note that the reflected wave has
maximum possible wave number ξ = π/h, i.e. a sawtooth oscillation (modulated by a Gaussian).
What happens when this parasitic wave hits the left boundary, where Un+1

0 is prescribed?

(b) Try using the following modification of the Leapfrog method as your boundary condition: Un+1
m+1 =

Un−1
m+1− ak

2h (Un
m+1−Un

m). You should find that this leads to a fairly strong reflected parasitic wave,
although not nearly as bad as the method in part (a), and it should converge as the grid is refined.

(c) Try using the upwind method as your boundary condition, i.e. Un+1
m+1 = Un

m+1 − ak
h (Un

m+1 −Un
m).

You should find that this works better than the method in (b).

(d) Finally try using the Beam-Warming method at the right boundary. Note that this should work
better than upwind. Compute the max-norm of the error at the final time T = 1 to confirm this.
(You could plot the error at each time and animate this if you want to see better how the errors
behave, but not required.)

2



The Allen-Cahn Equation. The remaining problems lead you through the numerical solution of a
PDE called the Allen-Cahn equation.

First consider the ODE

v′(t) =
1

ε
g(v) (1)

where
g(v) = v(α− v)(v − 1) (2)

with 0 < α < 1. This equation has three possible steady state solutions: v(t) ≡ 0, v(t) ≡ α, v(t) ≡ 1.
The middle one is an unstable steady state. If v(0) = α+ δ with δ small but nonzero, then v(t) moves
away from α, towards 0 if δ < 0 or towards 1 if δ > 0. These are the two stable steady states. The
parameter ε > 0 controls the rate of decay towards these steady states. For small ε the solution moves
rapidly towards 0 or 1.

Problem 3. Set α = 0.3 and ε = 1. Use odeint in Python to plot solutions curves v(t) for several
different initial values v(0) lying between 0 and 1, in particular for v0 = linspace(0,1,11). Plot all
these curves v(t) for 0 ≤ t ≤ 10 on a single plot.

Produce similar plots for ε = 0.1 and ε = 0.05.

We can turn (1) into a PDE in one space dimension and time by letting v(x, t) vary in space and adding
spatial diffusion, obtaining

vt(x, t) = κvxx(x, t) +
1

ε
g(v). (3)

This is a scalar reaction-diffusion equation, a variant of the Allen-Cahn equation that is used as a simple
model of phase transition.

The lower stable steady state corresponds to a material in one phase (e.g. solid) while the upper stable
steady state corresponds to a different phase (e.g. liquid). If the cubic g(v) is replaced by the quadratic
g(v) = v(1−v) then (3) is called Fisher’s equation and models the propagation of a gene in a population,
for example.

Consider initial data

v(x, 0) =

{
1 if x < 0
0 if x ≥ 0

(4)

and the Cauchy problem on −∞ < x < ∞ so we don’t have to worry about boundary conditions for
the moment.

If κ = 0 (no diffusion) then v(x, t) = v(x, 0) for all time since both v = 1 and v = 0 are steady states
and so vt ≡ 0. With diffusion, however, this step discontinuity immediately smooths out and v(x, t)
for t > 0 will be a continuous function taking all values between 0 and 1. For these values of v the
reaction term drives v back towards 0 (where v < α) or towards 1 (where v > α), tending to sharpen
the smeared profile back towards a step discontinuity. There is a competition between the smearing
effect of diffusion and the sharpening effect of the reaction, leading to a steady profile that is smeared
to a finite degree that depends on the relation between the parameters ε and κ.

The smearing effect of diffusion is symmetric about v = 1/2: for ε → ∞ the solution to the pure
diffusion equation with data (4) has v > 1/2 for x < 0 and v < 1/2 for x > 0 and appears symmetric
about this point. The sharpening from the reaction term is also symmetric about v = 1/2 if α = 1/2.
In this case v(x, t) approaches a steady state profile v(x, t) → V (x/δ) as t → ∞. A new parameter δ
has been introduced that will be related to κ and ε below. The idea is that the profile V (ξ) should be
independent of the parameters κ and ε but is rescaled based on these parameters since the width of the
transition from v = 1 to v = 0 will depend on these parameters.

3



We can determine δ and V by inserting v(x, t) = V (x/δ) into the PDE (3), obtaining a boundary value
problem

0 =
κ

δ2
V ′′(x/δ) +

1

ε
g(V (x/δ)). (5)

Multiplying by δ2/κ and rearranging gives

V ′′(x/δ) = − δ
2

κε
g(V (x/δ)). (6)

This suggests that we should choose δ2 to be proportional to κε in order to obtain an ODE for V that
is independent of the parameters. In order to easily solve the resulting BVP it is convenient to choose

δ =
√

2κε. (7)

Setting ξ = x/δ then gives the ODE for V (ξ),

V ′′(ξ) = −2V (ξ)(1/2− V (ξ))(V (ξ)− 1). (8)

with asymptotic boundary conditions V (ξ) → 1 as x → −∞ and V (ξ) → 0 as x → ∞. We also want
V (ξ) to be centered about ξ = 0, so we would like v(0) = 1/2.

Note that even without solving the ODE (8) we can deduce that the width of the transition zone in the
traveling wave is proportional to δ and hence to

√
κε. This information might be useful if we wanted

to use a nonuniform grid to solve the problem numerically, or to choose an appropriate value of h for a
uniform grid.

In fact the ODE can be solved and the solution satisfying the conditions stated above is

V (ξ) =
1

1 + exp(ξ)
(9)

Hence this is a steady state solution for the case α = 1/2.

If α 6= 1/2 then the effect of the reaction term is not symmetric. If 0 < α < 1/2 then some values
of v less than 1/2 are driven towards v = 1 by the reaction term. When coupled with the symmetric
diffusion this leads to a traveling wave propagating with some velocity c that is positive if α < 1/2 (or
negative if α > 1/2).

The traveling wave profile is given by the same function V (x) that satisfies the boundary value problem
(8), but now it translates at some speed c, and has the form

v(x, t) = V ((x− ct)/δ), (10)

Problem 4

(a) For any 0 < α < 1, show that v(x, t) = V ((x− ct)/δ) is a traveling wave solution to (3) provided
that c satisfies

c =

√
2κ

ε

(
1

2
− α

)
. (11)

Hint: It might be useful to first show that V ′(ξ) = V (ξ)(V (ξ)− 1).

(b) Suppose we define the width of the transition zone (wave front) in a traveling wave to be the
distance in x over which v falls from 0.99 to 0.01. Show that the width of wave front is roughly
9δ. This can be used to choose a suitable value of h. For example, choosing h ≈ δ would give
roughly 9 grid points in the wave front, which is probably about the minimum needed to resolve
it well numerically.

4



Problem 5.

Implement a fractional step method to approximate solutions to the Allen-Cahn equation on the interval
−1 ≤ x ≤ 3 with initial data v(x, 0) = V (x/δ), where δ is determined from specified values of κ = 0.3
and ε.

Your code should use:

• The Crank-Nicolson method for the diffusion equation. You might want to use code from the
notebook notebooks/HeatEquation_CN.ipynb for the diffusion part. Adapt this to work on the
interval −1 ≤ x ≤ 3 and use boundary conditions u(−1, t) = 1, u(3, t) = 0, which are reasonable
as long as the traveling wave does not reach the boundary.

• The Forward Euler method for the ODE in each time step, or the 2-step explicit Runge-Kutta
method (5.3). Introduce a parameter odemethod in the calling sequence of your function to select
one of these.

Test your method using α = 0.3 and ε = 0.01 with initial data given by the exact traveling wave solution
at t = 0, going up to time t = 1. Produce some plots of the solution to show that the method works.

You should see results like this for the case when Forward Euler is used and m = 49 with 100 time
steps up to time 1:

What order of accuracy do you observe for each choice of ODE solver? Is it worth using the Runge-Kutta
method in view of the first-order errors introduced by the fractional step method?

Extra Credit. Worth up to 10 additional points.

Explore what happens with smaller values of ε and comment on the various things that can go wrong if
the mesh width h and/or the time step k are not chosen small enough. Analyze what you see as much
as possible.

Some ideas to consider are below, but this is open-ended.

• What general guidelines can you deduce from experiments about how h and k should be chosen
relative to ε to get good results?

• Do you think the ODE solver part of this problem is “stiff”, and would you be able to take larger
time steps if you replaced the explicit solver by an implicit method such as TR-BDF2?

• If you try using an implicit method and take much larger time steps (e.g. with k/ε � 1), what
sort of behavior do you see, and why?

• Would it be better to use TR-BDF2 in place of Crank-Nicolson for the diffusion equation?

5


