
AMath 585
Take home final
Due Tuesday, March 17, 2020

Due to Canvas by 11:00pm PDT on the due date, at the latest.

No late papers accepted, so aim to get it in earlier!

To submit, see https://canvas.uw.edu/courses/1352870/assignments/5301318

100 points possible.

Open book and notes, and you can use other resources too, except please don’t discuss it with other
students or anyone else.

If you need clarification on some problem, or you think there’s an error or typo, please post it on the
Canvas discussion board so everyone has access to the same information.

Problem 1.

In Homework 2 you solved a linear beam equation, valid for small deformations. If the deformations
are larger, then the equation must be nonlinear. In some cases an equation of this form can be used:

au′′′′(x)− b(u′(x))2(u′′(x))2 = f(x) for 0 ≤ x ≤ 1

u(0) = α0, u′(0) = α1, u(1) = β0, u′(1) = β1.

where a, b, α0, α1, β0, β1 are all specified constants.

(a) If we discretize with a uniform grid using h = 1/(m+ 1), suggest a nonlinear system of m equations
that could be solved for [U1, U2, . . . , Um] (the interior grid values) to obtain an approximate solution
that is second order accurate.

Make sure the boundary conditions are also handled appropriately. Use the ”First approach” described
in hw2 solutions.html since this is less messy and should still be second order accurate.

(b) If we wanted to solve this system using Newton’s method, we would need the Jacobian matrix for
the nonlinear system developed in (a). You don’t need to compute the full matrix, but do compute the
diagonal elements Jii for i = 1, 2, . . . , m.

Problem 2.

Suppose A is a 2× 2 singular matrix that is symmetric and has one postive eigenvalue, for example

A =

[
1 2
2 4

]
is one such matrix. Then A is symmetric positive semi-definite (uTAu ≥ 0 for all nonzero u) but is not
positive definite. If we define the functional

φ(u) =
1

2
uTAu− uT f

as in Section 4.3 then levels sets of φ(u) are no longer ellipses.

(a) What is the geometry of these level sets in general?

(b) Let z ∈ lR2 be a null vector of A and suppose f ∈ lR2 is a vector satisfying zT f = 0. Then the
system Au = f has infinitely many solutions. Show that the steepest descent method applied to φ(u)
from any initial guess u[0] converges to some solution of the linear system in a single iteration. Hint: It
might be easier to explain this using the result of (a) than by computing u[1] explicitly. That’s fine as
long as you give a convincing argument.
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Problem 3.

Consider the first order ODE, with a single boundary condition,

u′(x) = f(x), 0 ≤ x ≤ 1,

u(0) = α.

This boundary value problem has a unique solution u(x) = α+
∫ x

0
f(t) dt. Using u′(xj) ≈ (Uj−Uj−1)/h

on a uniform grid, we might attempt to approximate it by solving a system of the form

1

h



1
−1 1

−1 1
−1 1

. . .
. . .

−1 1





U0

U1

U2

U3

...
Um


=



α/h
f(x1)
f(x2)
f(x3)

...
f(xm)


.

(a) Determine the exact solution to this linear system and show that Uj approximates α +
∫ xj

0
f(t) dt

with a “Riemann sum”.

(b) Suppose we apply Gauss-Seidel, sweeping through the grid from left to right in the natural order
(i.e. j = 0, 1, . . . , m). Explain why one iteration is sufficient to converge to the exact solution of this
linear system, for any choice of initial data U [0].

(c) Suppose we instead sweep from right to left in Gauss-Seidel (for j = m, m− 1, . . . 0). What is the
iteration matrix G for this method on the system above? What are the eigenvalues of the G matrix?
What are the matrices G2, G3, . . .? (There is a simple pattern.)

(d) Suppose we start with initial guess U [0] = 0 (the zero vector). Does this backward Gauss-Seidel
method converge in a single step? In a finite number of steps? If so, how many?

(e) In Section 4.2.1 we saw that the spectral radius ρ(G) tells us something about the rate of convergence
of the method. Comment on what’s going on in this example based on your answers to (c) and (d).

You are welcome to write a short code to try things out, but you are not required to implement this.

Problem 4.

Consider the Conjugate gradient algorithm on page 87 for some symmetric positive definite matrix
A ∈ lRm×m. Suppose we happen to choose the initial guess u0 in such a way that the initial residual
r0 = f −Au0 is an eigenvector of A. Show that in this case the method converges to the true solution
of the linear system in one iteration.

Problem 5.

Consider the BVP
u′′(x) = f(x), for 0 ≤ x ≤ 1

with boundary conditions
γ0u(0) + γ1u

′(0) = σ, u(1) = β.

At x = 1 a standard Dirichlet BC is specified, but at x = 0 we now have a “mixed” or “Robin” boundary
condition, assuming γ0, γ1, σ are all specified constants, as is β. For some physical problems this is
the correct type of boundary condition, e.g. in a heat conduction problem it corresponds to a case in
which the heat flux at x = 0 is related to the temperature at this point.
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(a) Set up a tridiagonal linear system Au = f that could be solved to model this, with the following
properties:

• u = [u0, u1, . . . , um] contains the unknown boundary value u0 but not the known value um+1 = β
(assuming as usual that xj = jh for j = 0, 1, . . . , m+ 1 on a grid with h = 1/(m+ 1)).

• The method is second order accurate.

Follow the strategy of the second approach on page 31 to obtain the first equation in your linear
system (i.e. introduce a ghost point u−1 and then eliminate it from the two equations that involve this
unknown). Write out the matrix and right hand side of your system.

(b) Determine the local truncation error of your method, τ = [τ0, τ1, . . . , τm]. We expect τj =
Cjh

2 + o(h2) so determine the constants Cj in terms of derivative(s) of the exact solution u(x) (by
doing Taylor series expansions, assuming u(x) is sufficiently smooth).

Problem 6. (With corrected boundary conditions)

(a) Implement the method you derived in the previous problem (in Python or Matlab). It is ok to base
this on code you have previously written for homework problems, and/or the class Jupyter notebooks.

(b) Test it on the problem

u′′(x) = 4, 0 ≤ x ≤ 1,

2u(0) + 3u′(0) = 1, u(1) = 2,

which has exact solution u(x) = 2x2 + x− 1.

Explain why you expect the exact solution to your linear system to agree with exact solution of the
ODE when evaluated at the grid points, and confirm that this is true for your implementation.

(c) Also test it on the problem

u′′(x) = −18x+ 4, 0 ≤ x ≤ 1,

2u(0) + 3u′(0) = 1, u(1) = −1,

which has exact solution u(x) = −3x3 +2x2 +x−1. In this case check that your method is second order
accurate by producing a log-log plot of the errors (similar to what was done in the notebook BVP1),
using m+ 1 = 50, 100, 200, 400, 800.

3


