Homework is due to Canvas by 11:00pm PDT on the due date.
To submit, see https://canvas.uw.edu/courses/962872/assignments/2829773

Problem 1

Prove that the ODE

$$
u^{\prime}(t)=\frac{1}{t^{2}+u(t)^{2}}, \quad \text { for } t \geq 1
$$

has a unique solution for all time from any initial value $u(1)=\eta$.

Problem 2

Consider the system of ODEs

$$
\begin{aligned}
& u_{1}^{\prime}=3 u_{1}+4 u_{2}, \\
& u_{2}^{\prime}=5 u_{1}-6 u_{2} .
\end{aligned}
$$

Determine the best possible Lipschitz constant for this system in the max-norm $\|\cdot\|_{\infty}$ and the 1-norm $\|\cdot\|_{1}$. (See Appendix A.3.)

Problem 3

The initial value problem

$$
v^{\prime \prime}(t)=-4 v(t), \quad v(0)=v_{0}, \quad v^{\prime}(0)=v_{0}^{\prime}
$$

has the solution $v(t)=v_{0} \cos (2 t)+\frac{1}{2} v_{0}^{\prime} \sin (2 t)$. Determine this solution by rewriting the ODE as a first order system $u^{\prime}=A u$ so that $u(t)=e^{A t} u(0)$ and then computing the matrix exponential using (D.30) in Appendix D.

Problem 4

Compute the leading term in the local truncation error of the following methods:
(a) the trapezoidal method (5.22),
(b) the 2 -step Adams-Bashforth method,
(c) the Runge-Kutta method (5.32).

Problem 5

Determine the coefficients $\beta_{0}, \beta_{1}, \beta_{2}$ for the third order, 2 -step Adams-Moulton method. Do this in two different ways:
(a) Using the expression for the local truncation error in Section 5.9.1,
(b) Using the relation

$$
u\left(t_{n+2}\right)=u\left(t_{n+1}\right)+\int_{t_{n+1}}^{t_{n+2}} f(u(s)) d s
$$

Interpolate a quadratic polynomial $p(t)$ through the three values $f\left(U^{n}\right), f\left(U^{n+1}\right)$ and $f\left(U^{n+2}\right)$ and then integrate this polynomial exactly to obtain the formula. The coefficients of the polynomial will depend on the three values $f\left(U^{n+j}\right)$. It's easiest to use the "Newton form" of the interpolating polynomial and consider the three times $t_{n}=-k, t_{n+1}=0$, and $t_{n+2}=k$ so that $p(t)$ has the form

$$
p(t)=A+B(t+k)+C(t+k) t
$$

where A, B, and C are the appropriate divided differences based on the data. Then integrate from 0 to k. (The method has the same coefficients at any time, so this is valid.)

Problem 6

The initial value problem

$$
\begin{align*}
u^{\prime}(t) & =u(t)^{2}-\sin (t)-\cos ^{2}(t) \\
u(0) & =1 \tag{1}
\end{align*}
$$

has the solution $u(t)=\cos (t)$.
Write a computer code (preferably in Python or Matlab) to solve problem (1) up to time $T=8$ with various different time steps $\Delta t=T / N$, with

$$
N=25,50,100,200,400,800,1600,3200
$$

Do this using two different methods:
(a) Forward Euler
(b) The Runge-Kutta method (5.32). Note that this should be second order accurate for sufficiently small Δt. If not, then you might have a bug.

Produce a log-log plot of the errors versus Δt, with both plots in the same figure. Figure 1 below shows how this might look for Forward Euler.

Figure 1: Left: the Euler solution with $N=50$, Right: Log-log plot of the error in Forward Euler.

